1
|
Herrera E, Chédotal A, Mason C. Development of the Binocular Circuit. Annu Rev Neurosci 2024; 47:303-322. [PMID: 38635868 DOI: 10.1146/annurev-neuro-111020-093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.
Collapse
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias (CSIC-UMH), Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain;
| | - Alain Chédotal
- Université Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Institut de la Vision, INSERM, Sorbonne Université, Paris, France;
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Zuckerman Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
2
|
Li H, Zhou Q, Chen Y, Hu H, Gao L, Takahata T. Three-dimensional topography of eye-specific domains in the lateral geniculate nucleus of pigmented and albino rats. Cereb Cortex 2023; 33:9599-9615. [PMID: 37415460 DOI: 10.1093/cercor/bhad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.
Collapse
Affiliation(s)
- Hangqi Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Huijie Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| |
Collapse
|
3
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
4
|
Aljohani S, AlJaloud A, Alsakran WA, AlZaid A. INADVERTENT GLOBE PENETRATION AND SUBRETINAL INJECTION OF BOTULINUM TOXIN IN A PATIENT WITH OCULOCUTANEOUS ALBINISM. Retin Cases Brief Rep 2023; 17:302-304. [PMID: 34001765 DOI: 10.1097/icb.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE To present a case of localized retinal detachment and mild vitreous hemorrhage in a patient with oculocutaneous albinism after accidental intraocular injection of botulinum toxin A. METHODS Botulinum toxin A injection was administered to a 5-year-old patient with oculocutaneous albinism with esotropia and resulted in an ocular penetration. Dilated fundus examination indicated a nasal retinal tear causing a mild vitreous hemorrhage and a localized retinal detachment. RESULTS No treatment was required for the retinal detachment, and we observed the patient at regular intervals. On Day 1, the detachment resolved spontaneously without sequelae. On follow-up, scarring at the lesion site was detected at one month after the incidence, and the patient's vision was stable. CONCLUSION In this instance, observation was sufficient for our patient with complete resolution of retinal detachment and no long-term complication. Botulinum toxin A did not seem toxic to intraocular tissues. However, intramuscular botulinum toxin A injection should be administered carefully. Oculocutaneous albinism did not seem to affect the final outcome in our case.
Collapse
Affiliation(s)
- Saud Aljohani
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Imam Abdulrahman Bin Faisal University, Ophthalmology Department, Dammam, Saudi Arabia; and
| | - Ahmad AlJaloud
- Pediatric Ophthalmology Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Wael A Alsakran
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulrahman AlZaid
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Slavi N, Balasubramanian R, Lee MA, Liapin M, Oaks-Leaf R, Peregrin J, Potenski A, Troy CM, Ross ME, Herrera E, Kosmidis S, John SWM, Mason CA. CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism. Neuron 2023; 111:49-64.e5. [PMID: 36351424 PMCID: PMC9822872 DOI: 10.1016/j.neuron.2022.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
In albinism, aberrations in the ipsi-/contralateral retinal ganglion cell (RGC) ratio compromise the functional integrity of the binocular circuit. Here, we focus on the mouse ciliary margin zone (CMZ), a neurogenic niche at the embryonic peripheral retina, to investigate developmental processes regulating RGC neurogenesis and identity acquisition. We found that the mouse ventral CMZ generates predominantly ipsilaterally projecting RGCs, but this output is altered in the albino visual system because of CyclinD2 downregulation and disturbed timing of the cell cycle. Consequently, albino as well as CyclinD2-deficient pigmented mice exhibit diminished ipsilateral retinogeniculate projection and poor depth perception. In albino mice, pharmacological stimulation of calcium channels, known to upregulate CyclinD2 in other cell types, augmented CyclinD2-dependent neurogenesis of ipsilateral RGCs and improved stereopsis. Together, these results implicate CMZ neurogenesis and its regulators as critical for the formation and function of the mammalian binocular circuit.
Collapse
Affiliation(s)
- Nefeli Slavi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Revathi Balasubramanian
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Melissa Ann Lee
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michael Liapin
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Rachel Oaks-Leaf
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anna Potenski
- Department of Molecular Pharmacology and Therapeutics, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Carol Marie Troy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Eloisa Herrera
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Spain
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Simon William Maxwell John
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carol Ann Mason
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Tan LX, Li J, Germer CJ, Lakkaraju A. Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by high-speed high-resolution live imaging. Front Cell Dev Biol 2022; 10:1044672. [PMID: 36393836 PMCID: PMC9651161 DOI: 10.3389/fcell.2022.1044672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, United States
| | - Colin J. Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
7
|
Bhattacharyya S, Sturgis J, Maminishkis A, Miller SS, Bonilha VL. Oxidation of DJ-1 Cysteines in Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:ijms23179938. [PMID: 36077335 PMCID: PMC9456479 DOI: 10.3390/ijms23179938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The retina and RPE cells are regularly exposed to chronic oxidative stress as a tissue with high metabolic demand and ROS generation. DJ-1 is a multifunctional protein in the retina and RPE that has been shown to protect cells from oxidative stress in several cell types robustly. Oxidation of DJ-1 cysteine (C) residues is important for its function under oxidative conditions. The present study was conducted to analyze the impact of DJ-1 expression changes and oxidation of its C residues on RPE function. Monolayers of the ARPE-19 cell line and primary human fetal RPE (hfRPE) cultures were infected with replication-deficient adenoviruses to investigate the effects of increased levels of DJ-1 in these monolayers. Adenoviruses carried the full-length human DJ-1 cDNA (hDJ) and mutant constructs of DJ-1, which had all or each of its three C residues individually mutated to serine (S). Alternatively, endogenous DJ-1 levels were decreased by transfection and transduction with shPARK7 lentivirus. These monolayers were then assayed under baseline and low oxidative stress conditions. The results were analyzed by immunofluorescence, Western blot, RT-PCR, mitochondrial membrane potential, and viability assays. We determined that decreased levels of endogenous DJ-1 levels resulted in increased levels of ROS. Furthermore, we observed morphological changes in the mitochondria structure of all the RPE monolayers transduced with all the DJ-1 constructs. The mitochondrial membrane potential of ARPE-19 monolayers overexpressing all DJ-1 constructs displayed a significant decrease, while hfRPE monolayers only displayed a significant decrease in their ΔΨm when overexpressing the C2S mutation. Viability significantly decreased in ARPE-19 cells transduced with the C53S construct. Our data suggest that the oxidation of C53 is crucial for regulating endogenous levels of ROS and viability in RPE cells.
Collapse
Affiliation(s)
| | - Johnathon Sturgis
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Section on Epithelial and Retinal Physiology and Disease, Bethesda, MD 20892, USA
| | - Sheldon S. Miller
- National Eye Institute, National Institutes of Health, Section on Epithelial and Retinal Physiology and Disease, Bethesda, MD 20892, USA
| | - Vera L. Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-445-7690
| |
Collapse
|
8
|
Pigmented Long-Evans rats demonstrate better visual ability than albino Wistar rats in slow angles-descent forepaw grasping test. Neuroreport 2022; 33:543-547. [PMID: 35882010 DOI: 10.1097/wnr.0000000000001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception. To link anatomical abnormality and perceptual visual impairment of albinism, we compared the perceptual vision between the pigmented Long-Evans and the albino Wistar rats. We used the slow angled-descent forepaw grasping (SLAG) test. We hanged the rats in the air by their tails and slowly moved them around a safety bar so that they could see it. When the rats recognized the bar and try to grab it to escape, we counted the trial as 'positive', and we measured positive rates. We also measured the distance between the bar and their whiskers during the rats' initial grasping action, and evaluated type of action at the first contact to the bar. The positive-action rate in the Long-Evans rat group showed significantly higher than the Wistar rat group (0.85 ± 0.047, n = 10, vs. 0.29 ± 0.043, n = 10; P < 0.0001). Besides, when the action was positive, the distance between the bar and their whiskers was longer in the Long-Evans rat group than that in the Wistar rat group (117 ± 5.3 mm vs. 58.8 ± 4.6 mm; P < 0.0001). The Long-Evans rats grasped the bar more precisely than the Wistar rats. The pigmented Long-Evans rats have much better visual perception than the albino Wistar rats.
Collapse
|
9
|
McKinney MM, Dupont WD, Corson KJ, Wallace JM, Jones CP. Physiologic and Behavioral Effects in Mice Anesthetized with Isoflurane in a Red-tinted or a Traditional Translucent Chamber. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:322-332. [PMID: 35840316 PMCID: PMC9674017 DOI: 10.30802/aalas-jaalas-22-000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoflurane has been characterized as a distressing agent for rodents, causing both physiologic and behavioral effects. Using a "darkened home cage" has been recommended during CO₂ administration for rodent euthanasia; this is arguably a similar animal experience to anesthetic induction with isoflurane. Based on the premise that rodents perceive red light as darkness via the primary optic tract, we compared physiologic and behavioral markers of stress in 2 inbred strains of mice (C57BL/6J and BALB/cJ) anesthetized with isoflurane in either a red-tinted (dark) induction chamber or a traditional translucent induction chamber. Physiologic stress was assessed based on plasma levels of norepinephrine, epinephrine, and corticosterone. Stress-related behaviors (rearing, face wiping, and jumping) were recorded on video and scored from initiation of induction to loss of consciousness. No significant correlations were found between chamber type and physiologic stress hormones. As compared with the translucent chamber, stress-related behaviors were more frequent in the red-tinted chamber, including: 1) significantly higher rearing frequencies in BALB/cJ mice; 2) higher behavioral stress scores in BALB/cJ and male C57BL/6J mice; and 3) more face wiping behavior when considering all mice combined. These findings suggest that mice do not experience significant alleviation of physiologic indices of stress when anesthetized in a red-tinted induction chamber. Furthermore, isoflurane induction in the red-tinted chamber appeared to increase the expression of stress-related behaviors, particularly in BALB/cJ mice. Based on our findings and a growing body of literature on the unintended effects of red light, we do not recommend using red-tinted chambers for induction of anesthesia in mice.
Collapse
Affiliation(s)
- Michael M McKinney
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and,Corresponding author.
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University
Medical Center, Nashville, Tennessee
| | | | - Jeanne M Wallace
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and
| | - Carissa P Jones
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and
| |
Collapse
|
10
|
Tingaud-Sequeira A, Mercier E, Michaud V, Pinson B, Gazova I, Gontier E, Decoeur F, McKie L, Jackson IJ, Arveiler B, Javerzat S. The Dct−/− Mouse Model to Unravel Retinogenesis Misregulation in Patients with Albinism. Genes (Basel) 2022; 13:genes13071164. [PMID: 35885947 PMCID: PMC9324463 DOI: 10.3390/genes13071164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
We have recently identified DCT encoding dopachrome tautomerase (DCT) as the eighth gene for oculocutaneous albinism (OCA). Patients with loss of function of DCT suffer from eye hypopigmentation and retinal dystrophy. Here we investigate the eye phenotype in Dct−/− mice. We show that their retinal pigmented epithelium (RPE) is severely hypopigmented from early stages, contrasting with the darker melanocytic tissues. Multimodal imaging reveals specific RPE cellular defects. Melanosomes are fewer with correct subcellular localization but disrupted melanization. RPE cell size is globally increased and heterogeneous. P-cadherin labeling of Dct−/− newborn RPE reveals a defect in adherens junctions similar to what has been described in tyrosinase-deficient Tyrc/c embryos. The first intermediate of melanin biosynthesis, dihydroxyphenylalanine (L-Dopa), which is thought to control retinogenesis, is detected in substantial yet significantly reduced amounts in Dct−/− postnatal mouse eyecups. L-Dopa synthesis in the RPE alone remains to be evaluated during the critical period of retinogenesis. The Dct−/− mouse should prove useful in understanding the molecular regulation of retinal development and aging of the hypopigmented eye. This may guide therapeutic strategies to prevent vision deficits in patients with albinism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
| | - Elina Mercier
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
| | - Vincent Michaud
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Molecular Genetics Laboratory, Bordeaux University Hospital, F-33076 Bordeaux, France
| | - Benoît Pinson
- SAM, TBMcore, CNRS UAR 3427, INSERM US005, Université Bordeaux, F-33076 Bordeaux, France;
| | - Ivet Gazova
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Etienne Gontier
- Bordeaux Imaging Center, CNRS, INSERM, BIC, UMS 3420, US 4, University Bordeaux, F-33076 Bordeaux, France; (E.G.); (F.D.)
| | - Fanny Decoeur
- Bordeaux Imaging Center, CNRS, INSERM, BIC, UMS 3420, US 4, University Bordeaux, F-33076 Bordeaux, France; (E.G.); (F.D.)
| | - Lisa McKie
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Ian J. Jackson
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Benoît Arveiler
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Molecular Genetics Laboratory, Bordeaux University Hospital, F-33076 Bordeaux, France
| | - Sophie Javerzat
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Correspondence:
| |
Collapse
|
11
|
Neveu MM, Padhy SK, Ramamurthy S, Takkar B, Jalali S, CP D, Padhi TR, Robson AG. Ophthalmological Manifestations of Oculocutaneous and Ocular Albinism: Current Perspectives. Clin Ophthalmol 2022; 16:1569-1587. [PMID: 35637898 PMCID: PMC9148211 DOI: 10.2147/opth.s329282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Albinism describes a heterogeneous group of genetically determined disorders characterized by disrupted synthesis of melanin and a range of developmental ocular abnormalities. The main ocular features common to both oculocutaneous albinism (OCA), and ocular albinism (OA) include reduced visual acuity, refractive errors, foveal hypoplasia, congenital nystagmus, iris and fundus hypopigmentation and visual pathway misrouting, but clinical signs vary and there is phenotypic overlap with other pathologies. This study reviews the prevalence, genetics and ocular manifestations of OCA and OA, including abnormal development of the optic chiasm. The role of visual electrophysiology in the detection of chiasmal dysfunction and visual pathway misrouting is emphasized, highlighting how age-associated changes in visual evoked potential (VEP) test results must be considered to enable accurate diagnosis, and illustrated further by the inclusion of novel VEP data in genetically confirmed cases. Differential diagnosis is considered in the context of suspected retinal and other disorders, including rare syndromes that may masquerade as albinism.
Collapse
Affiliation(s)
- Magella M Neveu
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Deepika CP
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Tapas Ranjan Padhi
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar, India
| | - Anthony G Robson
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
12
|
Şahin T, Öztekin A. Choroidal Thickness In Patients With Alopecia Areata: Is It A Sign For Poor Prognosis? J Cosmet Dermatol 2022; 21:5098-5102. [PMID: 35390212 DOI: 10.1111/jocd.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease which causes non-scarring type hair loss considered to target the pigmentary system. The hair follicle may not be the only site for involvement of the disease. Iris, the ciliary body, choroid and epithelium of the retinal pigment may also be affected. The aim of the present study was to compare retinal pigment epithelium (RPE) and choroidal thicknesses between patients with AA and healthy controls. METHODS The study included 44 patients with alopecia areata, and 44 healthy individuals with similar age and gender distribution. RPE and choroidal thickness measurements were performed through Spectral-domain optical coherence tomography (SD-OCT) (Heidelberg Spectralis® OCT). RESULTS There was not any significant difference between patients with AA and healthy individuals for RPE and choroidal thickness (P = 0.751, P = 0.725, respectively). However, the choroidal thickness (422 ± 79 μm) was significantly thinner in patients with poor prognostic criteria than other patients (371 ± 75 μm) (P = 0.039). CONCLUSION Monitoring of choroidal thicknesses through optic coherence tomography (OCT) may provide an insight for the disease prognosis in patients with AA.
Collapse
Affiliation(s)
- Tayfun Şahin
- Hıtıt Unıversıty Medıcıne Faculty, Department of Ophthalmology, 019030, Corum, Turkey
| | - Aynure Öztekin
- Hıtıt Unıversıty Medıcıne Faculty, Department of Dermatology, 019030, Corum, Turkey
| |
Collapse
|
13
|
Pfeffer BA, Fliesler SJ. Reassessing the suitability of ARPE-19 cells as a valid model of native RPE biology. Exp Eye Res 2022; 219:109046. [DOI: 10.1016/j.exer.2022.109046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
15
|
In vitro disease modeling of oculocutaneous albinism type 1 and 2 using human induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Reports 2022; 17:173-186. [PMID: 35021041 PMCID: PMC8758966 DOI: 10.1016/j.stemcr.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Oculocutaneous albinism (OCA) encompasses a set of autosomal recessive genetic conditions that affect pigmentation in the eye, skin, and hair. OCA patients display reduced best-corrected visual acuity, reduced to absent ocular pigmentation, abnormalities in fovea development, and/or abnormal decussation of optic nerve fibers. It has been hypothesized that improving eye pigmentation could prevent or rescue some of the vision defects. The goal of the present study was to develop an in vitro model for studying pigmentation defects in human retinal pigment epithelium (RPE). We developed a “disease in a dish” model for OCA1A and OCA2 types using induced pluripotent stem cells to generate RPE. The RPE is a monolayer of cells that are pigmented, polarized, and polygonal in shape, located between the neural retina and choroid, with an important role in vision. Here we show that RPE tissue derived in vitro from OCA patients recapitulates the pigmentation defects seen in albinism, while retaining the apical-basal polarity and normal polygonal morphology of the constituent RPE cells. We established a human iPSC-based in vitro model for oculocutaneous albinism (OCA) iRPE derived from OCA-iPSC retains apical-basal polarity and polygonal morphology OCA-iRPE recapitulates the pigmentation defect seen in albinism Excess pre-melanosomes and scarce mature melanosomes are found in OCA-iRPE
Collapse
|
16
|
Saito T, Okamura K, Kosaki R, Wakamatsu K, Ito S, Nakajima O, Yamashita H, Hozumi Y, Suzuki T. Impact of a SLC24A5 variant on the retinal pigment epithelium of a Japanese patient with oculocutaneous albinism type 6. Pigment Cell Melanoma Res 2021; 35:212-219. [PMID: 34870899 DOI: 10.1111/pcmr.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Oculocutaneous albinism (OCA) 6 is a non-syndromic type of OCA that has distinct ocular symptoms and variable cutaneous hypopigmentation. The causative gene of OCA6 is SLC24A5, which encodes NCKX5, a K+ -dependent Na+ /Ca2+ exchanger 5. NCKX5 is involved in the maturation of melanosomes, but its function is still unclear. In this study, we characterized a Japanese patient with OCA6. Genetic analysis revealed compound heterozygous variants in SLC24A5, c.590 + 1dupG, and c.598G>A (p.G200R). To clarify the functional significance of the missense variant, we generated a knock-in (KI) mouse model carrying the mouse homolog of the G200R variant using the CRISPR/Cas9 system. Chemical analysis showed decreased amounts of eumelanin in the hair and skin of KI mice, while levels of benzothiazine units in pheomelanin were significantly increased in their hair. Retinal pigment was also decreased in KI mice. Notably, a histopathologic study revealed a significant pigment loss in the retinal pigment epithelium (RPE) but not in the choroid. Immunohistochemically, the expression of NCKX5 in the RPE was decreased but was maintained in the choroid of KI mice. These findings could explain the difference in phenotypic severity between eye symptoms and hypopigmentation in the skin/hair.
Collapse
Affiliation(s)
- Toru Saito
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Ken Okamura
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Rika Kosaki
- Division of Medical Genetics, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidetoshi Yamashita
- Department of Ophthalmology, Yssamagata University Faculty of Medicine, Yamagata, Japan
| | - Yutaka Hozumi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
17
|
Hosseinaee Z, Nima Abbasi, Pellegrino N, Khalili L, Mukhangaliyeva L, Haji Reza P. Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography. Sci Rep 2021; 11:11466. [PMID: 34075105 PMCID: PMC8169886 DOI: 10.1038/s41598-021-90776-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 11/09/2022] Open
Abstract
Early diagnosis of ocular diseases improves the understanding of pathophysiology and aids in accurate monitoring and effective treatment. Advanced, multimodal ocular imaging platforms play a crucial role in visualization of ocular components and provide clinicians with a valuable tool for evaluating various eye diseases. Here, for the first time we present a non-contact, multiwavelength photoacoustic remote sensing (PARS) microscopy and swept-source optical coherence tomography (SS-OCT) for in-vivo functional and structural imaging of the eye. The system provides complementary imaging contrasts of optical absorption and optical scattering, and is used for simultaneous, non-contact, in-vivo imaging of murine eye. Results of vasculature and structural imaging as well as melanin content in the retinal pigment epithelium layer are presented. Multiwavelength PARS microscopy using Stimulated Raman scattering is applied to enable in-vivo, non-contact oxygen saturation estimation in the ocular tissue. The reported work may be a major step towards clinical translation of ophthalmic technologies and has the potential to advance the diagnosis and treatment of ocular diseases.
Collapse
Affiliation(s)
- Zohreh Hosseinaee
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Nima Abbasi
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Nicholas Pellegrino
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Layla Khalili
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Lyazzat Mukhangaliyeva
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
18
|
Establishment of a pigmented murine model abundant with characteristics of retinal vein occlusion. Exp Eye Res 2021; 204:108441. [PMID: 33453278 DOI: 10.1016/j.exer.2021.108441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Retinal vein occlusion (RVO) is a vascular disease that represents characteristic retinal hemorrhage and dilated retinal veins. Despite its clinical importance, its pathogenesis remains largely unknown because of limited opportunities to acquire human retinal samples. Therefore, an animal model that reproduces the clinical features of RVO patients is required for further investigation. In this study, we established a pigmented murine RVO model that reproduced characteristic fundus appearances similar to human RVO findings. Retinal edema in this model was observed in both optical coherence tomography and histological analysis, which is a clinically important outcome. With quantitative real-time PCR analysis on retinal samples, we revealed that the mRNA level of vascular endothelial growth factor (VEGF) increased in the retina induced RVO. Moreover, this retinal edema was reduced by intravitreal injection of anti-VEGF antibody. These results were consistent with human clinical knowledge and suggested that this model could be a useful tool for research into new therapeutic approaches.
Collapse
|
19
|
Novikova YP, Grigoryan EN. Early Appearance of Aging Signs in the Retinal Pigment Epithelium in Young Albino Rats. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420060065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ernst J, Alabek ML, Eldib A, Madan-Khetarpal S, Sebastian J, Bhatia A, Liasis A, Nischal KK. Ocular findings of albinism in DYRK1A-related intellectual disability syndrome. Ophthalmic Genet 2020; 41:650-655. [PMID: 32838606 DOI: 10.1080/13816810.2020.1814349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pathogenic variants in DYRK1A are associated with DYRK1A-related intellectual disability syndrome (DIDS). Common features of this diagnosis include microcephaly, intellectual disability, speech impairment, and distinct facial features. Reported ocular features include deep-set eyes, myopia, and strabismus. We present a case of DYRK1A-related intellectual disability syndrome with ocular findings of albinism and explore the possible pathogenesis of this previously unreported manifestation. MATERIALS AND METHODS This is a single, retrospective case report of a child with DIDS who underwent an ophthalmic exam including detailed visual electrophysiology. Results: A 21-month-old female with microcephaly, failure to thrive, language delay, cleft palate, and cardiac defects had an ophthalmic exam showing myopia, strabismus, a hypopigmented fundus and crossed asymmetry on visual evoked potential (VEP), consistent with ocular findings of albinism. Whole exome sequencing identified a pathogenic DYRK1A variant; no albinism gene variants were reported. Her constellation of features is consistent with a diagnosis of DYRK1A-related intellectual disability syndrome; however, ocular features of albinism have not previously been reported in this condition. CONCLUSIONS This is, to the best of our knowledge, the first report of ocular findings of albinism in a case of DYRK1A-related intellectual disability syndrome. We propose that ocular albinism is a novel ocular phenotype of DYRK1A-related disease. Ophthalmic exams in patients with this diagnosis should include thorough evaluation for ocular albinism, including VEPs.
Collapse
Affiliation(s)
- Julia Ernst
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- Medical University of Warsaw , Warsaw, Poland
| | - Michelle L Alabek
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Amgad Eldib
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Suneeta Madan-Khetarpal
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| | - Jessica Sebastian
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Aashim Bhatia
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
- UPMC Radiology Department at Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alkiviades Liasis
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Ken K Nischal
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
21
|
Öncül H, Ayhan E. Retinal nerve fiber layer, retinal pigment epithelium, and choroidal thickness in vitiligo patients. J Cosmet Dermatol 2020; 19:3032-3037. [PMID: 32515874 DOI: 10.1111/jocd.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vitiligo is one of the common pigmentary disorders affecting the ocular structures. AIM To determine the retinal nerve fiber layer (RNFL), retinal pigment epithelium (RPE), and choroidal thickness (CT) in vitiligo patients and to evaluate the relationship between choroidal thickness and vitiligo subtypes. METHODS The right eyes of 106 participants (51 vitiligo, 55 nonvitiligo) were included in the study. All of the participants underwent detailed eye examinations and spectral-domain optical coherence tomography (SD-OCT) examinations. CT was measured manually with enhanced depth imaging optical coherence tomography (Edi-OCT) (subfoveal [SubF], nasal n500 µm [N1], n1500 µm [N2]), and temporal (t500 µm [T1], t1500 µm [T2]). RESULTS In vitiligo patients, CT values were significantly lower in the SubF, N1, N2, T1, and T2 areas compared to the control group (P = .001, P = .011, P = .002, P = .005, P ˂ .001, respectively). Periorbital involvement did not affect CT (P = .355, P = .746, P = .443, P = .633, P = .558, respectively). However, in patients with periorbital region involvement, the CT was significantly reduced if the lesion had a universal character (P ˂ .001, P = .001, P = .011, P ˂ .001, P = .002, respectively). It was observed that RPE thickness decreased in vitiligo, but this difference was not statistically significant (P = .140). RNFL thickness was unaffected in all quadrants. A positive correlation (r = .286, r = .280, respectively) was observed between the Vitiligo Area Severity Index (VASI) and age and disease duration. A negative correlation (r = -.360, r = -.316, r = -.315, r = -.313, respectively) was found in the CT of the SubF, N1, N2, T1, and T2 areas. CONCLUSION Vitiligo patients should be closely monitored for possible posterior ocular segment disorders.
Collapse
Affiliation(s)
- Hasan Öncül
- Department of Ophthalmology, University of Health Sciences Gazi Yaşargil Education Research Hospital, Diyarbakir, Turkey
| | - Erhan Ayhan
- Department of Dermatology, University of Health Sciences Gazi Yaşargil Education Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
22
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
23
|
Boutin TS, Charteris DG, Chandra A, Campbell S, Hayward C, Campbell A, Nandakumar P, Hinds D, Mitry D, Vitart V. Insights into the genetic basis of retinal detachment. Hum Mol Genet 2020; 29:689-702. [PMID: 31816047 PMCID: PMC7068119 DOI: 10.1093/hmg/ddz294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Retinal detachment (RD) is a serious and common condition, but genetic studies to date have been hampered by the small size of the assembled cohorts. In the UK Biobank data set, where RD was ascertained by self-report or hospital records, genetic correlations between RD and high myopia or cataract operation were, respectively, 0.46 (SE = 0.08) and 0.44 (SE = 0.07). These correlations are consistent with known epidemiological associations. Through meta-analysis of genome-wide association studies using UK Biobank RD cases (N = 3 977) and two cohorts, each comprising ~1 000 clinically ascertained rhegmatogenous RD patients, we uncovered 11 genome-wide significant association signals. These are near or within ZC3H11B, BMP3, COL22A1, DLG5, PLCE1, EFEMP2, TYR, FAT3, TRIM29, COL2A1 and LOXL1. Replication in the 23andMe data set, where RD is self-reported by participants, firmly establishes six RD risk loci: FAT3, COL22A1, TYR, BMP3, ZC3H11B and PLCE1. Based on the genetic associations with eye traits described to date, the first two specifically impact risk of a RD, whereas the last four point to shared aetiologies with macular condition, myopia and glaucoma. Fine-mapping prioritized the lead common missense variant (TYR S192Y) as causal variant at the TYR locus and a small set of credible causal variants at the FAT3 locus. The larger study size presented here, enabled by resources linked to health records or self-report, provides novel insights into RD aetiology and underlying pathological pathways.
Collapse
Affiliation(s)
- Thibaud S Boutin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | | | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Essex SS0 0RY, UK
- Vision & Eye Research Unit, Anglia Ruskin University, Essex CM1 1SQ, UK
| | - Susan Campbell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Archie Campbell
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, EH4 2XU Edinburgh, UK
| | | | | | - David Hinds
- 23andMe, Inc. Mountain View, Sunnyvale, CA 94041, USA
| | - Danny Mitry
- Department of Ophthalmology, Royal Free NHS Foundation Trust, NW3 2QG London, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| |
Collapse
|
24
|
Vigouroux RJ, Cesar Q, Chédotal A, Nguyen-Ba-Charvet KT. Revisiting the role of Dcc in visual system development with a novel eye clearing method. eLife 2020; 9:51275. [PMID: 32096760 PMCID: PMC7062470 DOI: 10.7554/elife.51275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Quénol Cesar
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | |
Collapse
|
25
|
Craenen K, Verslegers M, Craeghs L, Quintens R, Janssen A, Coolkens A, Baatout S, Moons L, Benotmane MA. Abnormal retinal pigment epithelium melanogenesis as a major determinant for radiation-induced congenital eye defects. Reprod Toxicol 2019; 91:59-73. [PMID: 31705956 DOI: 10.1016/j.reprotox.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Roel Quintens
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Ann Janssen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Amelie Coolkens
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology section, Department of Biology, Faculty of Science, KU Leuven, Naamsestraat 61 bus 2464, Leuven 3000, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK-CEN, Boeretang 200, Mol 2400, Belgium.
| |
Collapse
|
26
|
Effect of Resveratrol on In Vitro and In Vivo Models of Diabetic Retinophathy: A Systematic Review. Int J Mol Sci 2019; 20:ijms20143503. [PMID: 31319465 PMCID: PMC6678653 DOI: 10.3390/ijms20143503] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
A large number of preclinical studies suggest the involvement of resveratrol in the prevention and treatment of eye diseases induced by oxidative stress and inflammation. We tested the hypothesis that resveratrol influences many pathways of in vitro and in vivo models of diabetic retinopathy through a systematic literature review of original articles. The review was conducted in accordance with the PRISMA guidelines. A literature search of all original articles published until April 2019 was performed. The terms “resveratrol” in combination with “retina”, “retinal pathology”, “diabetic retinopathy” and “eye” were searched. Possible biases were identified with the adopted SYRCLE’s tool. Eighteen articles met inclusion/exclusion criteria for full-text review. Eleven of them included in vitro experiments, 11 studies reported in vivo data and 3 studies described both in vitro and in vivo experiments. Most of the in vivo studies did not include data that would allow exclusion of bias risks, according to SYRCLE’s risk of bias tool. Both in vitro and in vivo data suggest anti-apoptotic, anti-inflammatory and anti-oxidative actions of resveratrol in models of diabetic retinopathy. However, results on its anti-angiogenic effects are contradictory and need more rigorous studies.
Collapse
|
27
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
28
|
Iwai-Takekoshi L, Balasubramanian R, Sitko A, Khan R, Weinreb S, Robinson K, Mason C. Activation of Wnt signaling reduces ipsilaterally projecting retinal ganglion cells in pigmented retina. Development 2018; 145:dev163212. [PMID: 30254141 PMCID: PMC6240318 DOI: 10.1242/dev.163212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/15/2018] [Indexed: 11/20/2022]
Abstract
In mammalian albinism, disrupted melanogenesis in the retinal pigment epithelium (RPE) is associated with fewer retinal ganglion cells (RGCs) projecting ipsilaterally to the brain, resulting in numerous abnormalities in the retina and visual pathway, especially binocular vision. To further understand the molecular link between disrupted RPE and a reduced ipsilateral RGC projection in albinism, we compared gene expression in the embryonic albino and pigmented mouse RPE. We found that the Wnt pathway, which directs peripheral retinal differentiation and, generally, cell proliferation, is dysregulated in the albino RPE. Wnt2b expression is expanded in the albino RPE compared with the pigmented RPE, and the expanded region adjoins the site of ipsilateral RGC neurogenesis and settling. Pharmacological activation of Wnt signaling in pigmented mice by lithium (Li+) treatment in vivo reduces the number of Zic2-positive RGCs, which are normally fated to project ipsilaterally, to numbers observed in the albino retina. These results implicate Wnt signaling from the RPE to neural retina as a potential factor in the regulation of ipsilateral RGC production, and thus the albino phenotype.
Collapse
Affiliation(s)
- Lena Iwai-Takekoshi
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Revathi Balasubramanian
- Department of Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Austen Sitko
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Rehnuma Khan
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Samuel Weinreb
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Kiera Robinson
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
- Department of Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
29
|
Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ 2018; 6:e5215. [PMID: 30038866 PMCID: PMC6054867 DOI: 10.7717/peerj.5215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Stargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities. Methods SD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions. Results Histological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions. Discussion The presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.
Collapse
Affiliation(s)
- Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Marina Tikhonovich
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Barbara Illing
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
Agosto MA, Anastassov IA, Robichaux MA, Wensel TG. A Large Endoplasmic Reticulum-Resident Pool of TRPM1 in Retinal ON-Bipolar Cells. eNeuro 2018; 5:ENEURO.0143-18.2018. [PMID: 30027108 PMCID: PMC6051591 DOI: 10.1523/eneuro.0143-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
The chemical signal of light onset, a decrease in glutamate release from rod and cone photoreceptors, is processed by a postsynaptic G protein signaling cascade in ON-bipolar cells (BPCs). The metabotropic glutamate receptor mGluR6, along with other cascade elements, is localized synaptically at the BPC dendritic tips. The effector ion channel protein transient receptor potential melastatin-1 (TRPM1), in contrast, is located not only at the dendritic tips but also in BPC bodies and axons. Little is known about the intracellular localization of TRPM1, or its trafficking route to the dendritic tip plasma membrane. Recombinant TRPM1 expressed in mammalian cells colocalized with endoplasmic reticulum (ER) markers, with little or none detected at the plasma membrane. In mouse retina, somatic TRPM1 was similarly intracellular, and not at the plasma membrane. Labeling of ER membranes by expression of a fluorescent marker showed that in BPCs the ER extends into axons and dendrites, but not dendritic tips. In cell bodies, TRPM1 colocalized with the ER, and not with the Golgi apparatus. Fluorescence protease protection (FPP) assays with TRPM1-GFP fusions in heterologous cells revealed that the N and C termini are both accessible to the cytoplasm, consistent with the transmembrane domain topology of related TRP channels. These results indicate that the majority of TRPM1 is present in the ER, from which it can potentially be transported to the dendritic tips as needed for ON light responses. The excess of ER-resident TRPM1 relative to the amount needed at the dendritic tips suggests a potential new function for TRPM1 in the ER.
Collapse
Affiliation(s)
- Melina A. Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ivan A. Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael A. Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
31
|
Yang X, Chung JY, Rai U, Esumi N. Cadherins in the retinal pigment epithelium (RPE) revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo. PLoS One 2018; 13:e0191279. [PMID: 29338041 PMCID: PMC5770047 DOI: 10.1371/journal.pone.0191279] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/02/2018] [Indexed: 01/26/2023] Open
Abstract
The retinal pigment epithelium (RPE) supports the health and function of retinal photoreceptors and is essential for normal vision. RPE cells are post-mitotic, terminally differentiated, and polarized epithelial cells. In pathological conditions, however, they lose their epithelial integrity, become dysfunctional, even dedifferentiate, and ultimately die. The integrity of epithelial cells is maintained, in part, by adherens junctions, which are composed of cadherin homodimers and p120-, β-, and α-catenins linking to actin filaments. While E-cadherin is the major cadherin for forming the epithelial phenotype in most epithelial cell types, it has been reported that cadherin expression in RPE cells is different from other epithelial cells based on results with cultured RPE cells. In this study, we revisited the expression of cadherins in the RPE to clarify their relative contribution by measuring the absolute quantity of cDNAs produced from mRNAs of three classical cadherins (E-, N-, and P-cadherins) in the RPE in vivo. We found that P-cadherin (CDH3) is highly dominant in both mouse and human RPE in situ. The degree of dominance of P-cadherin is surprisingly large, with mouse Cdh3 and human CDH3 accounting for 82-85% and 92-93% of the total of the three cadherin mRNAs, respectively. We confirmed the expression of P-cadherin protein at the cell-cell border of mouse RPE in situ by immunofluorescence. Furthermore, we found that oxidative stress induces dissociation of P-cadherin and β-catenin from the cell membrane and subsequent translocation of β-catenin into the nucleus, resulting in activation of the canonical Wnt/β-catenin pathway. This is the first report of absolute comparison of the expression of three cadherins in the RPE, and the results suggest that the physiological role of P-cadherin in the RPE needs to be reevaluated.
Collapse
Affiliation(s)
- Xue Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jin-Yong Chung
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Usha Rai
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Pollreisz A, Messinger JD, Sloan KR, Mittermueller TJ, Weinhandl AS, Benson EK, Kidd GJ, Schmidt-Erfurth U, Curcio CA. Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy. Exp Eye Res 2017; 166:131-139. [PMID: 29066281 DOI: 10.1016/j.exer.2017.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
To assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer. Series of 249-499 sections containing 5-24 nuclei were examined per eye. Trained readers manually assigned boundaries of individual cells and x,y,z locations of M, L, and ML. A Density Recovery Profile was computed in three dimensions for M, L, and ML. The number of granules per RPE cell body in 16M, 32F, 76F, and 84M eyes, respectively, was 465 ± 127 (mean ± SD), 305 ± 92, 79 ± 40, and 333 ± 134 for L; 13 ± 9; 6 ± 7, 131 ± 55, and 184 ± 66 for ML; and 29 ± 19, 24 ± 12, 12 ± 7, and 7 ± 3 for M. Granule types were spatially organized, with M near apical processes. The effective radius, a sphere of decreased probability for granule occurrence, was 1 μm for L, ML, and M combined. In conclusion, SBFEM reveals that adult human RPE has hundreds of L, LF, and M and that granule spacing is regulated by granule size alone. When obtained for a larger sample, this information will enable hypothesis testing about organelle turnover and regulation in health, aging, and disease, and elucidate how RPE-specific signals are generated in clinical optical coherence tomography and autofluorescence imaging.
Collapse
Affiliation(s)
| | - Jeffrey D Messinger
- Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth R Sloan
- Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, United States; Computer Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | | | - Grahame J Kidd
- Renovo Neural Inc., Cleveland, OH, United States; Neurosciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | | | - Christine A Curcio
- Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
34
|
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2017; 61:146-168. [PMID: 29080498 DOI: 10.1016/j.neurobiolaging.2017.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023]
Abstract
In healthy beings, age is the ultimate reason of cellular malfunction and death. In the rat retina, age causes a functional decline and loss of specific neuronal populations. In this regard, controversial conclusions have been reported for the innermost retina. Here, we have studied the albino and pigmented retina for the duration of the rat life-span. Independent of age (21 days-22 months), the electroretinographic recordings and the volume of the retina and its layers are smaller in albinos. Functionally, aging causes in both strains a loss of cone- and rod-mediated responses. Anatomically, cell density decreases with age because the retina grows linearly with time; no cell loss is observed in the ganglion cell layer; and only in the pigmented rat, there is a decrease in cone photoreceptors. In old animals of both strains, there is gliosis in the superior colliculi and a diminution of the area innervated by retinal ganglion cells. In conclusion, this work provides the basis for further studies linking senescence to neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
35
|
Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017; 77:844-860. [PMID: 27907266 DOI: 10.1002/dneu.22473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The visual representation of the outside world relies on the appropriate connectivity between the eyes and the brain. Retinal ganglion cells are the sole neurons that send an axon from the retina to the brain, and thus the guidance decisions of retinal axons en route to their targets in the brain shape the neural circuitry that forms the basis of vision. Here, we focus on the choice made by retinal axons to cross or avoid the midline at the optic chiasm. This decision allows each brain hemisphere to receive inputs from both eyes corresponding to the same visual hemifield, and is thus crucial for binocular vision. In achiasmatic conditions, all retinal axons from one eye project to the ipsilateral brain hemisphere. In albinism, abnormal guidance of retinal axons at the optic chiasm leads to a change in the ratio of contralateral and ipsilateral projections with the consequence that each brain hemisphere receives inputs primarily from the contralateral eye instead of an almost equal distribution from both eyes in humans. In both cases, this misrouting of retinal axons leads to reduced visual acuity and poor depth perception. While this defect has been known for decades, mouse genetics have led to a better understanding of the molecular mechanisms at play in retinal axon guidance and at the origin of the guidance defect in albinism. In addition, fMRI studies on humans have now confirmed the anatomical and functional consequences of axonal misrouting at the chiasm that were previously only assumed from animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 844-860, 2017.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|