1
|
Cao Y, Jiang W, Yan F, Pan Y, Gei L, Lu S, Chen X, Huang Y, Yan Y, Feng Y, Li Q, Zeng W, Xing W, Chen D. Sex differences in PD-L1-induced analgesia in paclitaxel-induced peripheral neuropathy mice depend on TRPV1-based inhibition of CGRP. CNS Neurosci Ther 2024; 30:e14829. [PMID: 38961264 PMCID: PMC11222069 DOI: 10.1111/cns.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 μL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1β were measured via RT-PCR. RESULTS TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenqi Jiang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fang Yan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yuyan Pan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liba Gei
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyPeking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer HospitalHohhotChina
| | - Simin Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiangnan Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyGuangdong Women and Children HospitalGuangzhouChina
| | - Yang Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yan Yan
- Department of AnesthesiologyHuizhou Municipal Central HospitalHuizhouChina
| | - Yan Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Qiang Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei Xing
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Dongtai Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Karsan N. Pathophysiology of Migraine. Continuum (Minneap Minn) 2024; 30:325-343. [PMID: 38568486 DOI: 10.1212/con.0000000000001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of migraine pathophysiology through insights gained from the extended symptom spectrum of migraine, neuroanatomy, migraine neurochemistry, and therapeutics. LATEST DEVELOPMENTS Recent advances in human migraine research, including human experimental migraine models and functional neuroimaging, have provided novel insights into migraine attack initiation, neurochemistry, neuroanatomy, and therapeutic substrates. It has become clear that migraine is a neural disorder, in which a wide range of brain areas and neurochemical systems are implicated, producing a heterogeneous clinical phenotype. Many of these neural pathways are monoaminergic and peptidergic, such as those involving calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide. We are currently witnessing an exciting era in which specific drugs targeting these pathways have shown promise in treating migraine, including some studies suggesting efficacy before headache has even started. ESSENTIAL POINTS Migraine is a brain disorder involving both headache and altered sensory, limbic, and homeostatic processing. A complex interplay between neurotransmitter systems, physiologic systems, and pain processing likely occurs. Targeting various therapeutic substrates within these networks provides an exciting avenue for future migraine therapeutics.
Collapse
|
3
|
Basedau H, Peng KP, Schellong M, May A. Double-blind, randomized, placebo-controlled study to evaluate erenumab-specific central effects: an fMRI study. J Headache Pain 2024; 25:5. [PMID: 38195378 PMCID: PMC10775481 DOI: 10.1186/s10194-023-01709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVE Given the findings of central effects of erenumab in the literature, we aimed to conduct a rigorous placebo-controlled, double-blind, randomized study to elucidate whether the observed changes are directly attributable to the drug. METHODS We recruited 44 patients with migraine, randomly assigning them to either the erenumab 70 mg or the placebo group. 40 patients underwent fMRI scanning using a trigeminal nociceptive paradigm both, pre- and four weeks post-treatment. Participants kept a headache diary throughout the whole study period of two months in total. A clinical response was defined as a ≥30% reduction in headache frequency at follow-up. Details of this study have been preregistered in the open science framework: https://osf.io/ygf3t . RESULTS Seven participants of the verum group (n=33.33%) and 4 of the placebo group (21.05%) experienced improvements in migraine activity, characterized by a minimum of 30% reduction in monthly headache frequency compared to baseline. The imaging data show an interaction between the verum medication and the response. Whilst numbers were too small for individual analyses (Verum vs. Placebo and Responder vs. Non-Responder), the variance-weighted analysis (Verum vs Placebo, scan before vs after weighted for response) revealed specific decrease in thalamic, opercular and putamen activity. INTERPRETATION The central effects of erenumab could be reproduced in a placebo randomized design, further confirming its central role in migraine modulation. The mechanism, whether direct or secondary to peripheral mode of action, needs further exploration. It is important to note that the response rate to erenumab 70mg in this study was not as substantial as anticipated in 2019, when this study was planned. This resulted in a too small sample size for a subgroup analysis based on the responder status was associated with both the verum drug and the relative reduction in headache days.
Collapse
Affiliation(s)
- Hauke Basedau
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246, Hamburg, Germany
| | - Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246, Hamburg, Germany
| | - Marlene Schellong
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Dodick DW, Goadsby PJ, Schwedt TJ, Lipton RB, Liu C, Lu K, Yu SY, Severt L, Finnegan M, Trugman JM. Ubrogepant for the treatment of migraine attacks during the prodrome: a phase 3, multicentre, randomised, double-blind, placebo-controlled, crossover trial in the USA. Lancet 2023; 402:2307-2316. [PMID: 37979595 DOI: 10.1016/s0140-6736(23)01683-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Ubrogepant is a calcitonin gene-related peptide (CGRP) receptor antagonist that is approved for acute treatment of migraine. The prodrome is the earliest phase of a migraine attack and is characterised by non-aura symptoms that precede headache onset. The aim of this trial was to evaluate the efficacy, safety, and tolerability of ubrogepant 100 mg compared with placebo for the acute treatment of migraine when administered during the prodrome. METHODS This PRODROME trial was a phase 3, multicentre, randomised, double-blind, placebo-controlled, crossover trial of ubrogepant 100 mg conducted at 75 research centres and headache clinics in the USA. Eligible participants were adults aged 18-75 years who had at least a 1-year history of migraine with or without aura and a history of two to eight migraine attacks per month with moderate to severe headache in each of the 3 months before screening. Eligible participants were randomly assigned (1:1) to either receive placebo to treat the first qualifying prodrome event and ubrogepant 100 mg to treat the second qualifying prodrome event or to receive ubrogepant 100 mg to treat the first qualifying prodrome event and placebo to treat the second qualifying prodrome event. An automated interactive web-response system used permuted blocks of four to manage randomisation. All people giving interventions and assessing outcomes were masked to group assignment during the study. People doing data analysis, which occurred after study completion, were not masked to group assignment. During the double-blind treatment period, each participant was instructed to orally take two tablets of the study drug at the onset of each qualifying prodrome event. The primary endpoint was absence of moderate or severe intensity headache within 24 h after study-drug dose; efficacy analyses were conducted with the modified intention-to-treat (mITT) population, defined as all randomly assigned participants with at least one headache assessment within 24 h after taking the study drug during the treatment period. The safety population included all treated participants who took at least one administration of study drug. The trial is registered with ClinicalTrials.gov (NCT04492020). FINDINGS Between Aug 21, 2020, and April 19, 2022, 518 participants were randomly assigned to double-blind crossover treatment. The safety population included 480 participants and the mITT population included 477 participants; 421 (88%) of 480 participants were female and 59 (12%) were male. Absence of moderate or severe headache within 24 h after a dose occurred after 190 (46%) of 418 qualifying prodrome events that had been treated with ubrogepant and after 121 (29%) of 423 qualifying prodrome events that had been treated with placebo (odds ratio 2·09, 95% CI 1·63-2·69; p<0·0001). Adverse events that occurred within 48 h after study-drug administration were reported after 77 (17%) of 456 qualifying prodrome events that had been treated with ubrogepant and after 55 (12%) of 462 events that had been treated with placebo. INTERPRETATION Ubrogepant was effective and well tolerated for the treatment of migraine attacks when taken during the prodrome. FUNDING AbbVie.
Collapse
Affiliation(s)
- David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA.
| | - Peter J Goadsby
- Department of Neurology, King's College London, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | | | - Richard B Lipton
- Montefiore Headache Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
7
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Expression of the Calcitonin Receptor-like Receptor (CALCRL) in Normal and Neoplastic Tissues. Int J Mol Sci 2023; 24:ijms24043960. [PMID: 36835377 PMCID: PMC9962437 DOI: 10.3390/ijms24043960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.
Collapse
|
9
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
10
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
11
|
Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale. Int J Mol Sci 2022; 23:ijms232416035. [PMID: 36555690 PMCID: PMC9787598 DOI: 10.3390/ijms232416035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.
Collapse
|
12
|
Chou TM, Lee ZF, Wang SJ, Lien CC, Chen SP. CGRP-dependent sensitization of PKC-δ positive neurons in central amygdala mediates chronic migraine. J Headache Pain 2022; 23:157. [PMID: 36510143 PMCID: PMC9746101 DOI: 10.1186/s10194-022-01531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate specific brain regions and neural circuits that are responsible for migraine chronification. METHODS We established a mouse model of chronic migraine with intermittent injections of clinically-relevant dose of nitroglycerin (0.1 mg/kg for 9 days) and validated the model with cephalic and extracephalic mechanical sensitivity, calcitonin gene-related peptide (CGRP) expression in trigeminal ganglion, and responsiveness to sumatriptan or central CGRP blockade. We explored the neurons that were sensitized along with migraine chronification and investigated their roles on migraine phenotypes with chemogenetics. RESULTS After repetitive nitroglycerin injections, mice displayed sustained supraorbital and hind paw mechanical hyperalgesia, which lasted beyond discontinuation of nitroglycerin infusion and could be transiently reversed by sumatriptan. The CGRP expression in trigeminal ganglion was also upregulated. We found the pERK positive cells were significantly increased in the central nucleus of the amygdala (CeA), and these sensitized cells in the CeA were predominantly protein kinase C-delta (PKC-δ) positive neurons co-expressing CGRP receptors. Remarkably, blockade of the parabrachial nucleus (PBN)-CeA CGRP neurotransmission by CGRP8-37 microinjection to the CeA attenuated the sustained cephalic and extracephalic mechanical hyperalgesia. Furthermore, chemogenetic silencing of the sensitized CeA PKC-δ positive neurons reversed the mechanical hyperalgesia and CGRP expression in the trigeminal ganglion. In contrast, repetitive chemogenetic activation of the CeA PKC-δ positive neurons recapitulated chronic migraine-like phenotypes in naïve mice. CONCLUSIONS Our data suggest that CeA PKC-δ positive neurons innervated by PBN CGRP positive neurons might contribute to the chronification of migraine, which may serve as future therapeutic targets for chronic migraine.
Collapse
Affiliation(s)
- Tse-Ming Chou
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan
| | - Zhung-Fu Lee
- grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| | - Shuu-Jiun Wang
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Cheng-Chang Lien
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Shih-Pin Chen
- grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| |
Collapse
|
13
|
Basedau H, Sturm LM, Mehnert J, Peng KP, Schellong M, May A. Migraine monoclonal antibodies against CGRP change brain activity depending on ligand or receptor target - an fMRI study. eLife 2022; 11:77146. [PMID: 35604755 PMCID: PMC9126581 DOI: 10.7554/elife.77146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Monoclonal antibodies (mAbs) against calcitonin gene-related peptides (CGRP) are novel treatments for migraine prevention. Based on a previous functional imaging study which investigated the CGRP receptor mAb (erenumab), we hypothesized that (i) the CGRP ligand mAb galcanezumab would alter central trigeminal pain processing; (ii) responders to galcanezumab treatment would show specific hypothalamic modulation in contrast to non-responders; and (iii) the ligand and the receptor antibody differ in brain responses. Methods: Using an established trigeminal nociceptive functional magnetic imaging paradigm, 26 migraine patients were subsequently scanned twice: before and 2–3 weeks after administration of galcanezumab. Results: We found that galcanezumab decreases hypothalamic activation in all patients and that the reduction was stronger in responders than in non-responders. Contrasting erenumab and galcanezumab showed that both antibodies activate a distinct network. We also found that pre-treatment activity of the spinal trigeminal nucleus (STN) and coupling between the STN and the hypothalamus covariates with the response to galcanezumab. Conclusions: These data suggest that despite relative impermeability of the blood-brain barrier for CGRP mAb, mAb treatment induces certain and highly specific brain effects which may be part of the mechanism of their efficacy in migraine treatment. Funding: This work was supported by the German Ministry of Education and Research (BMBF) of ERA-Net Neuron under the project code BIOMIGA (01EW2002 to AM) and by the German Research Foundation (SFB936-178316478-A5 to AM). The funding sources did not influence study conduction in any way. Clinical trial number: The basic science study was preregistered in the Open Science Framework (https://osf.io/m2rc6).
Collapse
Affiliation(s)
- Hauke Basedau
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa-Marie Sturm
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Schellong
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Hendrikse ER, Rees TA, Tasma Z, Le Foll C, Lutz TA, Siow A, Wookey PJ, Walker CS, Hay DL. Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia 2022; 42:815-826. [PMID: 35410497 PMCID: PMC9441190 DOI: 10.1177/03331024221084029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIM Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. METHODS We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. RESULTS All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. CONCLUSIONS Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology.
Collapse
Affiliation(s)
- Erica R Hendrikse
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter J Wookey
- Department of Medicine-Austin, The University of Melbourne, Heidelberg, Australia
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Jamaluddin A, Chuang CL, Williams ET, Siow A, Yang SH, Harris PWR, Petersen JSSM, Bower RL, Chand S, Brimble MA, Walker CS, Hay DL, Loomes KM. Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo. Front Pharmacol 2022; 13:832589. [PMID: 35341216 PMCID: PMC8942775 DOI: 10.3389/fphar.2022.832589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Elyse T Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Westgate CSJ, Israelsen IME, Jensen RH, Eftekhari S. Understanding the link between obesity and headache- with focus on migraine and idiopathic intracranial hypertension. J Headache Pain 2021; 22:123. [PMID: 34629054 PMCID: PMC8504002 DOI: 10.1186/s10194-021-01337-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity confers adverse effects to every system in the body including the central nervous system. Obesity is associated with both migraine and idiopathic intracranial hypertension (IIH). The mechanisms underlying the association between obesity and these headache diseases remain unclear. METHODS We conducted a narrative review of the evidence in both humans and rodents, for the putative mechanisms underlying the link between obesity, migraine and IIH. RESULTS Truncal adiposity, a key feature of obesity, is associated with increased migraine morbidity and disability through increased headache severity, frequency and more severe cutaneous allodynia. Obesity may also increase intracranial pressure and could contribute to headache morbidity in migraine and be causative in IIH headache. Weight loss can improve both migraine and IIH headache. Preclinical research highlights that obesity increases the sensitivity of the trigeminovascular system to noxious stimuli including inflammatory stimuli, but the underlying molecular mechanisms remain unelucidated. CONCLUSIONS This review highlights that at the epidemiological and clinical level, obesity increases morbidity in migraine and IIH headache, where weight loss can improve headache morbidity. However, further research is required to understand the molecular underpinnings of obesity related headache in order to generate novel treatments.
Collapse
Affiliation(s)
- Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Ida Marchen Egerod Israelsen
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
17
|
Edvinsson L, Edvinsson JCA, Haanes KA. Biological and small molecule strategies in migraine therapy with relation to the calcitonin gene-related peptide family of peptides. Br J Pharmacol 2021; 179:371-380. [PMID: 34411289 DOI: 10.1111/bph.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is one of the most common of neurological disorders with a global prevalence of up to 15%. One in five migraineurs have frequent episodic or chronic migraine requiring prophylactic treatment. In recent years, specific pharmacological treatments targeting calcitonin gene-related peptide (CGRP) signalling molecules have provided safe and effective treatments, monoclonal antibodies for prophylaxis and gepants for acute therapy. Albeit beneficial, it is important to understand the molecular mechanisms of these new drugs to better understand migraine pathophysiology and improve therapy. Here, we describe current views on the role of the CGRP family of peptides - CGRP, calcitonin, adrenomedullin, amylin - and their receptors in the trigeminovascular system. All these molecules are present within the trigeminovascular system but differ in expression and localization. It is likely that they have different roles, which can be utilized in providing additional drug targets.
Collapse
Affiliation(s)
- Lars Edvinsson
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| | - Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| |
Collapse
|
18
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
19
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
20
|
Caronna E, Starling AJ. Update on Calcitonin Gene-Related Peptide Antagonism in the Treatment of Migraine. Neurol Clin 2020; 39:1-19. [PMID: 33223077 DOI: 10.1016/j.ncl.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of calcitonin gene-related peptide (CGRP) and its role in migraine has promoted a new era in migraine treatment: CGRP antagonism. Two classes of medications are currently available: small molecules targeting the CGRP receptor and monoclonal antibodies targeting the CGRP receptor or CGRP ligand. The revolution of these medications is represented by blurring the borders between acute and preventive treatments, episodic and chronic migraine, naïve and refractory patients and even between migraine and other headache disorders.
Collapse
Affiliation(s)
- Edoardo Caronna
- Department of Medicine, Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Ps. Vall d'Hebron 119-129, Barcelona 08035, Spain. https://twitter.com/CaronnaEdoardo
| | - Amaal J Starling
- Department of Neurology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| |
Collapse
|
21
|
Persistent Post-Traumatic Headache and Migraine: Pre-Clinical Comparisons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072585. [PMID: 32283843 PMCID: PMC7177371 DOI: 10.3390/ijerph17072585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Background: Oftentimes, persistent post traumatic headache (PPTH) and migraine are phenotypically similar and the only clinical feature that differentiate them is the presence of a mild or moderate traumatic brain injury (mTBI). The aim of this study is to describe the differences in brain area and in biochemical cascade after concussion and to define the efficacy and safety of treatments in use. Methods: Sources were chosen in according to the International Classification of Headache Disorder (ICHD) criteria. Results: The articles demonstrated a significant difference between PPTH and migraine regarding static functional connectivity (sFC) and dynamic functional connectivity (dFC) in brain structure that could be used for exploring the pathophysiological mechanisms in PPTH. Many studies described a cascade of neuro-metabolic changes that occur after traumatic brain injury. These variations are associated to the mechanism occurring when developing a PPTH. Conclusions: The state of art of this important topic show how although the mechanisms underlying the development of the two different diseases are different, the treatment of common migraine is efficacious in patients that have developed a post traumatic form.
Collapse
|
22
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
23
|
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20:105. [PMID: 31718551 PMCID: PMC6852900 DOI: 10.1186/s10194-019-1055-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). Methods With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. Results Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. Conclusion We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark. .,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
24
|
Charles A, Pozo-Rosich P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet 2019; 394:1765-1774. [PMID: 31668411 DOI: 10.1016/s0140-6736(19)32504-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023]
Abstract
Migraine is one of the most prevalent and disabling diseases worldwide, but until recently, few migraine-specific therapies had been developed. Extensive basic and clinical scientific investigation has provided strong evidence that the neuropeptide calcitonin gene-related peptide (CGRP) has a key role in migraine. This evidence led to the development of small molecule CGRP receptor antagonists and monoclonal antibodies targeting either CGRP or its receptor. Clinical trials investigating these therapies have consistently shown statistically significant efficacy for either the acute or preventive treatment of migraine. No serious safety or tolerability issues have been identified in the trials of the monoclonal antibody therapies. Although the appropriate place of these new migraine-specific therapies relative to other available acute and preventive treatments remains to be determined, a growing body of evidence shows that therapeutic approaches targeting CGRP have the potential to transform the clinical management of migraine.
Collapse
Affiliation(s)
- Andrew Charles
- UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Headache Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Edvinsson L. The CGRP Pathway in Migraine as a Viable Target for Therapies. Headache 2019; 58 Suppl 1:33-47. [PMID: 29697153 DOI: 10.1111/head.13305] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
The neuropeptide calcitonin gene-related peptide is well established as a key player in the pathogenesis of migraine. Clinical studies show calcitonin gene-related peptide levels correlate with migraine attacks, and decreases in this neuropeptide can indicate antimigraine therapy effectiveness. Research has revealed a wide distribution of expression sites for calcitonin gene-related peptide in the central and peripheral nervous system. Of these, the calcitonin gene-related peptide receptor, which binds calcitonin gene-related peptide with high affinity, has attracted growing interest as a viable target for antimigraine therapies. An incentive to pursue such research is the continuing unmet medical need of patients. Triptans have offered some clinical benefit, but many patients do not respond and these drugs have important safety considerations. Initial calcitonin gene-related peptide-focused research led to development of the "gepant" small-molecule calcitonin gene-related peptide receptor blockers. Positive efficacy reports concerning the gepants have been tempered by safety findings which led to the discontinuation of some of these agents. Currently, there is considerable excitement regarding monoclonal antibodies against calcitonin gene-related peptide (eptinezumab, galcanezumab, fremanezumab) and the calcitonin gene-related peptide receptor (erenumab). To date, these monoclonal antibodies have shown promising efficacy in clinical trials, with no major safety concerns. If ongoing long-term studies show that their efficacy can be maintained, this may herald a new era for effective antimigraine therapies.
Collapse
Affiliation(s)
- Lars Edvinsson
- Institute of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Navratilova E, Rau J, Oyarzo J, Tien J, Mackenzie K, Stratton J, Remeniuk B, Schwedt T, Anderson T, Dodick D, Porreca F. CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice. Cephalalgia 2019; 39:1762-1775. [DOI: 10.1177/0333102419877662] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. Methods Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. Results Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. Conclusions We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. Abbreviations CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Jill Rau
- Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | | - Bethany Remeniuk
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | - Trent Anderson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
- Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
27
|
Abstract
Over the past three decades, calcitonin gene-related peptide (CGRP) has emerged as a key molecule. Provocation experiments have demonstrated that intravenous CGRP infusion induces migraine-like attacks in migraine with and without aura patients. In addition, these studies have revealed a heterogeneous CGRP response, i.e., some migraine patients develop migraine-like attacks after CGRP infusion, while others do not. The role of CGRP in human migraine models has pointed to three potential sites of CGRP-induced migraine: (1) vasodilation via cyclic adenosine monophosphate (cAMP) and possibly cyclic guanosine monophosphate (cGMP); (2) activation of trigeminal sensory afferents, and (3) modulation of deep brain structures. In the future, refined human experimental studies will continue to unveil the role of CGRP in migraine pathogenesis.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Hargreaves R, Olesen J. Calcitonin Gene-Related Peptide Modulators - The History and Renaissance of a New Migraine Drug Class. Headache 2019; 59:951-970. [PMID: 31020659 DOI: 10.1111/head.13510] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Abstract
Several lines of evidence pointed to an important role for CGRP in migraine. These included the anatomic colocalization of CGRP and its receptor in sensory fibers innervating pain-producing meningeal blood vessels, its release by trigeminal stimulation, the observation of elevated CGRP in the cranial circulation during migraine with normalization concomitant with headache relief by sumatriptan, and translational studies with intravenous (IV) CGRP that evoked migraine only in migraineurs. The development of small molecule CGRP receptor antagonists (CGRP-RAs) that showed clinical antimigraine efficacy acutely and prophylactically in randomized placebo-controlled clinical trials subsequently gave definitive pharmacological proof of the importance of CGRP in migraine. More recently, CGRP target engagement imaging studies using a CGRP receptor PET ligand [11 C]MK-4232 demonstrated that there was no brain CGRP receptor occupancy at clinically effective antimigraine doses of telcagepant, a prototypic CGRP-RA. Taken together, these data indicated that (1) the therapeutic site of action of the CGRP-RAs was peripheral not central; (2) that IV CGRP had most likely evoked migraine through an action at sites outside the blood-brain barrier; and (3) that migraine pain was therefore, at least in part, peripheral in origin. The evolution of CGRP migraine science gave impetus to the development of peripherally acting drugs that could modulate CGRP chronically to prevent frequent episodic and chronic migraine. Large molecule biologic antibody (mAb) approaches that are given subcutaneously to neutralize circulating CGRP peptide (fremanezumab, galcanezumab) or block CGRP receptors (erenumab) have shown consistent efficacy and tolerability in multicenter migraine prevention trials and are now approved for clinical use. Eptinezumab, a CGRP neutralizing antibody given IV, shows promise in late stage clinical development. Recently, orally administered next-generation small molecule CGRP-RAs have been shown to have safety and efficacy in acute treatment (ubrogepant and rimegepant) and prevention (atogepant) of migraine, giving additional CGRP-based therapeutic options for migraine patients.
Collapse
Affiliation(s)
- Richard Hargreaves
- Center for Pain and the Brain, Harvard Medical School and Department of Anesthesia, Boston Children's Hospital, Boston, MA, USA
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
29
|
Majima M, Ito Y, Hosono K, Amano H. CGRP/CGRP Receptor Antibodies: Potential Adverse Effects Due to Blockade of Neovascularization? Trends Pharmacol Sci 2018; 40:11-21. [PMID: 30502971 DOI: 10.1016/j.tips.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023]
Abstract
Migraine is a severe neurological disorder in which calcitonin gene-related peptide (CGRP) is a key molecule in pathophysiology. Neuronal system-derived CGRP enhances neovascularization in several important pathological conditions and sends a cue to the vascular system. In 2018, the FDA approved erenumab and fremanezumab, antibodies against CGRP receptor and CGRP, as the first new class of drugs for migraine. Treatment of migraine with these antibodies requires great care because neovascularization-related adverse effects may be induced in some patients. Here, we focus on enhancement of neovascularization by CGRP and discuss possible adverse effects resulting from blocking neovascularization. We also suggest that CGRP antibodies may also be used as novel antitumor agents by suppressing tumor-associated angiogenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/adverse effects
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Calcitonin Gene-Related Peptide/immunology
- Calcitonin Gene-Related Peptide/metabolism
- Humans
- Migraine Disorders/drug therapy
- Migraine Disorders/immunology
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Receptors, Calcitonin Gene-Related Peptide/immunology
- Receptors, Calcitonin Gene-Related Peptide/metabolism
Collapse
Affiliation(s)
- Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan.
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
30
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
31
|
Vollesen LH, Guo S, Andersen MR, Ashina M. Effect of the H1-antihistamine clemastine on PACAP38 induced migraine. Cephalalgia 2018; 39:597-607. [DOI: 10.1177/0333102418798611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effect of the H1-antihistamine clemastine on the migraine-inducing abilities of pituitary adenylate cyclase activating peptide-38. Methods We conducted a double-blind, randomized, placebo controlled two-way cross-over study. Twenty migraine without aura patients were randomly allocated to receive bolus clemastine 2 mg (1 mg/ml) or bolus saline 2 ml intravenously over 2 min on two study days. Following each bolus injection, 10 pmol/kg/min of pituitary adenylate cyclase activating peptide-38 was administered intravenously over 20 min. We recorded migraine/headache characteristics every 10 min until 90 min after the start of infusion, and collected blood to investigate mast cell degranulation and the inflammation markers tryptase and tumor necrosis factor-alpha before and after infusion of pituitary adenylate cyclase activating peptide-38. Results After clemastine pretreatment, five out of 20 participants developed a migraine-like attack in response to a pituitary adenylate cyclase activating peptide-38 infusion compared to nine out of 20 after placebo pretreatment ( p = 0.288). Following clemastine pretreatment, 15 out of 20 participants reported headache in response to a pituitary adenylate cyclase activating peptide-38 infusion, whereas 19 out of 20 participants did so following placebo pretreatment ( p = 0.221). We found no difference in area under the curve 12 h for headache intensity between the two experimental days ( p = 0.481). We found no difference in area under the curve 180 min for tryptase ( p = 0.525) or tumor necrosis factor-alpha ( p = 0.487) between clemastine and placebo pretreatment days. Conclusion H1-antihistamine, clemastine, failed to prevent migraine or headache after pituitary adenylate cyclase activating peptide-38 infusion, thus making a role for histamine release or mast cell degranulation in pituitary adenylate cyclase activating peptide-38-induced migraine less likely.
Collapse
Affiliation(s)
- Luise Haulund Vollesen
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Song Guo
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Malene Rohr Andersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
32
|
Greco R, Demartini C, Zanaboni AM, Tassorelli C. Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 2018; 19:51. [PMID: 30003352 PMCID: PMC6043463 DOI: 10.1186/s10194-018-0879-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular system and it is likely related to migraine chronification. Here, we investigated the role of CGRP in an animal model that mimics the chronic migraine condition via repeated and intermittent nitroglycerin (NTG) administration. We also evaluated the modulatory effect of topiramate on this experimental paradigm. Male Sprague-Dawley rats were injected with NTG (5 mg/kg, i.p.) or vehicle, every 2 days over a 9-day period (5 total injections). A group of animals was injected with topiramate (30 mg/kg, i.p.) or saline every day for 9 days. Twenty-four hours after the last administration of NTG or vehicle, animals underwent tail flick test and orofacial Von Frey test. Rats were subsequently sacrificed to evaluate c-Fos and CGRP gene expression in medulla-pons region, cervical spinal cord and trigeminal ganglia. Results NTG administration induced spinal hyperalgesia and orofacial allodynia, together with a significant increase in the expression of CGRP and c-Fos genes in trigeminal ganglia and central areas. Topiramate treatment prevented NTG-induced changes by reversing NTG-induced hyperalgesia and allodynia, and inhibiting CGRP and c-Fos gene expression in all areas evaluated. Conclusions These findings point to the role of CGRP in the processes underlying migraine chronification and suggest a possible interaction with gamma-aminobutyrate (GABA) and glutamate transmission to induce/maintain central sensitization and to contribute to the dysregulation of descending pain system involved in chronic migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 2018; 39:1661-1674. [PMID: 29989427 DOI: 10.1177/0333102418786261] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The trigeminal ganglion is unique among the somatosensory ganglia regarding its topography, structure, composition and possibly some functional properties of its cellular components. Being mainly responsible for the sensory innervation of the anterior regions of the head, it is a major target for headache research. One intriguing question is if the trigeminal ganglion is merely a transition site for sensory information from the periphery to the central nervous system, or if intracellular modulatory mechanisms and intercellular signaling are capable of controlling sensory information relevant for the pathophysiology of headaches. METHODS An online search based on PubMed was made using the keyword "trigeminal ganglion" in combination with "anatomy", "headache", "migraine", "neuropeptides", "receptors" and "signaling". From the relevant literature, further references were selected in view of their relevance for headache mechanisms. The essential information was organized based on location and cell types of the trigeminal ganglion, neuropeptides, receptors for signaling molecules, signaling mechanisms, and their possible relevance for headache generation. RESULTS The trigeminal ganglion consists of clusters of sensory neurons and their peripheral and central axon processes, which are arranged according to the three trigeminal partitions V1-V3. The neurons are surrounded by satellite glial cells, the axons by Schwann cells. In addition, macrophage-like cells can be found in the trigeminal ganglion. Neurons express various neuropeptides, among which calcitonin gene-related peptide is the most prominent in terms of its prevalence and its role in primary headaches. The classical calcitonin gene-related peptide receptors are expressed in non-calcitonin gene-related peptide neurons and satellite glial cells, although the possibility of a second calcitonin gene-related peptide receptor in calcitonin gene-related peptide neurons remains to be investigated. A variety of other signal molecules like adenosine triphosphate, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion cells and may act at receptors on adjacent neurons or satellite glial cells. CONCLUSIONS The trigeminal ganglion may act as an integrative organ. The morphological and functional arrangement of trigeminal ganglion cells suggests that intercellular and possibly also autocrine signaling mechanisms interact with intracellular mechanisms, including gene expression, to modulate sensory information. Receptors and neurotrophic factors delivered to the periphery or the trigeminal brainstem can contribute to peripheral and central sensitization, as in the case of primary headaches. The trigeminal ganglion as a target of drug action outside the blood-brain barrier should therefore be taken into account.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Iowa VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
34
|
CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat Rev Neurol 2018; 14:338-350. [DOI: 10.1038/s41582-018-0003-1] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Abstract
Background A better understanding of the mechanisms underlying the migraine attack has reinforced the concept that migraine is a complex brain disease, and has paved the way for the development of new migraine specific acute treatments. In recent years, targeting the calcitonin gene-related peptide and its receptors has been one of the most promising pharmacological strategies for both acute and preventive treatment of migraine. Findings Randomized double-blind placebo-controlled trials have demonstrated the superiority of small molecule calcitonin gene-related peptide receptor antagonists (gepants) over placebo in treating acute migraine attacks measured as the two-hour pain free endpoint. Gepants also improved migraine associated symptoms, such as nausea, photophobia and phonophobia. Two of the class have had their development stopped because of hepatotoxicity, which is emerging as being due to metabolites. Gepants have a good tolerability and can be safely used in patients with stable cardiovascular disease. Conclusion Exciting results have been obtained targeting the calcitonin gene-related peptide pathway to abort acute migraine attacks, thus reinforcing the relevance of mechanism-based treatments specific for migraine.
Collapse
Affiliation(s)
- Roberta Messina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Peter J Goadsby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
36
|
Abstract
Migraine is a highly prevalent, severe, and disabling neurological condition with a significant unmet need for effective acute therapies. Patients (~50%) are dissatisfied with their currently available therapies. Calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide involved in the pathophysiology of migraines. As reviewed in this manuscript, a number of small molecule antagonists of the CGRP receptor have been developed for migraine therapy. Incredibly, the majority of the clinical trials conducted have proven positive, demonstrating the importance of this signalling pathway in migraine. Unfortunately, a number of these molecules raised liver toxicity concerns when used daily for as little as 7 days resulting in their discontinuation. Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant). Further, these proofs of principle studies identifying CGRP as a viable clinical target have led to the development of several CGRP or CGRP receptor-targeted monoclonal antibodies that continue to show good clinical efficacy.
Collapse
Affiliation(s)
- Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, UK.
| | - Peter J Goadsby
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, UK
| |
Collapse
|
37
|
Hendrikse ER, Bower RL, Hay DL, Walker CS. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 2018; 39:403-419. [PMID: 29566540 DOI: 10.1177/0333102418765787] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.
Collapse
Affiliation(s)
- Erica R Hendrikse
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebekah L Bower
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
38
|
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) has long been a focus of migraine research, since it turned out that inhibition of CGRP or CGRP receptors by antagonists or monoclonal IgG antibodies was therapeutic in frequent and chronic migraine. This contribution deals with the questions, from which sites CGRP is released, where it is drained and where it acts to cause its headache proliferating effects in the trigeminovascular system. RESULTS The available literature suggests that the bulk of CGRP is released from trigeminal afferents both in meningeal tissues and at the first synapse in the spinal trigeminal nucleus. CGRP may be drained off into three different compartments, the venous blood plasma, the cerebrospinal fluid and possibly the glymphatic system. CGRP receptors in peripheral tissues are located on arterial vessel walls, mononuclear immune cells and possibly Schwann cells; within the trigeminal ganglion they are located on neurons and glial cells; in the spinal trigeminal nucleus they can be found on central terminals of trigeminal afferents. All these structures are potential signalling sites for CGRP, where CGRP mediates arterial vasodilatation but not direct activation of trigeminal afferents. In the spinal trigeminal nucleus a facilitating effect on synaptic transmission seems likely. In the trigeminal ganglion CGRP is thought to initiate long-term changes including cross-signalling between neurons and glial cells based on gene expression. In this way, CGRP may upregulate the production of receptor proteins and pro-nociceptive molecules. CONCLUSIONS CGRP and other big molecules cannot easily pass the blood-brain barrier. These molecules may act in the trigeminal ganglion to influence the production of pronociceptive substances and receptors, which are transported along the central terminals into the spinal trigeminal nucleus. In this way peripherally acting therapeutics can have a central antinociceptive effect.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
39
|
Holland PR, Saengjaroentham C, Vila-Pueyo M. The role of the brainstem in migraine: Potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia 2018; 39:390-402. [DOI: 10.1177/0333102418756863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Migraine is a severe debilitating disorder of the brain that is ranked as the sixth most disabling disorder globally, with respect to disability adjusted life years, and there remains a significant unmet demand for an improved understanding of its underlying mechanisms. In conjunction with perturbed sensory processing, migraine sufferers often present with diverse neurological manifestations (premonitory symptoms) that highlight potential brainstem involvement. Thus, as the field moves away from the view of migraine as a consequence of purely vasodilation to a greater understanding of migraine as a complex brain disorder, it is critical to consider the underlying physiology and pharmacology of key neural networks likely involved. Discussion The current review will therefore focus on the available evidence for the brainstem as a key regulator of migraine biology and associated symptoms. We will further discuss the potential role of CGRP in the brainstem and its modulation for migraine therapy, given the emergence of targeted CGRP small molecule and monoclonal antibody therapies. Conclusion The brainstem forms a functional unit with several hypothalamic nuclei that are capable of modulating diverse functions including migraine-relevant trigeminal pain processing, appetite and arousal regulatory networks. As such, the brainstem has emerged as a key regulator of migraine and is appropriately considered as a potential therapeutic target. While currently available CGRP targeted therapies have limited blood brain barrier penetrability, the expression of CGRP and its receptors in several key brainstem nuclei and the demonstration of brainstem effects of CGRP modulation highlight the significant potential for the development of CNS penetrant molecules.
Collapse
Affiliation(s)
- Philip Robert Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chonlawan Saengjaroentham
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marta Vila-Pueyo
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
40
|
The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17:174-182. [DOI: 10.1016/s1474-4422(17)30435-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
|
41
|
The CGRP receptor antagonist BIBN4096 inhibits prolonged meningeal afferent activation evoked by brief local K + stimulation but not cortical spreading depression-induced afferent sensitization. Pain Rep 2017; 3:e632. [PMID: 29430561 PMCID: PMC5802320 DOI: 10.1097/pr9.0000000000000632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Calcitonin gene-related peptide mediates K+-evoked delayed and prolonged activation of cranial meningeal afferents but does not contribute to their enhanced responsiveness following cortical spreading depression. Introduction: Cortical spreading depression (CSD) is believed to promote migraine headache by enhancing the activity and mechanosensitivity of trigeminal intracranial meningeal afferents. One putative mechanism underlying this afferent response involves an acute excitation of meningeal afferents by cortical efflux of K+ and the ensuing antidromic release of proinflammatory sensory neuropeptides, such as calcitonin gene-related peptide (CGRP). Objectives: We sought to investigate whether (1) a brief meningeal K+ stimulus leads to CGRP-dependent enhancement of meningeal afferent responses and (2) CSD-induced meningeal afferent activation and sensitization involve CGRP receptor signaling. Methods: Extracellular single-unit recording were used to record the activity of meningeal afferents in anesthetized male rats. Stimulations included a brief meningeal application of K+ or induction of CSD in the frontal cortex using pinprick. Cortical spreading depression was documented by recording changes in cerebral blood flow using laser Doppler flowmetery. Calcitonin gene-related peptide receptor activity was inhibited with BIBN4096 (333 μM, i.v.). Results: Meningeal K+ stimulation acutely activated 86% of the afferents tested and also promoted in ∼65% of the afferents a 3-fold increase in ongoing activity, which was delayed by 23.3 ± 4.1 minutes and lasted for 22.2 ± 5.6 minutes. K+ stimulation did not promote mechanical sensitization. Pretreatment with BIBN4096 suppressed the K+-induced delayed afferent activation, reduced CSD-evoked cortical hyperemia, but had no effect on the enhanced activation or mechanical sensitization of meningeal afferents following CSD. Conclusion: While CGRP-mediated activation of meningeal afferents evoked by cortical efflux of K+ could promote headache, acute activation of CGRP receptors may not play a key role in mediating CSD-evoked headache.
Collapse
|
42
|
Yuan H, Lauritsen CG, Kaiser EA, Silberstein SD. CGRP Monoclonal Antibodies for Migraine: Rationale and Progress. BioDrugs 2017; 31:487-501. [DOI: 10.1007/s40259-017-0250-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Edvinsson L, Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia 2017; 39:366-373. [DOI: 10.1177/0333102417736900] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Premise The brain and the sensory nervous system contain a rich supply of calcitonin gene-related peptide (CGRP) and CGRP receptor components. Clinical studies have demonstrated a correlation between CGRP release and acute migraine headache that led to the development of CGRP-specific drugs that either abort acute attacks of migraine (gepants) or are effective as prophylaxis (antibodies). However, there is still much discussion concerning the site of action of these drugs. Problem Here we describe the most recent data related to CGRP in the trigeminal ganglion and its connections to the CNS, putative key regions involved in migraine pathophysiology. Gepants are small molecules that have limited ability to cross the blood-brain barrier (BBB), whereas CGRP antibodies are 1500 times larger molecules, and are virtually excluded from the brain, with a BBB permeability of < 0.1%. Thus we propose that the primary site of action for the antimigraine drugs is outside the CNS in areas not limited by the BBB. Potential solution Therefore, it is reasonable to discuss the localization of CGRP and its receptor components in relation to the BBB. The trigeminovascular system, located outside the BBB, has a key role in migraine symptomatology, and it is likely targeted by the novel CGRP drugs that successfully terminate migraine headache.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
44
|
Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E, Edvinsson L, Bolay H. CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 2017; 39:354-365. [PMID: 28971699 DOI: 10.1177/0333102417735845] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The present study aimed to investigate the effects of selective calcitonin gene related peptide (CGRP) receptor antagonist (MK-8825) on cortical spreading depression (CSD) induced pain behavior and anxiety in freely-moving rats, and neuronal activation in the correlated anatomical regions. METHODS CSD was induced while keeping all meningeal layers and BBB intact and MK-8825 was administered in two different doses. Regional cerebral blood flow (rCBF), arterial pressure and DC shift were recorded. Behavioral studies were conducted in freely-moving rats. Spontaneous behavior, mechanical allodynia, ultrasonic vocalization, and anxiety were evaluated. Immunohistochemistry of c-fos, CGRP, calcitonin receptor like-receptor (CLR) and receptor activity modifying protein 1 (RAMP1) were studied. RESULTS MK-8825 did not block DC shifts in the cerebral cortex and accompanied hemodynamic response. CSD significantly induced freezing and grooming behavior in freely-moving rats. MK-8825 reversed increased episodes of freezing, grooming, wet dog shake and head shake behavior. MK-8825 increased CSD-induced reductions in von Frey thresholds, but did not change elevated plus maze results. MK-8825 blocked c-fos induction by CSD in the brainstem trigeminal nucleus caudalis (TNC) and reticular nucleus of thalamus (TRN) but not in the amygdala. Immunofluorescence analysis showed no co-localization of CGRP, CLR or RAMP1 with c-fos positive cells. CONCLUSION CGRP receptor antagonist MK-8825 dose dependently attenuated CSD-induced trigeminal nerve mediated pain response without altering CSD waves and accompanied rCBF response. While blocking TNC activation, MK-8825 did not exert any effect on amygdala and anxiety behavior. CGRP receptor antagonists may also modulate thalamo-cortical gating.
Collapse
Affiliation(s)
- Aslı Filiz
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey
| | - Nermin Tepe
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| | - Sajedeh Eftekhari
- 3 Lund University, Department of Medicine, Institute of Clinical Sciences, Lund, Sweden
| | - H Evren Boran
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| | - Ergin Dilekoz
- 4 Department of Pharmacology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey
| | - Lars Edvinsson
- 3 Lund University, Department of Medicine, Institute of Clinical Sciences, Lund, Sweden
| | - Hayrunnisa Bolay
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
45
|
Warfvinge K, Edvinsson L. Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia 2017; 39:342-353. [PMID: 28856910 DOI: 10.1177/0333102417728873] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide and its receptor, consisting of receptor activity-modifying protein 1 and calcitonin receptor-like receptor, are of considerable interest because of the role they play in migraine and recently developed migraine therapies. METHODS To better understand the function of this neuropeptide, we used immunohistochemistry to determine a detailed distribution of calcitonin gene-related peptide, receptor activity-modifying protein 1 and calcitonin receptor-like receptor in the rat brain in a region of 0.5-1.5 mm lateral to the midline. We found calcitonin gene-related peptide immunoreactivity in most of the neurons of the cerebral cortex, hippocampus, cerebellum, thalamic nuclei, hypothalamic nuclei and brainstem nuclei. In contrast, receptor activity-modifying protein 1 and calcitonin receptor-like receptor immunoreactivity were found almost exclusively in the neuronal processes in the investigated regions. CONCLUSION Overall, the degree of expression of calcitonin gene-related peptide and calcitonin gene-related peptide receptor components in the central nervous system is astonishingly complex and suggestive of many different brain functions, including a possible role in migraine. However, currently, the presence of calcitonin gene-related peptide and the nature of its receptors throughout the brain is an enigma yet to be solved.
Collapse
Affiliation(s)
- Karin Warfvinge
- 1 Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,2 Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- 1 Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,2 Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Edvinsson L. The Trigeminovascular Pathway: Role of CGRP and CGRP Receptors in Migraine. Headache 2017; 57 Suppl 2:47-55. [DOI: 10.1111/head.13081] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/20/2023]
|
47
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
48
|
Hay DL, Walker CS. CGRP and its receptors. Headache 2017; 57:625-636. [PMID: 28233915 DOI: 10.1111/head.13064] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
Abstract
The calcitonin gene-related peptide (CGRP) neuropeptide system is an important but still evolving target for migraine. A fundamental consideration for all of the current drugs in clinical trials and for ongoing development in this area is the identity, expression pattern, and function of CGRP receptors because this knowledge informs safety and efficacy considerations. In recent years, only the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (RAMP1) complex, known as the CGRP receptor, has generally been considered relevant. However, CGRP is capable of activating multiple receptors and could have more than one endogenous receptor. The recent identification of the CGRP-responsive calcitonin receptor/RAMP1 complex (AMY1 receptor - amylin subtype 1 receptor) in the trigeminovascular system warrants a deeper consideration of the molecular identity of CGRP receptor(s) involved in the pathophysiology, and thus potential treatment of migraine. This perspective considers some of the issues and implications.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Abushik PA, Bart G, Korhonen P, Leinonen H, Giniatullina R, Sibarov DA, Levonen AL, Malm T, Antonov SM, Giniatullin R. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia 2016; 37:1373-1383. [PMID: 27884929 DOI: 10.1177/0333102416681588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Blocking the pro-nociceptive action of CGRP is one of the most promising approaches for migraine prophylaxis. The aim of this study was to explore a role for CGRP as a neuroprotective agent for central and peripheral neurons. Methods The viability of isolated rat trigeminal, cortical and cerebellar neurons was tested by fluorescence vital assay. Engagement of Nrf2 target genes was analyzed by qPCR. The neuroprotective efficacy of CGRP in vivo was tested in mice using a permanent cerebral ischemia model. Results CGRP prevented apoptosis induced by the amino acid homocysteine in all three distinct neuronal populations. Using a set of specific kinase inhibitors, we show the role of multi-kinase signaling pathways involving PKA and CaMKII in neuronal survival. Forskolin triggered a very similar signaling cascade, suggesting that cAMP is the main upstream trigger for multi-kinase neuroprotection. The specific CGRP antagonist BIBN4096 reduced cellular viability, lending further support to the proposed neuroprotective function of CGRP. Importantly, CGRP was neuroprotective against permanent ischemia in mice. Conclusion Our data show an unexpected 'positive' role for the endogenous pro-nociceptive migraine mediator CGRP, suggesting more careful examination of migraine prophylaxis strategy based on CGRP antagonism although it should be noted that homocysteine induced apoptosis in primary neuronal cell culture might not necessarily reproduce all the features of cell loss in the living organism.
Collapse
Affiliation(s)
- Polina A Abushik
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland.,2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Geneviève Bart
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Hanna Leinonen
- 3 Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Dmitry A Sibarov
- 2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Anna-Liisa Levonen
- 3 Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Sergei M Antonov
- 2 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Laboratory of Comparative Neurophysiology, Saint-Petersburg, Russia
| | - Rashid Giniatullin
- 1 Department of Neurobiology, University of Eastern Finland, Kuopio, Finland.,4 Laboratory of Neurobiology, Department of Physiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
50
|
MaassenVanDenBrink A, Meijer J, Villalón CM, Ferrari MD. Wiping Out CGRP: Potential Cardiovascular Risks. Trends Pharmacol Sci 2016; 37:779-788. [DOI: 10.1016/j.tips.2016.06.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/06/2023]
|