1
|
Boulanger-Weill J, Kämpf F, Schalek RL, Petkova M, Vohra SK, Savaliya JH, Wu Y, Schuhknecht GFP, Naumann H, Eberle M, Kirchberger KN, Rencken S, Bianco IH, Baum D, Del Bene F, Engert F, Lichtman JW, Bahl A. Correlative light and electron microscopy reveals the fine circuit structure underlying evidence accumulation in larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643363. [PMID: 40161766 PMCID: PMC11952533 DOI: 10.1101/2025.03.14.643363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Accumulating information is a critical component of most circuit computations in the brain across species, yet its precise implementation at the synaptic level remains poorly understood. Dissecting such neural circuits in vertebrates requires precise knowledge of functional neural properties and the ability to directly correlate neural dynamics with the underlying wiring diagram in the same animal. Here we combine functional calcium imaging with ultrastructural circuit reconstruction, using a visual motion accumulation paradigm in larval zebrafish. Using connectomic analyses of functionally identified cells and computational modeling, we show that bilateral inhibition, disinhibition, and recurrent connectivity are prominent motifs for sensory accumulation within the anterior hindbrain. We also demonstrate that similar insights about the structure-function relationship within this circuit can be obtained through complementary methods involving cell-specific morphological labeling via photo-conversion of functionally identified neuronal response types. We used our unique ground truth datasets to train and test a novel classifier algorithm, allowing us to assign functional labels to neurons from morphological libraries where functional information is lacking. The resulting feature-rich library of neuronal identities and connectomes enabled us to constrain a biophysically realistic network model of the anterior hindbrain that can reproduce observed neuronal dynamics and make testable predictions for future experiments. Our work exemplifies the power of hypothesis-driven electron microscopy paired with functional recordings to gain mechanistic insights into signal processing and provides a framework for dissecting neural computations across vertebrates.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
- These authors contributed equally: Jonathan Boulanger-Weill, Florian Kämpf
| | - Florian Kämpf
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- These authors contributed equally: Jonathan Boulanger-Weill, Florian Kämpf
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mariela Petkova
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sumit Kumar Vohra
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin (ZIB), Berlin, Germany
| | - Jay H. Savaliya
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Gregor F. P. Schuhknecht
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Heike Naumann
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Maren Eberle
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kim N. Kirchberger
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Simone Rencken
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin (ZIB), Berlin, Germany
| | - Filippo Del Bene
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Florian Engert
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| |
Collapse
|
2
|
Sripinun P, Lu W, Nikonov S, Patel S, Hennessy S, Yao T, Cui QN, Bell BA, Mitchell CH. Fluorescent identification of axons, dendrites and soma of neuronal retinal ganglion cells with a genetic marker as a tool for facilitating the study of neurodegeneration. FASEB Bioadv 2025; 7:e1478. [PMID: 39781424 PMCID: PMC11705399 DOI: 10.1096/fba.2024-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/12/2025] Open
Abstract
This study characterizes a fluorescent Slc17a6-tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes. There was no cross-labeling of ChAT-positive displaced amacrine cells in the GCL, although some signal emanated from the outer plexiform layer, consistent with horizontal cells. The fluorescence allowed rapid screening of RGC loss following optic nerve crush and intraocular pressure (IOP) elevation. The bright fluorescence also enabled non-invasive monitoring of extensive neurite networks and neuron/astrocyte interactions in culture. Robust Ca2+ responses to P2X7R agonist BzATP were detected from fluorescent RGCs using Ca2+-indicator Fura-2. Fluorescence from axons and soma was detected in vivo with a confocal scanning laser ophthalmoscope (cSLO); automatic RGC soma counts enhanced through machine learning approached the numbers found in retinal wholemounts. Controls indicated no impact of Slc17a6-tdTomato expression on light-dependent neuronal function as measured with a microelectrode array (MEA), or on retinal structure as measured with optical coherence tomography (OCT). In summary, the bright fluorescence in axons, dendrites and soma of ~all RGCs in the Slc17a6-tdTomato reporter mouse may facilitate the study of RGCs.
Collapse
Affiliation(s)
- Puttipong Sripinun
- Department of Basic and Translational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of OrthodonticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthodontics and Pediatric DentistryChiang Mai UniversityChiang MaiThailand
| | - Wennan Lu
- Department of Basic and Translational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sergei Nikonov
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Suhani Patel
- Department of Basic and Translational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sarah Hennessy
- Department of Basic and Translational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tianyuan Yao
- Department of OphthalmologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Qi N. Cui
- Department of OphthalmologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brent A. Bell
- Department of OphthalmologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Claire H. Mitchell
- Department of Basic and Translational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Beauséjour PA, Veilleux JC, Condamine S, Zielinski BS, Dubuc R. Olfactory Projections to Locomotor Control Centers in the Sea Lamprey. Int J Mol Sci 2024; 25:9370. [PMID: 39273317 PMCID: PMC11395479 DOI: 10.3390/ijms25179370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal). Here, we characterized the transmission of olfactory inputs to the PT in the sea lamprey, Petromyzon marinus. Abundant projections from the medOB were observed close to DA neurons of the PT. Moreover, electrophysiological experiments revealed that PT neurons are activated by both the medOB and LPal, and calcium imaging indicated that the olfactory signal is then relayed to the mesencephalic locomotor region to initiate locomotion. In semi-intact preparations, stimulation of the medOB and LPal induced locomotion that was tightly associated with neural activity in the PT. Moreover, PT neurons were active throughout spontaneously occurring locomotor bouts. Altogether, our observations suggest that the medOB and LPal convey olfactory inputs to DA neurons of the PT, which in turn activate the brainstem motor command system to elicit locomotion.
Collapse
Affiliation(s)
| | - Jean-Christophe Veilleux
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| | - Steven Condamine
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Barbara S Zielinski
- Department of Integrative Biology, Faculty of Science, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Réjean Dubuc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
4
|
Sripinun P, Lu W, Nikonov S, Patel S, Hennessy S, Bell BA, Mitchell CH. Fluorescent identification of axons, dendrites and soma of neuronal retinal ganglion cells with a genetic marker as a tool for facilitating the study of neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599589. [PMID: 38979248 PMCID: PMC11230212 DOI: 10.1101/2024.06.20.599589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study characterizes a fluorescent Slc17a6 -tdTomato neuronal reporter mouse line offering strong labeling in axons throughout the optic nerve, dendrites and soma in 99% of retinal ganglion cells (RGCs). The model facilitates neuronal assessment ex vivo with wholemounts quantified to show neurodegeneration following optic nerve crush or elevated IOP as related to glaucoma, in vitro with robust Ca 2+ responses to P2X7 receptor stimulation in neuronal cultures, and in vivo using a confocal scanning laser ophthalmoscope (cSLO). While the tdTomato signal showed strong overlap with RGC markers, BRN3A and RBPMS, there was no cross-labeling of displaced amacrine cells in the ganglion cell layer. Controls indicated no impact of Slc17a6 -tdTomato expression on light-dependent neuronal function, as determined with a microelectrode array (MEA), or on structure, as measured with optical coherence tomography (OCT). In summary, this novel neuronal reporter mouse model offers an effective means to increase the efficiency for real-time, specific visualization of retinal ganglion cells. It holds substantial promise for enhancing our understanding of RGC pathology in glaucoma and other diseases of the optic nerve, and could facilitate the screening of targeted therapeutic interventions for neurodegeneration. Abstract Figure
Collapse
|
5
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
6
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
7
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
8
|
Wullimann MF. Good heavens! Finally a landslide analysis of basal ganglia circuitry in teleosts. Cell Rep 2024; 43:113915. [PMID: 38484736 DOI: 10.1016/j.celrep.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 04/02/2024] Open
Abstract
Tanimoto et al.1 report essential information on teleostean basal ganglia circuitry. This analysis opens gateways into studying neurophysiology, neuropharmacology, and behavior in zebrafish, guided by this complex functional neural system common to all vertebrates.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior, Max-Planck-Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany; Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), 82152 Martinsried, Germany.
| |
Collapse
|
9
|
Wullimann MF, Mokayes N, Shainer I, Kuehn E, Baier H. Genoarchitectonics of the larval zebrafish diencephalon. J Comp Neurol 2024; 532:e25549. [PMID: 37983970 DOI: 10.1002/cne.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| | - Nouwar Mokayes
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Inbal Shainer
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Enrico Kuehn
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
10
|
Altbürger C, Rath M, Wehrle J, Driever W. The proneural factors Ascl1a and Ascl1b contribute to the terminal differentiation of dopaminergic GABAergic dual transmitter neurons in zebrafish. Dev Biol 2024; 505:58-74. [PMID: 37931393 DOI: 10.1016/j.ydbio.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The proneural factor Ascl1 is involved in several steps of neurogenesis, from neural progenitor maintenance to initiation of terminal differentiation and neuronal subtype specification. In neural progenitor cells, Ascl1 initiates the cell-cycle exit of progenitors, and contributes to their differentiation into mainly GABAergic neurons. Several catecholaminergic neuron groups in the forebrain of zebrafish use GABA as co-transmitter, but a potential role of the two paralogues Ascl1a and Ascl1b in their neurogenesis is not understood. Here, we show that ascl1a, ascl1b double mutant embryos develop a significantly reduced number of neurons in all GABAergic and catecholaminergic dual transmitter neuron anatomical clusters in the fore- and hindbrain, while glutamatergic catecholaminergic clusters develop normally. However, none of the affected catecholaminergic cell clusters are lost completely, suggesting an impairment in progenitor pools, or a requirement of Ascl1a/b for differentiation of a subset of neurons in each cluster. Early progenitors which are dlx2a+, fezf2 + or emx2 + are not reduced whereas late progenitors and differentiating neurons marked by the expression of dlx5a, isl1 and arxa are severely reduced in ascl1a, ascl1b double mutant embryos. This suggests that Ascl1a and Ascl1b play only a minor or no role in the maintenance of their progenitor pools, but rather contribute to the initiation of terminal differentiation of GABAergic catecholaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Meta Rath
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - Johanna Wehrle
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; MeInBio Research Training Group, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Department of Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University, Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Altbürger C, Rath M, Armbruster D, Driever W. Neurog1 and Olig2 integrate patterning and neurogenesis signals in development of zebrafish dopaminergic and glutamatergic dual transmitter neurons. Dev Biol 2024; 505:85-98. [PMID: 37944224 DOI: 10.1016/j.ydbio.2023.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Dopaminergic neurons develop in distinct neural domains by integrating local patterning and neurogenesis signals. While the proneural proteins Neurog1 and Olig2 have been previously linked to development of dopaminergic neurons, their dependence on local prepatterning and specific contributions to dopaminergic neurogenesis are not well understood. Here, we show that both transcription factors are differentially required for the development of defined dopaminergic glutamatergic subpopulations in the zebrafish posterior tuberculum, which are homologous to A11 dopaminergic neurons in mammals. Both Olig2 and Neurog1 are expressed in otpa expressing progenitor cells and appear to act upstream of Otpa during dopaminergic neurogenesis. Our epistasis analysis confirmed that Neurog1 acts downstream of Notch signaling, while Olig2 acts downstream of Shh, but upstream and/or in parallel to Notch signaling during neurogenesis of A11-type dopaminergic clusters. Furthermore, we identified Olig2 to be an upstream regulator of neurog1 in dopaminergic neurogenesis. This regulation occurs through Olig2-dependent repression of the proneural repressor and Notch target gene her2. Our study reveals how Neurog1 and Olig2 integrate local patterning signals, including Shh, with Notch neurogenic selection signaling, to specify the progenitor population and initiate neurogenesis and differentiation of A11-type dopaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Meta Rath
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Armbruster
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; MeInBio Research Training Group, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Driever
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
14
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. The Co-Expression Pattern of Calcium-Binding Proteins with γ-Aminobutyric Acid and Glutamate Transporters in the Amygdala of the Guinea Pig: Evidence for Glutamatergic Subpopulations. Int J Mol Sci 2023; 24:15025. [PMID: 37834473 PMCID: PMC10573686 DOI: 10.3390/ijms241915025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| |
Collapse
|
15
|
Blum K, Gold MS, Cadet JL, Gondre-Lewis MC, McLaughlin T, Braverman ER, Elman I, Paul Carney B, Cortese R, Abijo T, Bagchi D, Giordano J, Dennen CA, Baron D, Thanos PK, Soni D, Makale MT, Makale M, Murphy KT, Jafari N, Sunder K, Zeine F, Ceccanti M, Bowirrat A, Badgaiyan RD. Invited Expert Opinion- Bioinformatic and Limitation Directives to Help Adopt Genetic Addiction Risk Screening and Identify Preaddictive Reward Dysregulation: Required Analytic Evidence to Induce Dopamine Homeostatsis. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4211. [PMID: 37885438 PMCID: PMC10601302 DOI: 10.18103/mra.v11i8.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Addiction, albeit some disbelievers like Mark Lewis [1], is a chronic, relapsing brain disease, resulting in unwanted loss of control over both substance and non- substance behavioral addictions leading to serious adverse consequences [2]. Addiction scientists and clinicians face an incredible challenge in combatting the current opioid and alcohol use disorder (AUD) pandemic throughout the world. Provisional data from the Centers for Disease Control and Prevention (CDC) shows that from July 2021-2022, over 100,000 individuals living in the United States (US) died from a drug overdose, and 77,237 of those deaths were related to opioid use [3]. This number is expected to rise, and according to the US Surgeon General it is highly conceivable that by 2025 approximately 165,000 Americans will die from an opioid overdose. Alcohol abuse, according to data from the World Health Organization (WHO), results in 3 million deaths worldwide every year, which represents 5.3% of all deaths globally [4].
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
- Division of Addiction Research & Education, Center for Sports, Exercise & Psychiatry, Western University Health Sciences, Pomona, CA., USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT.,USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Thomas McLaughlin
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
| | - Eric R Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA., USA
| | - B. Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., USA
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO., USA
| | - Tomilowo Abijo
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - John Giordano
- Division of Personalized Mental Illness Treatment & Research, Ketamine Infusion Clinics of South Florida, Pompano Beach, Fl., USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA., USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, Health Sciences Drive, La Jolla, CA, 92093, USA
| | | | - Nicole Jafari
- Department of Human Development, California State University at long Beach, Long Beach, CA., USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
| | - Keerthy Sunder
- Department of Psychiatry, Menifee Global Medical Center, Palm Desert, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA., USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA., USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, Rome, Italy
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX., USA
- Department of Psychiatry, Mt Sinai University School of Medicine, New York, NY., USA
| |
Collapse
|
16
|
Sun W, Wang M, Zhao J, Zhao S, Zhu W, Wu X, Li F, Liu W, Wang Z, Gao M, Zhang Y, Xu J, Zhang M, Wang Q, Wen Z, Shen J, Zhang W, Huang Z. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish. Nat Commun 2023; 14:5351. [PMID: 37660128 PMCID: PMC10475106 DOI: 10.1038/s41467-023-41114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs compose one of the most widely used classes of medications, but the risks for early development remain controversial, especially in the nervous system. Here, we utilized zebrafish larvae to assess the potentially toxic effects of nonsteroidal anti-inflammatory drugs and found that sulindac can selectively induce apoptosis of GABAergic neurons in the brains of zebrafish larvae brains. Zebrafish larvae exhibit hyperactive behaviour after sulindac exposure. We also found that akt1 is selectively expressed in GABAergic neurons and that SC97 (an Akt1 activator) and exogenous akt1 mRNA can reverse the apoptosis caused by sulindac. Further studies showed that sulindac binds to retinoid X receptor alpha (RXRα) and induces autophagy in GABAergic neurons, leading to activation of the mitochondrial apoptotic pathway. Finally, we verified that sulindac can lead to hyperactivity and selectively induce GABAergic neuron apoptosis in mice. These findings suggest that excessive use of sulindac may lead to early neurodevelopmental toxicity and increase the risk of hyperactivity, which could be associated with damage to GABAergic neurons.
Collapse
Affiliation(s)
- Wenwei Sun
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meimei Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoting Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhuo Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518055, China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Amaral-Silva L, Santin JM. Molecular profiling of CO 2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111453. [PMID: 37230318 PMCID: PMC10492231 DOI: 10.1016/j.cbpa.2023.111453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Locus coeruleus (LC) neurons regulate breathing by sensing CO2/pH. Neurons within the vertebrate LC are the main source of norepinephrine within the brain. However, they also use glutamate and GABA for fast neurotransmission. Although the amphibian LC is recognized as a site involved in central chemoreception for the control of breathing, the neurotransmitter phenotype of these neurons is unknown. To address this question, we combined electrophysiology and single-cell quantitative PCR to detect mRNA transcripts that define norepinephrinergic, glutamatergic, and GABAergic phenotypes in LC neurons activated by hypercapnic acidosis (HA) in American bullfrogs. Most LC neurons activated by HA had overlapping expression of noradrenergic and glutamatergic markers but did not show strong support for GABAergic transmission. Genes that encode the pH-sensitive K+ channel, TASK2, and acid-sensing cation channel, ASIC2, were most abundant, while Kir5.1 was present in 1/3 of LC neurons. The abundance of transcripts related to norepinephrine biosynthesis linearly correlated with those involved in pH sensing. These results suggest that noradrenergic neurons in the amphibian LC also use glutamate as a neurotransmitter and that CO2/pH sensitivity may be linkedto the noradrenergic cell identity.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA. https://twitter.com/amaralsilva_l
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
18
|
Altbürger C, Holzhauser J, Driever W. CRISPR/Cas9-based QF2 knock-in at the tyrosine hydroxylase ( th) locus reveals novel th-expressing neuron populations in the zebrafish mid- and hindbrain. Front Neuroanat 2023; 17:1196868. [PMID: 37603776 PMCID: PMC10433395 DOI: 10.3389/fnana.2023.1196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/30/2023] [Indexed: 08/23/2023] Open
Abstract
Catecholaminergic neuron clusters are among the most conserved neuromodulatory systems in vertebrates, yet some clusters show significant evolutionary dynamics. Because of their disease relevance, special attention has been paid to mammalian midbrain dopaminergic systems, which have important functions in motor control, reward, motivation, and cognitive function. In contrast, midbrain dopaminergic neurons in teleosts were thought to be lost secondarily. Here, we generated a CRISPR/Cas9-based knock-in transgene at the th locus, which allows the expression of the Q-system transcription factor QF2 linked to the Tyrosine hydroxylase open reading frame by an E2A peptide. The QF2 knock-in allele still expresses Tyrosine hydroxylase in catecholaminergic neurons. Coexpression analysis of QF2 driven expression of QUAS fluorescent reporter transgenes and of th mRNA and Th protein revealed that essentially all reporter expressing cells also express Th/th. We also observed a small group of previously unidentified cells expressing the reporter gene in the midbrain and a larger group close to the midbrain-hindbrain boundary. However, we detected no expression of the catecholaminergic markers ddc, slc6a3, or dbh in these neurons, suggesting that they are not actively transmitting catecholamines. The identified neurons in the midbrain are located in a GABAergic territory. A coexpression analysis with anatomical markers revealed that Th-expressing neurons in the midbrain are located in the tegmentum and those close to the midbrain-hindbrain boundary are located in the hindbrain. Our data suggest that zebrafish may still have some evolutionary remnants of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jens Holzhauser
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology I, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Natsaridis E, Perdikaris P, Fokos S, Dermon CR. Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain ( Danio rerio). Brain Sci 2023; 13:861. [PMID: 37371341 DOI: 10.3390/brainsci13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, β2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.
Collapse
Affiliation(s)
- Evangelos Natsaridis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Panagiotis Perdikaris
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Stefanos Fokos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
20
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
21
|
Gong S, McLamb F, Shea D, Vu JP, Vasquez MF, Feng Z, Bozinovic K, Hirata KK, Gersberg RM, Bozinovic G. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32320-32336. [PMID: 36462083 PMCID: PMC10017623 DOI: 10.1007/s11356-022-24542-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
Hexafluoropropylene oxide-dimer acid (HFPO-DA) is one of the emerging replacements for the "forever" carcinogenic and toxic long-chain PFAS. HFPO-DA is a polymerization aid used for manufacturing fluoropolymers, whose global distribution and undetermined toxic properties are a concern regarding human and ecological health. To assess embryotoxic potential, zebrafish embryos were exposed to HFPO-DA at concentrations of 0.5-20,000 mg/L at 24-, 48-, and 72-h post-fertilization (hpf). Heart rate increased significantly in embryos exposed to 2 mg/L and 10 mg/L HFPO-DA across all time points. Spinal deformities and edema phenotypes were evident among embryos exposed to 1000-16,000 mg/L HFPO-DA at 72 hpf. A median lethal concentration (LC50) was derived as 7651 mg/L at 72 hpf. Shallow RNA sequencing analysis of 9465 transcripts identified 38 consistently differentially expressed genes at 0.5 mg/L, 1 mg/L, 2 mg/L, and 10 mg/L HFPO-DA exposures. Notably, seven downregulated genes were associated with visual response, and seven upregulated genes were expressed in or regulated the cardiovascular system. This study identifies biological targets and molecular pathways affected during animal development by an emerging, potentially problematic, and ubiquitous industrial chemical.
Collapse
Affiliation(s)
- Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Kesten Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- Graduate School of Arts and Sciences, Georgetown University, Washington, DC, USA
| | - Ken K Hirata
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- School of Public Health, San Diego State University, San Diego, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0355, USA.
| |
Collapse
|
22
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
23
|
Neurotoxicity of diesel exhaust extracts in zebrafish and its implications for neurodegenerative disease. Sci Rep 2022; 12:19371. [PMID: 36371460 PMCID: PMC9653411 DOI: 10.1038/s41598-022-23485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term air pollution (AP) exposure, including diesel exhaust exposure, is increasingly being recognized as a major contributor to the development of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. How AP increases the risk of neurodegeneration is not well understood but might include direct neurotoxicity and CNS inflammation. We investigated the impact of diesel exhaust particulate extract (DEPe) exposure on the brain and the mechanisms by which microglia and astroglia might mediate neuronal changes. Zebrafish (ZF) were utilized to determine neuronal toxicity of and microglial response to DEPe and single cell RNA sequencing was employed to study cell type-specific transcriptomic responses within the ZF brain. DEPe exposure induced neuronal injury and microglial activation in vivo. However, preventing the development of microglia did not attenuate DEPe-induced neuron loss, leading us to investigate microglial, astroglial, and neuronal response to DEPe exposure at single-cell resolution. Differentially expressed genes and disease-relevant pathways were identified within glial and neuronal clusters after DEPe exposure. Microglia and astroglia existed in multiple states, some of which appear toxic and others protective to neurons. Neuronal transcriptomic analysis revealed that DEPe exposure reduced expression of autophagy-related genes consistent with direct neurotoxicity. In summary, DEPe exposure was neurotoxic in developing ZF larvae and induced neuroinflammation. The microglial inflammatory response did not contribute to neurotoxicity of DEPe and in fact, some glial clusters upregulated transcriptional pathways that are likely protective. Furthermore, DEPe exposure led to reduced expression of autophagy-related genes in neurons that likely contribute to its toxicity.
Collapse
|
24
|
Wullimann MF. The Neuromeric/Prosomeric Model in Teleost Fish Neurobiology. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:336-360. [PMID: 35728561 PMCID: PMC9808694 DOI: 10.1159/000525607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
The neuromeric/prosomeric model has been rejuvenated by Puelles and Rubenstein [Trends Neurosci. 1993;16(11):472-9]. Here, its application to the (teleostean) fish brain is detailed, beginning with a historical account. The second part addresses three main issues with particular interest for fish neuroanatomy and looks at the impact of the neuromeric model on their understanding. The first one is the occurrence of four early migrating forebrain areas (M1 through M4) in teleosts and their comparative interpretation. The second issue addresses the complex development and neuroanatomy of the teleostean alar and basal hypothalamus. The third topic is the vertebrate dopaminergic system, with the focus on some teleostean peculiarities. Most of the information will be coming from zebrafish studies, although the general ductus is a comparative one. Throughout the manuscript, comparative developmental and organizational aspects of the teleostean amygdala are discussed. One particular focus is cellular migration streams into the medial amygdala.
Collapse
Affiliation(s)
- Mario F. Wullimann
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München (LMU Munich), Martinsried, Germany,Department Genes-Circuits-Behavior, Max-Planck-Institute for Biological Intelligence (i.F.), Martinsried, Germany,*Mario F. Wullimann,
| |
Collapse
|
25
|
GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. Int J Mol Sci 2022; 23:ijms23147963. [PMID: 35887305 PMCID: PMC9320123 DOI: 10.3390/ijms23147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.
Collapse
|
26
|
Eugenin von Bernhardi J, Biechl D, Miek L, Herget U, Ryu S, Wullimann MF. A versatile transcription factor: Multiple roles of orthopedia a (otpa) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (Danio rerio) brains. J Comp Neurol 2022; 530:2537-2561. [PMID: 35708548 DOI: 10.1002/cne.25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Many transcription factors boost neural development and differentiation in specific directions and serve for identifying similar or homologous structures across species. The expression of Orthopedia (Otp) is critical for the development of certain cell groups along the vertebrate neuraxis, for example, the medial amygdala or hypothalamic neurosecretory neurons. Therefore, the primary focus of the present study is the distribution of Orthopedia a (Otpa) in the larval and adult zebrafish (Danio rerio) brain. Since Otpa is also critical for the development of zebrafish basal diencephalic dopaminergic cells, colocalization of Otpa with the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) is studied. Cellular colocalization of Otpa and dopamine is only seen in magnocellular neurons of the periventricular posterior tubercular nucleus and in the posterior tuberal nucleus. Otpa-positive cells occur in many additional structures along the zebrafish neuraxis, from the secondary prosencephalon down to the hindbrain. Furthermore, Otpa expression is studied in shh-GFP and islet1-GFP transgenic zebrafish. Otpa-positive cells only express shh in dopaminergic magnocellular periventricular posterior tubercular cells, and only colocalize with islet1-GFP in the ventral zone and prerecess caudal periventricular hypothalamic zone and the perilemniscal nucleus. The scarcity of cellular colocalization of Otpa in islet1-GFP cells indicates that the Shh-islet1 neurogenetic pathway is not active in most Otpa-expressing domains. Our analysis reveals detailed correspondences between mouse and zebrafish forebrain territories including the zebrafish intermediate nucleus of the ventral telencephalon and the mouse medial amygdala. The zebrafish preoptic Otpa-positive domain represents the neuropeptidergic supraopto-paraventricular region of all tetrapods. Otpa domains in the zebrafish basal plate hypothalamus suggest that the ventral periventricular hypothalamic zone corresponds to the otp-expressing basal hypothalamic tuberal field in the mouse. Furthermore, the mouse otp domain in the mammillary hypothalamus compares partly to our Otpa-positive domain in the prerecess caudal periventricular hypothalamic zone (Hc-a).
Collapse
Affiliation(s)
- Jaime Eugenin von Bernhardi
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,The Solomon Snyder Department of Neuroscience, Johns Hopkins Univeristy, Baltimore, Maryland, USA
| | - Daniela Biechl
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Laura Miek
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Soojin Ryu
- Living Systems Institute University of Exeter, Exeter, Devon, UK.,College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Mario F Wullimann
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Zhao G, Hu J, Gao M, Zhu Y, Hong Y. Excessive selenium affects neural development and locomotor behavior of zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113611. [PMID: 35526456 DOI: 10.1016/j.ecoenv.2022.113611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Selenium is an essential micronutrient derived from daily diet to maintain the normal growth and development of vertebrates. Excessive selenium intake will induce cardiovascular toxicity, reproductive toxicity and neurotoxicity. However, there have been few studies of the toxic effects of selenium on neural development and locomotor behavior. In this study, newly fertilized zebrafish embryos were treated with selenium. As a result, selenium treatment at the concentration of 0.5 µM decreased the moving speed and distance and blunted the touch response of zebrafish embryos. TUNEL assay and immunofluorescence analysis revealed that selenium induced nervous system impairment including promoted cell apoptosis, proliferation and neuroinflammation, and decreased neurons in zebrafish embryos. RNA-seq and RT-PCR results indicated that selenium treatment significantly decreased the expression of the dopaminergic neuron, motor neuron, GABAergic neuron and neurotransmitter transport marker genes in zebrafish embryos. The expression of PPAR signaling pathway marker genes was significantly down-regulated in selenium-treated embryos. Two PPAR agonists (rosiglitazone and bezafibrate) and an anti-cancer drug (cisplatin) were tested for their effects to alleviate selenium-induced locomotor defects. Rosiglitazone and bezafibrate could restore the expression of some neural marker genes but could not fully rescue the selenium-induced locomotor behavior defects. The supplementation of cisplatin could restore the dysfunctional locomotor behavior and the abnormal expression of the PPAR and neural marker genes to almost the normal levels. In conclusion, the results of this study reveal that selenium-induced neural development and locomotor behavior defects are caused by multiple complex factors including PPAR signaling, and all the factors might be recovered by cisplatin through unknown mechanisms.
Collapse
Affiliation(s)
- Guang Zhao
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330031, China
| | - Jun Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330031, China
| | - Meng Gao
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330031, China
| | - Yuejie Zhu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330031, China
| | - Yijiang Hong
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
28
|
Kwon V, Cai P, Dixon CT, Hamlin V, Spencer CG, Rojas AM, Hamilton M, Shiau CE. Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration into the brain disrupting daytime locomotion. Commun Biol 2022; 5:464. [PMID: 35577844 PMCID: PMC9110401 DOI: 10.1038/s42003-022-03410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is known to disrupt normal behavior, yet the underlying neuroimmune interactions remain elusive. Here, we investigated whether inappropriate macrophage-evoked inflammation alters CNS control of daily-life animal locomotion using a set of zebrafish mutants selected for specific macrophage dysfunction and microglia deficiency. Large-scale genetic and computational analyses revealed that NOD-like receptor nlrc3l mutants are capable of normal motility and visuomotor response, but preferentially swim less in the daytime, suggesting possible low motivation rather than physical impairment. Examining their brain activities and structures implicates impaired dopaminergic descending circuits, where neutrophils abnormally infiltrate. Furthermore, neutrophil depletion recovered daytime locomotion. Restoring wild-type macrophages reversed behavioral and neutrophil aberrations, while three other microglia-lacking mutants failed to phenocopy nlrc3l mutants. Overall, we reveal how peripheral inflammatory macrophages with elevated pro-inflammatory cues (including il1β, tnfα, cxcl8a) in the absence of microglia co-opt neutrophils to infiltrate the brain, thereby potentially enabling local circuitry modulation affecting daytime locomotion.
Collapse
Affiliation(s)
- Victoria Kwon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiwen Cai
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cameron T Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Hamlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline G Spencer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alison M Rojas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Hamilton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Brożko N, Baggio S, Lipiec MA, Jankowska M, Szewczyk ŁM, Gabriel MO, Chakraborty C, Ferran JL, Wiśniewska MB. Genoarchitecture of the Early Postmitotic Pretectum and the Role of Wnt Signaling in Shaping Pretectal Neurochemical Anatomy in Zebrafish. Front Neuroanat 2022; 16:838567. [PMID: 35356436 PMCID: PMC8959918 DOI: 10.3389/fnana.2022.838567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
The pretectum has a distinct nuclear arrangement and complex neurochemical anatomy. While previous genoarchitectural studies have described rostrocaudal and dorsoventral progenitor domains and subdomains in different species, the relationship between these early partitions and its later derivatives in the mature anatomy is less understood. The signals and transcription factors that control the establishment of pretectal anatomy are practically unknown. We investigated the possibility that some aspects of the development of pretectal divisions are controlled by Wnt signaling, focusing on the transitional stage between neurogenesis and histogenesis in zebrafish. Using several molecular markers and following the prosomeric model, we identified derivatives from each rostrocaudal pretectal progenitor domain and described the localization of gad1b-positive GABAergic and vglut2.2-positive glutamatergic cell clusters. We also attempted to relate these clusters to pretectal nuclei in the mature brain. Then, we examined the influence of Wnt signaling on the size of neurochemically distinctive pretectal areas, using a chemical inhibitor of the Wnt pathway and the CRISPR/Cas9 approach to knock out genes that encode the Wnt pathway mediators, Lef1 and Tcf7l2. The downregulation of the Wnt pathway led to a decrease in two GABAergic clusters and an expansion of a glutamatergic subregion in the maturing pretectum. This revealed an instructive role of the Wnt signal in the development of the pretectum during neurogenesis. The molecular anatomy presented here improves our understanding of pretectal development during early postmitotic stages and support the hypothesis that Wnt signaling is involved in shaping the neurochemical organization of the pretectum.
Collapse
Affiliation(s)
- Nikola Brożko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Suelen Baggio
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marcin A. Lipiec
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Jankowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | | | - José L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Institute of Biomedical Research of Murcia -Ű IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Marta B. Wiśniewska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- *Correspondence: Marta B. Wiśniewska,
| |
Collapse
|
30
|
Westphal M, Panza P, Kastenhuber E, Wehrle J, Driever W. Wnt/β-catenin signaling promotes neurogenesis in the diencephalospinal dopaminergic system of embryonic zebrafish. Sci Rep 2022; 12:1030. [PMID: 35046434 PMCID: PMC8770493 DOI: 10.1038/s41598-022-04833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin signaling contributes to patterning, proliferation, and differentiation throughout vertebrate neural development. Wnt/β-catenin signaling is important for mammalian midbrain dopaminergic neurogenesis, while little is known about its role in ventral forebrain dopaminergic development. Here, we focus on the A11-like, Otp-dependent diencephalospinal dopaminergic system in zebrafish. We show that Wnt ligands, receptors and extracellular antagonist genes are expressed in the vicinity of developing Otp-dependent dopaminergic neurons. Using transgenic Wnt/β-catenin-reporters, we found that Wnt/β-catenin signaling activity is absent from these dopaminergic neurons, but detected Wnt/β-catenin activity in cells adjacent to the caudal DC5/6 clusters of Otp-dependent dopaminergic neurons. Pharmacological manipulations of Wnt/β-catenin signaling activity, as well as heat-shock driven overexpression of Wnt agonists and antagonists, interfere with the development of DC5/6 dopaminergic neurons, such that Wnt/β-catenin activity positively correlates with their number. Wnt/β-catenin activity promoted dopaminergic development specifically at stages when DC5/6 dopaminergic progenitors are in a proliferative state. Our data suggest that Wnt/β-catenin signaling acts in a spatially and temporally restricted manner on proliferative dopaminergic progenitors in the hypothalamus to positively regulate the size of the dopaminergic neuron groups DC5 and DC6.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Paolo Panza
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Department of Developmental Genetics, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Edda Kastenhuber
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Johanna Wehrle
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany.,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany. .,CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
31
|
Pérez-Fernández J, Barandela M, Jiménez-López C. The Dopaminergic Control of Movement-Evolutionary Considerations. Int J Mol Sci 2021; 22:11284. [PMID: 34681941 PMCID: PMC8541398 DOI: 10.3390/ijms222011284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dopamine is likely the most studied modulatory neurotransmitter, in great part due to characteristic motor deficits in Parkinson's disease that arise after the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). The SNc, together with the ventral tegmental area (VTA), play a key role modulating motor responses through the basal ganglia. In contrast to the large amount of existing literature addressing the mammalian dopaminergic system, comparatively little is known in other vertebrate groups. However, in the last several years, numerous studies have been carried out in basal vertebrates, allowing a better understanding of the evolution of the dopaminergic system, especially the SNc/VTA. We provide an overview of existing research in basal vertebrates, mainly focusing on lampreys, belonging to the oldest group of extant vertebrates. The lamprey dopaminergic system and its role in modulating motor responses have been characterized in significant detail, both anatomically and functionally, providing the basis for understanding the evolution of the SNc/VTA in vertebrates. When considered alongside results from other early vertebrates, data in lampreys show that the key role of the SNc/VTA dopaminergic neurons modulating motor responses through the basal ganglia was already well developed early in vertebrate evolution.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Center for Biomedical Research (CINBIO), Neurocircuits Group, Department of Functional Biology and Health Sciences, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (M.B.); (C.J.-L.)
| | | | | |
Collapse
|
32
|
Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish. Cell Rep 2021; 30:442-453.e6. [PMID: 31940488 DOI: 10.1016/j.celrep.2019.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Non-cortical visual areas in vertebrate brains extract relevant stimulus features, such as motion, object size, and location, to support diverse behavioral tasks. The optic tectum and pretectum, two primary visual areas in zebrafish, are involved in motion processing, and yet their differential neural representation of behaviorally relevant visual features is unclear. Here, we characterize receptive fields (RFs) of motion-sensitive neurons in the diencephalon and midbrain. We show that RFs of many pretectal neurons are large and sample the lower visual field, whereas RFs of tectal neurons are mostly small-size selective and sample the upper nasal visual field more densely. Furthermore, optomotor swimming can reliably be evoked by presenting forward motion in the lower temporal visual field alone, matching the lower visual field bias of the pretectum. Thus, tectum and pretectum extract different visual features from distinct regions of visual space, which is likely a result of their adaptations to hunting and optomotor behavior, respectively.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Blum K, Gold MS, Cadet JL, Baron D, Bowirrat A, Thanos PK, Brewer R, Badgaiyan RD, Gondré-Lewis MC. Dopaminylation in Psychostimulant Use Disorder Protects Against Psychostimulant Seeking Behavior by Normalizing Nucleus Accumbens (NAc) Dopamine Expression. CURRENT PSYCHOPHARMACOLOGY 2021; 11:11-17. [PMID: 36046837 PMCID: PMC9426774 DOI: 10.2174/2211556009666210108112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Repeated cocaine administration changes histone acetylation and methylation on Lys residues and Deoxyribonucleic acid (DNA) within the nucleus accumbens (NAc). Recently Nestler's group explored histone Arg (R) methylation in reward processing models. Damez-Werno et al. (2016) reported that during human investigations and animal self-administration experiments, the histone mark protein-R-methyltransferase-6 (PRMT6) and asymmetric dimethylation of R2 on histone H3 (H3R2me2a) decreased in the rodent and cocaine-dependent human NAc. Overexpression of PRMT6 in D2-MSNs in all NAc neurons increased cocaine seeking, whereas PRMT6 overexpression in D1-MSNs protects against cocaine-seeking. HYPOTHESIS The hypothesis is that dopaminylation (H3R2me2a binding) occurs in psychostimulant use disorder (PSU), and the binding inhibitor Srcin1, like the major DRD2 A2 allelic polymorphism, protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. DISCUSSION Numerous publications confirmed the association between the DRD2 Taq A1 allele (30-40 lower D2 receptor numbers) and severe cocaine dependence. Lepack et al. (2020) found that acute cocaine increases dopamine in NAc synapses, and results in histone H3 glutamine 5 dopaminylation (H3Q5dop) and consequent inhibition of D2 expression. The inhibition increases with chronic cocaine use and accompanies cocaine withdrawal. They also found that the Src kinase signaling inhibitor 1 (Srcin1 or p140CAP) during cocaine withdrawal reduced H3R2me2a binding. Consequently, this inhibited dopaminylation induced a "homeostatic brake." CONCLUSION The decrease in Src signaling in NAc D2-MSNs, (like the DRD2 Taq A2 allele, a well-known genetic mechanism protective against SUD) normalizes the NAc dopamine expression and decreases cocaine reward and motivation to self-administer cocaine. The Srcin1 may be an important therapeutic target.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College of Biomedical Sciences, Western University, Health Sciences, Pomona, CA., USA
| | - Mark S Gold
- Department of Psychiatry, Washington, University, School of Medicine, St. louis, MO., USA
| | - Jean L. Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse/NIH, Baltimore, MD, USA
| | - David Baron
- Graduate College of Biomedical Sciences, Western University, Health Sciences, Pomona, CA., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, In-terdisciplinary Center Herzliya, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Raymond Brewer
- Division of Precision Nutrition, GARS, IP, LLC., Austin, TX., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Icahn School of Medicine Mt Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Marjorie C. Gondré-Lewis
- Department of Anatomy, Howard University, WashingtonD.C, USA
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, WashingtonD.C., USA
| |
Collapse
|
34
|
Zhang H, Wang H, Shen X, Jia X, Yu S, Qiu X, Wang Y, Du J, Yan J, He J. The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain. eLife 2021; 10:68224. [PMID: 34895465 PMCID: PMC8769648 DOI: 10.7554/elife.68224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Multidimensional landscapes of regulatory genes in neuronal phenotypes at whole-brain levels in the vertebrate remain elusive. We generated single-cell transcriptomes of ~67,000 region- and neurotransmitter/neuromodulator-identifiable cells from larval zebrafish brains. Hierarchical clustering based on effector gene profiles ('terminal features') distinguished major brain cell types. Sister clusters at hierarchical termini displayed similar terminal features. It was further verified by a population-level statistical method. Intriguingly, glutamatergic/GABAergic sister clusters mostly expressed distinct transcription factor (TF) profiles ('convergent pattern'), whereas neuromodulator-type sister clusters predominantly expressed the same TF profiles ('matched pattern'). Interestingly, glutamatergic/GABAergic clusters with similar TF profiles could also display different terminal features ('divergent pattern'). It led us to identify a library of RNA-binding proteins that differentially marked divergent pair clusters, suggesting the post-transcriptional regulation of neuron diversification. Thus, our findings reveal multidimensional landscapes of transcriptional and post-transcriptional regulators in whole-brain neuronal phenotypes in the zebrafish brain.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoyu Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xinling Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoying Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
35
|
Trigueiro NSDS, Canedo A, Braga DLDS, Luchiari AC, Rocha TL. Zebrafish as an Emerging Model System in the Global South: Two Decades of Research in Brazil. Zebrafish 2020; 17:412-425. [PMID: 33090089 DOI: 10.1089/zeb.2020.1930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is an emerging model system in several research areas worldwide, especially in the Global South. In this context, the present study revised the historical use and trends of zebrafish as experimental models in Brazil. The data concerning the bibliometric parameters, research areas, geographic distribution, experimental design, zebrafish strain, and reporter lines, as well as recent advances were revised. In addition, the comparative trends of Brazilian and global research were discussed. Revised data showed the rapid growth of Brazilian scientific production using zebrafish as a model, especially in three main research areas (Neuroscience &and Behavior, Pharmacology and Toxicology, and Environment/Ecology). Studies were conducted in 19 Brazilian states (70.37%), confirming the wide geographic distribution and importance of zebrafish research. Results indicated that research related to toxicological approaches are widespread in Global South countries such as Brazil. Studies were performed mainly using in vivo tests (89.58%) with adult fish (59.75%) and embryos (30.67%). Moreover, significant research gaps and recommendations for future research are presented. The present study shows that the zebrafish is a suitable vertebrate model system in the Global South.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Lôbo de Siqueira Braga
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
36
|
Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2020; 529:1273-1292. [PMID: 32869307 DOI: 10.1002/cne.25020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Collapse
Affiliation(s)
- Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
37
|
Wasel O, Freeman JL. Chemical and Genetic Zebrafish Models to Define Mechanisms of and Treatments for Dopaminergic Neurodegeneration. Int J Mol Sci 2020; 21:ijms21175981. [PMID: 32825242 PMCID: PMC7503535 DOI: 10.3390/ijms21175981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023] Open
Abstract
The zebrafish (Danio rerio) is routinely used in biological studies as a vertebrate model system that provides unique strengths allowing applications in studies of neurodevelopmental and neurodegenerative diseases. One specific advantage is that the neurotransmitter systems are highly conserved throughout vertebrate evolution, including between zebrafish and humans. Disruption of the dopaminergic signaling pathway is linked to multiple neurological disorders. One of the most common is Parkinson’s disease, a neurodegenerative disease associated with the loss of dopaminergic neurons, among other neuropathological characteristics. In this review, the development of the zebrafish’s dopaminergic system, focusing on genetic control of the dopaminergic system, is detailed. Second, neurotoxicant models used to study dopaminergic neuronal loss, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pesticides paraquat and rotenone, and 6-hydroxydopamine (6-OHDA), are described. Next, zebrafish genetic knockdown models of dj1, pink1, and prkn established for investigating mechanisms of Parkinson’s disease are discussed. Chemical modulators of the dopaminergic system are also highlighted to showcase the applicability of the zebrafish to identify mechanisms and treatments for neurodegenerative diseases such as Parkinson’s disease associated with the dopaminergic system.
Collapse
|
38
|
Cerebral Dopamine Neurotrophic Factor Regulates Multiple Neuronal Subtypes and Behavior. J Neurosci 2020; 40:6146-6164. [PMID: 32631936 DOI: 10.1523/jneurosci.2636-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its significance for neural circuits and behavior, we examined the development of neurotransmitter systems from larval to male adult mutant zebrafish lacking cdnf Although a lack of cdnf did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of tyrosine hydroxylase 2 in the brain was elevated in cdnf mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. cdnf mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures. Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors.SIGNIFICANCE STATEMENT A zebrafish lacking cdnf grows normally and shows no overt morphologic phenotype throughout the life span. Remarkably, impaired social cohesion and increased seizure susceptibility were found in adult cdnf KO fish conceivably associated with significant changes of dopaminergic, GABAergic, and histaminergic systems in selective brain areas. These findings suggest that cdnf has broad effects on regulating neurogenesis and maturation of transmitter-specific neuronal types during development and throughout adulthood, rather than ones restricted to the dopaminergic systems.
Collapse
|
39
|
Ramaswamy M, Cheng RK, Jesuthasan S. Identification of GABAergic neurons innervating the zebrafish lateral habenula. Eur J Neurosci 2020; 52:3918-3928. [PMID: 32464693 PMCID: PMC7689879 DOI: 10.1111/ejn.14843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/01/2022]
Abstract
Habenula neurons are constantly active. The level of activity affects mood and behaviour, with increased activity in the lateral habenula reflecting exposure to punishment and a switch to passive coping and depression. Here, we identify GABAergic neurons that could reduce activity in the lateral habenula of larval zebrafish. GAD65/67 immunohistochemistry and imaging of gad1b:DsRed transgenic fish suggest the presence of GABAergic terminals in the neuropil and between cell bodies in the lateral habenula. Retrograde tracing with the lipophilic dye DiD suggests that the former derives from the thalamus, while the latter originates from a group of cells in the posterior hypothalamus that are located between the posterior tuberal nucleus and hypothalamic lobes. Two‐photon calcium imaging indicates that blue light causes excitation of thalamic GABAergic neurons and terminals in the neuropil, while a subpopulation of lateral habenula neurons show reduced intracellular calcium levels. Whole‐cell electrophysiological recording indicates that blue light reduces membrane potential of lateral habenula neurons. These observations suggest that GABAergic input from the thalamus may mediate inhibition in the zebrafish lateral habenula. Mechanisms governing release of GABA from the neurons in the posterior hypothalamus, which are likely to be in the tuberomammillary nucleus, remain to be defined.
Collapse
Affiliation(s)
- Mahathi Ramaswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
40
|
Pi Y, He KZ, Zhang WQ, Dong ZQ, Jiang FG, Jiang KJ, Guo S. Complexity of Detecting CRISPR/Cas9-Mediated Homologous Recombination in Zebrafish. Mol Biol 2020. [DOI: 10.1134/s0026893320030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Baggio S, Zenki K, Martins Silva A, Dos Santos TG, Rech G, Lazzarotto G, Dias RD, Mussulini BH, Rico EP, de Oliveira DL. Fetal alcohol spectrum disorders model alters the functionality of glutamatergic neurotransmission in adult zebrafish. Neurotoxicology 2020; 78:152-160. [PMID: 32173352 DOI: 10.1016/j.neuro.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) describe a wide range of ethanol-induced developmental disabilities, including craniofacial dysmorphology, and neurochemical and behavioral impairments. Zebrafish has become a popular animal model to evaluate the long-lasting effects of, both, severe and milder forms of FASD, including alterations to neurotransmission. Glutamate is one of the most affected neurotransmitter systems in ethanol-induced developmental disabilities. Therefore, the aim of the present study was to evaluate the functionality of the glutamatergic neurotransmitter system in an adult zebrafish FASD model. Zebrafish larvae (24 h post-fertilization) were exposed to ethanol (0.1 %, 0.25 %, 0.5 %, and 1%) for 2 h. After 4 months, the animals were euthanized and their brains were removed. The following variables were measured: glutamate uptake, glutamate binding, glutamine synthetase activity, Na+/K + ATPase activity, and high-resolution respirometry. Embryonic ethanol exposure reduced Na+-dependent glutamate uptake in the zebrafish brain. This reduction was positively modulated by ceftriaxone treatment, a beta-lactam antibiotic that promotes the expression of the glutamate transporter EAAT2. Moreover, the 0.5 % and 1% ethanol groups demonstrated reduced glutamate binding to brain membranes and decreased Na+/K + ATPase activity in adulthood. In addition, ethanol reduced glutamine synthetase activity in the 1% EtOH group. Embryonic ethanol exposure did not alter the immunocontent of the glutamate vesicular transporter VGLUT2 and the mitochondrial energetic metabolism of the brain in adulthood. Our results suggest that embryonic ethanol exposure may cause significant alterations in glutamatergic neurotransmission in the adult zebrafish brain.
Collapse
Affiliation(s)
- Suelen Baggio
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Kamila Zenki
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alberto Martins Silva
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Giovana Rech
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Renato Dutra Dias
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland; ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Eduardo Pacheco Rico
- Programa De Pós-Graduação Em Ciências Da Saúde, Universidade Do Extremo Sul Catarinense - UNESC, Av. Universitária, 1105, Bairro Universitário, 88806-000 Criciúma, SC, Brazil
| | - Diogo Losch de Oliveira
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
43
|
Zhao G, Wang Z, Xu L, Xia CX, Liu JX. Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos. CHEMOSPHERE 2019; 229:169-180. [PMID: 31078031 DOI: 10.1016/j.chemosphere.2019.04.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Although silver nanoparticles (AgNPs) are used in various commercial products, the biological effects of AgNPs on fish embryogenesis and the underlying molecular mechanisms are still poorly understood. In this study, both touch responses and neuron membrane potential were found to be abnormal in AgNPs-stressed embryos. Moreover, neurogenesis genes were unveiled to be down-regulated and were enriched in ligand-gated ion channel activity, dopamine receptor signaling pathway, etc. in AgNPs-stressed embryos by microarray assays. Additionally, the down-regulated expression of otpa/sncgb - gad1b/gad2 dopaminergic neurotransmitter genes, robo2 - vim and glrbb synaptic transmission genes, and motor neuron genes isl1 &isl2a was further identified in both AgNPs- and Ag+-stressed embryos by qPCR, whole-mount in situ hybridization (WISH), and by using specific promoter-derived GFP fluorescence transgenic zebrafish. Moreover, the reduced expression of gad1b, gad2, and isl1 could be recovered by adding Ag+ chelating compound l-cysteine in AgNPs stressed embryos. Our results reveal for the first time that it is through damaging the formation of neural circuits, including dopaminergic neurotransmitter, synaptic transmission, and motor activities, that AgNPs induce abnormal electrical membrane properties, leading to dysfunctional touch responses and locomotor escape responses mostly via their released Ag+ during embryogenesis.
Collapse
Affiliation(s)
- Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lian Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng-Xing Xia
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
von Twickel A, Kowatschew D, Saltürk M, Schauer M, Robertson B, Korsching S, Walkowiak W, Grillner S, Pérez-Fernández J. Individual Dopaminergic Neurons of Lamprey SNc/VTA Project to Both the Striatum and Optic Tectum but Restrict Co-release of Glutamate to Striatum Only. Curr Biol 2019; 29:677-685.e6. [DOI: 10.1016/j.cub.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
45
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
46
|
López JM, Lozano D, Morona R, González A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus
and Erpetoichthys calabaricus
(Actinopterygii: Cladistia). J Comp Neurol 2018; 527:437-461. [DOI: 10.1002/cne.24548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
47
|
Forlano PM, Licorish RR, Ghahramani ZN, Timothy M, Ferrari M, Palmer WC, Sisneros JA. Attention and Motivated Response to Simulated Male Advertisement Call Activates Forebrain Dopaminergic and Social Decision-Making Network Nuclei in Female Midshipman Fish. Integr Comp Biol 2018; 57:820-834. [PMID: 28992072 DOI: 10.1093/icb/icx053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| | - Roshney R Licorish
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Zachary N Ghahramani
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | | | - William C Palmer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| |
Collapse
|
48
|
Pengra I, Marchaterre M, Bass A. FoxP2 Expression in a Highly Vocal Teleost Fish with Comparisons to Tetrapods. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:82-96. [DOI: 10.1159/000487793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022]
Abstract
Motivated by studies of speech deficits in humans, several studies over the past two decades have investigated the potential role of a forkhead domain transcription factor, FoxP2, in the central control of acoustic signaling/vocalization among vertebrates. Comparative neuroanatomical studies that mainly include mammalian and avian species have mapped the distribution of FoxP2 expression in multiple brain regions that imply a greater functional significance beyond vocalization that might be shared broadly across vertebrate lineages. To date, reports for teleost fish have been limited in number and scope to nonvocal species. Here, we map the neuroanatomical distribution of FoxP2 mRNA expression in a highly vocal teleost, the plainfin midshipman (Porichthys notatus). We report an extensive overlap between FoxP2 expression and vocal, auditory, and steroid-signaling systems with robust expression at multiple sites in the telencephalon, the preoptic area, the diencephalon, and the midbrain. Label was far more restricted in the hindbrain though robust in one region of the reticular formation. A comparison with other teleosts and tetrapods suggests an evolutionarily conserved FoxP2 phenotype important to vocal-acoustic and, more broadly, sensorimotor function among vertebrates.
Collapse
|
49
|
Abstract
Emotion-related responses, such as fear and anxiety, are important behavioral phenomena in most animal species, as well as in humans. However, the underlying mechanisms of fear and anxiety in animals and in humans are still largely unknown, and anxiety disorders continue to represent a large unmet medical need in the human clinic. Animal models may speed up discovery of these mechanisms and may also lead to betterment of human health. Herein, we report the identification of a chemokine-like gene family, samdori (sam), and present functional characterization of sam2. We observed increased anxiety-related responses in both zebrafish and mouse knockout models. Taken together, these results support a crucial and evolutionarily conserved role of sam2 in regulating anxiety-like behavior. Emotional responses, such as fear and anxiety, are fundamentally important behavioral phenomena with strong fitness components in most animal species. Anxiety-related disorders continue to represent a major unmet medical need in our society, mostly because we still do not fully understand the mechanisms of these diseases. Animal models may speed up discovery of these mechanisms. The zebrafish is a highly promising model organism in this field. Here, we report the identification of a chemokine-like gene family, samdori (sam), and present functional characterization of one of its members, sam2. We show exclusive mRNA expression of sam2 in the CNS, predominantly in the dorsal habenula, telencephalon, and hypothalamus. We found knockout (KO) zebrafish to exhibit altered anxiety-related responses in the tank, scototaxis and shoaling assays, and increased crh mRNA expression in their hypothalamus compared with wild-type fish. To investigate generalizability of our findings to mammals, we developed a Sam2 KO mouse and compared it to wild-type littermates. Consistent with zebrafish findings, homozygous KO mice exhibited signs of elevated anxiety. We also found bath application of purified SAM2 protein to increase inhibitory postsynaptic transmission onto CRH neurons of the paraventricular nucleus. Finally, we identified a human homolog of SAM2, and were able to refine a candidate gene region encompassing SAM2, among 21 annotated genes, which is associated with intellectual disability and autism spectrum disorder in the 12q14.1 deletion syndrome. Taken together, these results suggest a crucial and evolutionarily conserved role of sam2 in regulating mechanisms associated with anxiety.
Collapse
|
50
|
Yáñez J, Suárez T, Quelle A, Folgueira M, Anadón R. Neural connections of the pretectum in zebrafish (Danio rerio). J Comp Neurol 2018; 526:1017-1040. [PMID: 29292495 DOI: 10.1002/cne.24388] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023]
Abstract
The pretectum is a complex region of the caudal diencephalon which in adult zebrafish comprises both retinorecipient (parvocellular superficial, central, intercalated, paracommissural, and periventricular) and non-retinorecipient (magnocellular superficial, posterior, and accessory) pretectal nuclei distributed from periventricular to superficial regions. We conducted a comprehensive study of the connections of pretectal nuclei by using neuronal tracing with fluorescent carbocyanine dyes. This study reveals specialization of efferent connections of the various pretectal nuclei, with nuclei projecting to the optic tectum (paracommissural, central, and periventricular pretectal nuclei), the torus longitudinalis and the cerebellar corpus (paracommissural, central, and intercalated pretectal nuclei), the lateral hypothalamus (magnocellular superficial, posterior, and central pretectal nuclei), and the tegmental regions (accessory and superficial pretectal nuclei). With regard to major central afferents to the pretectum, we observed projections from the telencephalon to the paracommissural and central pretectal nuclei, from the optic tectum to the paracommissural, central, accessory and parvocellular superficial pretectal nuclei, from the cerebellum to the paracommissural and periventricular pretectal nuclei and from the nucleus isthmi to the parvocellular superficial and accessory pretectal nuclei. The parvocellular superficial pretectal nucleus sends conspicuous projections to the contralateral magnocellular superficial pretectal nucleus. The composite figure of results reveals large differences in connections of neighbor pretectal nuclei, indicating high degree of nuclear specialization. Our results will have important bearings in functional studies that analyze the relationship between specific circuits and behaviors in zebrafish. Comparison with results available in other species also reveals differences in the organization and connections of the pretectum in vertebrates.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, 15008-A, Spain
| | - Tania Suárez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain
| | - Ana Quelle
- Centro de Biomedicina Experimental (CEBEGA), Santiago de Compostela, 15782, Spain.,Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, 27002, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, 15008-A, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, 15008-A, Spain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|