1
|
Straka H, Baker R, Gilland E. Rhombomeric organization of vestibular pathways in larval frogs. J Comp Neurol 2001; 437:42-55. [PMID: 11477595 DOI: 10.1002/cne.1268] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rhombencephalic subnuclei and projection pathways related to vestibular function were mapped in larval ranid frogs. The retention of overt postembryonic rhombomeres (r) allowed direct visualization of the locations of neurons retrogradely labeled with fluorescent dextran amines from the midbrain oculomotor complex, cerebellum, vestibular nuclei, and spinal cord. Oculomotor projecting vestibular neurons were mainly located in bilateral r1/2, ipsilateral r3, and contralateral r5-8, and spinal projecting vestibular neurons mainly in ipsilateral r4 and contralateral r5. Vestibular commissural neurons were located in r1-3 and r5-7 and were largely excluded from r4. Cerebellar projecting neurons included contralateral inferior olivary neurons in r8 and vestibular neurons in bilateral r6/7 and contralateral r1/2. Mapping these results onto adult anuran vestibular organization indicates that the superior vestibular nucleus derives from larval r1/2, the lateral vestibular nucleus from r3/4, and the major portions of the medial and descending vestibular nuclei from r5-8. The lateral vestibulospinal tract projects from an origin in r4, whereas a possible ascending tract of Deiters arises in r3. Rhombomere 5 contains a nuclear group that appears homologous to the tangential nucleus of fish, reptiles, and birds and thus likely serves gravistatic and linear vestibulomotor reflexes. Comparisons between frogs and other vertebrates suggest that vestibular neurons performing similar computational roles during head movements originate from the same segmental locations in different species.
Collapse
Affiliation(s)
- H Straka
- Department of Physiology, Ludwig-Maximilians-Universität München, 80336 Münich, Germany.
| | | | | |
Collapse
|
2
|
Sánchez-Camacho C, Marín O, Ten Donkelaar HJ, González A. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. J Comp Neurol 2001; 434:186-208. [PMID: 11331524 DOI: 10.1002/cne.1172] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study is the first of a series on descending supraspinal pathways in amphibians in which hodologic and developmental aspects are studied. Representative species of anurans (the green frog, Rana perezi, and the clawed toad, Xenopus laevis), urodeles (the Iberian ribbed newt, Pleurodeles waltl), and gymnophionans (the Mexican caecilian, Dermophis mexicanus) have been used. By means of retrograde tracing with dextran amines, previous data in anurans were largely confirmed and extended, but the studies in P. waltl and D. mexicanus present the first detailed data on descending pathways to the spinal cord in urodeles and gymnophionans. In all three orders, extensive brainstem-spinal pathways were present with only minor representation of spinal projections originating in forebrain regions. In the rhombencephalon, spinal projections arise from the reticular formation, several parts of the octavolateral area, the locus coeruleus, the laterodorsal tegmental nucleus, the raphe nucleus, sensory nuclei (trigeminal sensory nuclei and the dorsal column nucleus), and the nucleus of the solitary tract. In all species studied, the cerebellar nucleus and scattered cerebellar cells innervate the spinal cord, predominantly contralaterally. Mesencephalic projections include modest tectospinal projections, torospinal projections, and extensive tegmentospinal projections. The tegmentospinal projections include projections from the nucleus of Edinger-Westphal, the red nucleus, and from anterodorsal, anteroventral, and posteroventral tegmental nuclei. In the forebrain, diencephalospinal projections originate in the ventral thalamus, posterior tubercle, the pretectal region, and the interstitial nucleus of the fasciculus longitudinalis medialis. The most rostrally located cells of origin of descending spinal pathways were found in the suprachiasmatic nucleus, the preoptic area and a subpallial region in the caudal telencephalic hemisphere, probably belonging to the amygdaloid complex. Our data are discussed in an evolutionary perspective.
Collapse
Affiliation(s)
- C Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
3
|
Abstract
Neuron addition is one means whereby the nervous system can compensate for increased body size. Neurons can be added either by mitosis of stem cells or by late differentiation of committed precursors. Previously, the doubling of hind limb dorsal root ganglion (DRG) neurons in postmetamorphic bullfrogs (Rana catesbeiana) was found to occur in the absence of neuron proliferation (St. Wecker and Farel [1994] J. Comp. Neurol. 342:430-438). In the present study, we identify a population of cells in the DRGs of juvenile frogs that lack the appearance typical of sensory neurons yet are immunoreactive to a neuron-specific probe for neurofilament protein. These less differentiated (type-L neurons) could not be labeled retrogradely with horseradish peroxidase from the periphery or dorsal root. Despite their apparent immaturity, type-L neurons appear to have extended axons both centrally and toward the periphery, because axon number in dorsal roots and peripheral nerves was similar in juvenile and adult frogs. These findings are consistent with the existence in juvenile frogs of a population of incompletely differentiated DRG neurons that lack the physiological properties and appearance typical of mature neurons.
Collapse
Affiliation(s)
- M L Meeker
- Department of Physiology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
4
|
|
5
|
Muñoz A, Muñoz M, Gonzalez A, ten Donkelaar HJ. Evidence for an anuran homologue of the mammalian spinocervicothalamic system: an in vitro tract-tracing study in Xenopus laevis. Eur J Neurosci 1996; 8:1390-400. [PMID: 8758946 DOI: 10.1111/j.1460-9568.1996.tb01601.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence is presented for an anuran homologue of the mammalian spinocervicothalamic system. In vitro tract-tracing experiments with biotinylated dextran amine Xenopus laevis show that ascending spinal fibres from all levels of the spinal cord, passing via the dorsolateral funiculus, terminate in a cell area ventrolateral to the dorsal column nucleus. This cell area can be considered a possible homologue of the mammalian lateral cervical nucleus. After tracer applications to the ventral thalamus or to the torus semicircularis (both targets for somatosensory projections), the anuran lateral cervical nucleus was retrogradely labelled contralateral to the application sites. Tracer applications to the dorsolateral funiculus at the obex level and rostral spinal cord resulted in labelling of the cells of origin of the spinocervical tract. These were found, mainly ipsilaterally, in the ventral part of the dorsal horn, and were rather evenly distributed throughout the spinal cord. These data suggest the presence of an anuran homologue of the mammalian spinocervicothalamic system. A brief survey of the literature shows that such a system is much more common in vertebrates than previously thought.
Collapse
Affiliation(s)
- A Muñoz
- Department of Cell Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Barale E, Fasolo A, Girardi E, Artero C, Franzoni MF. Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles. J Comp Neurol 1996; 368:285-94. [PMID: 8725307 DOI: 10.1002/(sici)1096-9861(19960429)368:2<285::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ontogeny of the gamma-aminobutyric acid (GABA)-positive neurons in the brain of Xenopus laevis tadpoles was investigated by means of immunohistochemistry, using specific antibodies both against GABA and its biosynthetic enzyme, glutamate decarboxylase (GAD). The results obtained with the two antisera were comparable. The GABA system differentiates very early during development. At stages 35/36, numerous GABA-positive neurons were seen throughout the prosencephalon and formed two main bilateral clusters within the lateral walls of the forebrain that ran caudally toward the hindbrain. Other GABA-immunolabeled cell bodies, together with a conspicuous network of GABAergic fibers, were seen in the posterior hypothalamus. In the spinal cord, the lateral marginal zone was GABA-positive, as were Rohon-Beard neurons, interneurons, and Kolmer-Agdhur cells. A very rich GABA innervation was observed in the pars intermedia of the pituitary. At stage 50, plentiful immunopositive neurons and fibers were found in the telencephalic hemispheres, the diencephalon, and the mesencephalon (optic tectum and tegmentum). By stage 54, the number of GABA-immunoreactive neurons in the posterior hypothalamus had decreased, so that, at stage 58, there were very few GABA-labeled cell bodies in the dorsolateral walls of the infundibulum, despite a strong GABAergic innervation within the median eminence and the pars intermedia. From stage 58 to stage 66, the distribution pattern was very similar to that described in the adult X. laevis and in other amphibian species. These results point to transient GABA expression within the hypothalamus, possibly related to either 1) a naturally occurring cell death or 2) a phenotypic switch.
Collapse
Affiliation(s)
- E Barale
- Dipartimento di Biologia Animale, Università di Torino, Italy
| | | | | | | | | |
Collapse
|
7
|
Schmidt A, Roth G. Differentiation processes in the amphibian brain with special emphasis on heterochronies. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:83-150. [PMID: 8843653 DOI: 10.1016/s0074-7696(08)61985-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amphibians and caecilians exhibit a great variety of adult morphologies, life histories, and developmental strategies (biphasic development, direct development, viviparity, and neoteny). While early brain development and the differentiation of neural tissues in the three amphibian orders follow a basic pattern, differences exist in the onset and offset as well as the rate of growth and differentiation processes. These differences are described within a phylogenetic framework, and special emphasis is laid on the relationship between altered ontogenies and phylogenetic diversity. We concentrate on ontogenetic differentiation processes in the motor, olfactory, and visual system. We discuss the morphological consequences of secondary simplification of the brain in the context of paedomorphosis, which has happened several times independently among amphibians and consists in the abbreviation or truncation of late developmental processes. We deal with the cellular and molecular basis of brain development and the consequences for the adult nervous system in representative species of the three amphibian orders. Our analysis reveals that differences in brain morphology are largely due to heterochrony (i.e., the desynchronization of ontogenetic processes), a phenomenon that in turn is related to changes in genome sizes and life histories.
Collapse
|
8
|
Muñoz A, Muñoz M, González A, Ten Donkelaar HJ. Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis. J Comp Neurol 1995; 363:197-220. [PMID: 8642070 DOI: 10.1002/cne.903630204] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As part of a research program on the evolution of somatosensory systems in vertebrates, the dorsal column nucleus (DCN) was studied with (immuno)histochemical and tract-tracing techniques in anurans (the large green frog, Rana perezi, and the clawed toad, Xenopus laevis). The anuran DCN contains some nicotinamide adenine dinucleotide phosphate diaphorase-positive neurons, very little calbindin D-28k, and a distinct parvalbumin-positive cell population. The anuran DCN is innervated by primary and non-primary spinal afferents, by primary afferents from cranial nerves V, VII, IX, and X, by serotonin-immunoreactive fibers, and by peptidergic fibers. Non-primary DCN afferents from the spinal cord appear to arise throughout the spinal cord, but particularly from the ipsilateral dorsal gray. The present study focused on the efferent connections of the DCN, in particular the targets of the medial lemniscus. The medial lemniscus could be traced throughout the brainstem and into the diencephalon. Along its course, the medial lemniscus gives off collaterals to various parts of the reticular formation, to the octavolateral area, and to the granular layer of the cerebellum. At mesencephalic levels, the medial lemniscus innervates the lateral part of the torus semicircularis as well as various tegmental nuclei. A striking difference between the two species studied is that while in R. perezi medial lemniscal fibers do not reach the tectum mesencephali, in X. laevis, intermediate and deep tectal layers are innervated. Beyond the midbrain, both dorsal and ventral thalamic areas are innervated by the medial lemniscus. The present study shows that the anuran "lemniscal pathway" is basically similar to that of amniotes.
Collapse
Affiliation(s)
- A Muñoz
- Department of Cell Biology, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Swain GP, Ayers J, Selzer ME. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy. J Comp Neurol 1995; 362:453-67. [PMID: 8636461 DOI: 10.1002/cne.903620403] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The spinal projecting system of the sea lamprey (Petromyzon marinus) has been used extensively in studies of axonal regeneration in both larvae and adults. However, little is known about the changes that are undergone by this system during metamorphosis. In order to determine the developmental changes in the size of the descending spinal projection and in the morphology of its neurons, larval, transforming, and adult lamprey brains were labeled by retrograde transport of horseradish peroxidase (HRP) injected into the spinal cord at 25% of body length. Examination of brain wholemount preparations revealed that the total number of labeled neurons doubled during metamorphosis. Most of this increase could be explained by elongation of reticulospinal axons from the rostralmost segments of the spinal cord to locations caudal to the injection site. There were no additions or deletions of either identified reticulospinal neurons or of reticulospinal nuclear groups between the larval and the adult stages. The proportions of Müller and Mauthner cells that were labeled reached a maximum of 93% during the early stages of metamorphosis. Axons of these neurons are known to project almost the entire length of the cord, even in larvae. Therefore, the efficiency of retrograde transport appears to be greater during metamorphosis than during larval or adult stages. While changes in efficiency of retrograde transport could account for some of the apparent increase in reticulospinal neuron numbers between larvae and animals undergoing metamorphosis, this could not contribute to the further increase in the apparent size of the reticulospinal system in the adult, since efficiency of retrograde labeling in these animals was lower than that at earlier stages. With retrograde labeling, a significant increase was seen in the profusion of dendritic arborization of some Müller and Mauthner cells during the early stages of metamorphosis. This correlated with an increase in the incidence of extreme axonal die-back, as indicated by the presence of retraction bulbs within the brainstem. However, intracellular injection of Neurobiotin in untransected animals showed similar degrees of dendritic arborization at all examined stages of development. Therefore, the dendritic profusion did not reflect developmental changes in neuronal morphology but rather reflected an increased sensitivity to axotomy during metamorphosis. We conclude that, during the transformation of the lamprey from the large larval to the adult form, there is little change in either the size or the dendritic morphology of the identified giant reticulospinal neurons. With respect to the smaller reticulospinal neurons, the distance of projection of many of their axons increases during metamorphosis, but there is very little increase in the number of reticulospinal neurons.
Collapse
Affiliation(s)
- G P Swain
- Department of Biology and Marine Science Center, Northeastern University, East Point, Nahant, Massachusetts 01908, USA
| | | | | |
Collapse
|
10
|
González A, Marín O, Tuinhof R, Smeets WJ. Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. J Comp Neurol 1994; 346:63-79. [PMID: 7962712 DOI: 10.1002/cne.903460105] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To get more insight into developmental aspects of catecholamine systems in vertebrates, in particular anuran amphibians, these systems were studied immunohistochemically in embryos and larvae of Xenopus laevis and Rana ridibunda. Antisera against tyrosine hydroxylase (TH) and dopamine (DA) revealed that catecholamine systems are already present at early embryonic stages. The first dopamine group to be detected was found ventral to the central canal of the spinal cord of Xenopus, soon followed by DA cell groups in the posterior tubercle, the hypothalamic periventricular organ, the accompanying cell group of the periventricular organ, and the suprachiasmatic nucleus. Although weakly TH-immunoreactive cells were found in the olfactory bulb at about the same embryonic stages, DA immunoreactivity was not detected until premetamorphic stage 49. Dopamine cell groups in the caudal brainstem, midbrain, and pretectum appeared at late premetamorphic and prometamorphic stages, whereas the preoptic group was first observed at the metamorphic climax stage. Rana showed an almost similar timetable of development of catecholamine cell groups, except for the caudal brainstem group which was already present at the end of the embryonic period. When compared with previous studies by means of formaldehyde-induced fluorescence technique, it becomes clear that TH/DA immunohistochemistry enables an earlier detection of catecholamine cell groups and fiber systems in anuran amphibians. The present study also revealed that the DA-immunoreactive cells of the hypothalamic periventricular organ never stained with the TH antiserum during development, thus supporting their putatively DA accumulating nature. Another notable result is the site of origin and rather late appearance of the midbrain dopaminergic cell group. It is suggested that the latter cell group only partly corresponds to the ventral tegmental area and substantia nigra of amniotes.
Collapse
Affiliation(s)
- A González
- Departamento de Biologia Celular, Facultad de Biologia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Swain GP, Snedeker JA, Ayers J, Selzer ME. Cytoarchitecture of spinal-projecting neurons in the brain of the larval sea lamprey. J Comp Neurol 1993; 336:194-210. [PMID: 8245215 DOI: 10.1002/cne.903360204] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The descending spinal projecting system of the lamprey is of interest because it includes axons that activate swimming pattern generators and because regeneration of this system is involved in the behavioral recovery of lampreys following spinal transection. However, little is known about the true size of this projection and of the distribution of its terminations along the spinal cord. Brain neurons with spinal projections were studied in larval sea lampreys by using wholemount preparations labeled retrogradely with horseradish peroxidase (HRP) from spinal injections at 10%, 15%, 25%, 50%, 70%, and 75% of body length from the anterior end. Neurons projecting to different levels of the spinal cord were mapped. A large number of descending axons terminated within nine segments caudal to the last gill. The spinal projection system was divided into 10 bilateral groups based on cytoarchitectural landmarks. All of the lateral nuclear groups had contralateral spinal projections. In addition to the 12 pairs of Müller cells, the pair of Mauthner cells, and the pair of auxiliary Mauthner cells described by previous authors, the study revealed four pairs of smaller neurons that were individually identifiable.
Collapse
Affiliation(s)
- G P Swain
- Department of Biology and Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
| | | | | | | |
Collapse
|
12
|
Múñoz A, de Boer-Van Huizen R, Bergervoet-Vernooy I, ten Donkelaar HJ. Early development of dorsal column-medial lemniscal projections in the clawed toad, Xenopus laevis. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:291-4. [PMID: 7691436 DOI: 10.1016/0165-3806(93)90016-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Xenopus laevis fluorescent dextran amines were applied to study the development of the dorsal column-medial lemniscal projection: rhodamine dextran amine was applied at the mesodiencephalic border to retrogradely label the cells of origin of the medial lemniscus in the dorsal column nucleus (DCN); fluorescein dextran amine to the spinal cord to anterogradely label the primary afferent projections to the DCN. The first mesodiencephalic projections were found at stage 51, i.e. almost immediately after spinal afferent fibers had reached the DCN.
Collapse
Affiliation(s)
- A Múñoz
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Abstract
Onset and development of descending pathways to the rat embryonic spinal cord was examined by the use of retrograde transport of horseradish peroxidase (HRP). HRP was injected in the lower thoracic segments of the spinal cord of embryos ranging in age from embryonic day (E)14.5 to E20.5. A small number of labelled cells were found in the brain stem nuclei on E14.5: they were located in medullary as well as pontine reticular formation, lateral vestibular nucleus and interstitial nucleus of the medial longitudinal fasciculus. By E15.5 labelled cells were observed in the reticular formation of the caudal part of the medulla oblongata, medullary raphe nuclei, locus coeruleus, subcoeruleus nucleus, Barrington's nucleus and central gray of the midbrain. Cells in the red nucleus and in the nucleus of the solitary tract were labelled by E 16.5 and E17.5, respectively. Thereafter, labelled cells were first found in a few other nuclei: the gracile nucleus on E19.5 and the paraventricular nucleus on E20.5. The present study demonstrated that all the major supraspinal inputs except corticospinal fibers project to the lower thoracic spinal cord by E20.5.
Collapse
Affiliation(s)
- N Kudo
- Department of Physiology, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
14
|
Auclair F, Bélanger MC, Marchand R. Ontogenetic study of early brain stem projections to the spinal cord in the rat. Brain Res Bull 1993; 30:281-9. [PMID: 8457877 DOI: 10.1016/0361-9230(93)90256-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In an attempts to describe the early development of the brain stem-spinal projections, we implanted DiI crystals at the C3 level of the spinal cord of 13- and 14-day fixed embryos. After a diffusion period of 2 to 4 months, neurons of the rhombencephalic reticular formation were retrogradely labeled by the tracer. This group of neurons was situated ventromedially in the tegmentum. Their axons coursed into the ventral marginal layer at bulbar levels and entered the ventral funiculus when reaching the spinal cord. Neurons of the lateral vestibular nucleus were also labeled and gave rise to descending fibers that gradually moved medially and entered the spinal cord in the ventral funiculus. In the mesencephalon, labeled cell bodies of the interstitial nucleus of Cajal (InC) were found lying ventrally in the tegmentum, at the rostral end of the medial longitudinal fasciculus (mlf), in which their axons coursed. Also, in the midbrain, several cells lying dorsal to the InC, with axons descending in the lateral tegmentum, were tentatively identified as part of the mesencephalic reticular formation.
Collapse
Affiliation(s)
- F Auclair
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | | | |
Collapse
|
15
|
Martin GF, Pindzola RR, Xu XM. The origins of descending projections to the lumbar spinal cord at different stages of development in the North American opossum. Brain Res Bull 1993; 30:303-17. [PMID: 8457879 DOI: 10.1016/0361-9230(93)90258-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have employed the retrograde transport of fast blue (FB) to identify the origins of descending projections to the lumbar cord of the opossum from postnatal day (PD)1, 12-13 days after conception, to maturity. When FB injections were made into the lumbar cord at PD1, supraspinal labeling was sparse and limited to the hypothalamus, the reticular formation, the coeruleus complex, the caudal raphe, and, in one case, the interstitial nucleus of the medial longitudinal fasciculus and the lateral vestibular nucleus. Only a few propriospinal neurons were labeled at cervical and thoracic levels. By PD3, however, supraspinal and propriospinal labeling was abundant and present in most of the areas labeled in the adult animal. A notable exception was the red nucleus which was not labeled until approximately PD10. Our results have been compared with those described in other species and discussed in light of their relevance to the development of descending control over hindlimb movement and developmental plasticity of descending spinal pathways.
Collapse
Affiliation(s)
- G F Martin
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, College of Medicine, Columbus 43210
| | | | | |
Collapse
|
16
|
Wang XM, Xu XM, Qin YQ, Martin GF. The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 68:203-16. [PMID: 1382891 DOI: 10.1016/0165-3806(92)90062-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have used the retrograde transport of Fast blue (FB) to study the origins of supraspinal projections to the lumbar and cervical spinal cord at different stages of development in the Brazilian, short-tailed opossum, Monodelphis domestica. Monodelphis was chosen for study because its young are born in a very immature state, 14-15 days after copulation, making it possible to manipulate its nervous system in an embryonic state without intra-uterine surgery. When injections of FB were made into the lumbar cord at postnatal day (PD) 1, neurons were labeled within several areas of the reticular formation (the retroambiguus nucleus, the ventral and dorsal reticular nuclei of the medulla, the gigantocellular reticular nucleus, the lateral paragigantocellular reticular nucleus, and the pontine reticular nucleus), the presumptive coeruleus complex, and the lateral vestibular nucleus. In many cases, labeled neurons were also found within the caudal raphe and the presumptive interstitial nucleus of the medial longitudinal fasciculus. The results of immunocytochemical studies provided evidence for catecholaminergic and serotoninergic neurons in the brainstem at PD1 and for axons of both phenotypes in the spinal cord. By PD3, labeled neurons were found within the ventral gigantocellular and ventral pontine nuclei of the reticular formation, the spinal trigeminal nucleus, and the presumptive paraventricular nucleus of the hypothalamus. When injections were made at PD4, neurons were also labeled within the medial and inferior vestibular nuclei, the red nucleus, the mesencephalic nucleus of the trigeminal nerve, the presumptive nucleus of Edinger-Westphal and the lateral hypothalamus. By at least PD7, the pattern of supraspinal labeling was similar to that obtained at older ages and in the adult animal. When FB was injected into the cervical cord at PD1, neurons were labeled in all of the areas labeled by lumbar injections at the same age and in larger numbers. In addition, labeled neurons were found within the ventral gigantocellular and spinal trigeminal nuclei. When cervical injections were made at PD15, labeled neurons were found within the deep cerebellar nuclei and amygdala and by PD17 they were also present within the superior colliculus and cerebral cortex. In some cases, cortical labeling was present outside the areas labeled by comparable injections in adult animals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- X M Wang
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, College of Medicine, Columbus 43210
| | | | | | | |
Collapse
|
17
|
Okado N, Sako H, Homma S, Ishikawa K. Development of serotoninergic system in the brain and spinal cord of the chick. Prog Neurobiol 1992; 38:93-123. [PMID: 1736325 DOI: 10.1016/0301-0082(92)90036-e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(1) Development of serotonin positive cells and fibers was immunohistochemically studied by the use of an antibody against serotonin. (2) Serotoninergic neurons were first observed in the immature rohmbencephalon raphe nuclei on embryonic day (E)4, where two clusters of serotonin positive neurons were located: one observed at the rostral part of the rohmbencephalon corresponding to the dorsal raphe nuclei had many serotonin positive cells: the other located at the caudal part of the rohmbencephalon corresponding to the medullary raphe nuclei of the adult animals had only a small number of serotoninergic cells. (3) By E8 the number of serotonin positive cells in the brain stem increased, and virtually all the raphe nuclei found in an adult animal were located. (4) Serotonin positive fibers in the marginal layer reached up to the diencephalon and telencephalon on E6 and E8, respectively. (5) Serotonin positive cells were found beside the midline regions in the ventral part of the spinal cord of the embryonic as well as posthatching chick. (6) Because almost all the serotoninergic fibers in the spinal cord originated from the brain stem raphe nuclei, propriospinal serotonin positive cells were considered as phylogenetic vestiges. (7) Serotoninergic fibers were first found in the marginal layer of the cervical and lumbar spinal cord on E6 and E8, respectively. (8) There was a waiting period of a few days before they penetrated into the mantle layer. (9) Terminal arbolization of the serotoninergic fibers started from late embryonic periods (E16 less than), and was maximized within one week of hatching. (10) Thereafter the density of serotonin positive fibers decreased in all the regions of the spinal cord. (11) Developmental changes of the density of serotonin determined with a high performance liquid chromatography were the same as those determined through immunohistochemistry. Namely the density of serotonin increased linearly from E6 to hatching period, and reached the maximum value one week posthatching. (12( The density of the serotonin in the adult spinal cord was about half of the maximum value. (13) It is to say that the densities of serotonin and serotoninergic fibers transiently increased around one week posthatching. (14) Following the transient increase serotoninergic fibers were eliminated from the neuropil, the fibers were localized in the specific regions of the motor nucleus: motor neuron pools of extensor muscles of the hip joint in the lumbosacral spinal cord.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Okado
- Department of Anatomy, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
18
|
Masino T, Grobstein P. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway. Exp Brain Res 1989; 75:245-64. [PMID: 2785926 DOI: 10.1007/bf00247932] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the frog, identical orienting deficits, involving a failure to turn toward stimuli in the ipsilateral hemifield, can be produced by small white matter lesions either in the caudal mesencephalon (Kostyk and Grobstein, 1987a) or in the caudal medulla (Masino and Grobstein, 1989). These findings suggest that descending turn signals may run uninterrupted from the midbrain to the spinal cord, and that something other than tectospinal axons may carry such signals. We here report studies to determine whether there is a tecto-recipient structure whose axons pass through the known critical lesion sites in the caudal mesencephalon and medulla, and whether damage to such a structure, sparing tectospinal pathways, produces an orienting deficit. Horseradish peroxidase (HRP) was applied to behaviorally effective lesions in the caudal medulla and the resulting labelling patterns compared with those resulting from application of HRP to nearby but behaviorally ineffective lesions at the same rostrocaudal level. A column of large cells in the ventrolateral midbrain tegmentum (including nMLF as well as parts of AV and PV) was robustly labelled in all effective lesion cases, and less frequently labelled in ineffective cases. A quantitative analysis showed labelling in this region to be more highly correlated with the existence of a behavioral deficit than that in any other brain region. Reconstructions of single retrogradely labelled cells in the rostral part of the column (nMLF) showed that they have dendrites in a position to receive tectal input and axons which pass through the critical lesion sites in both the caudal mesencephalon and the caudal medulla. Tegmental lesions, sparing the tectospinal tracts, produced ipsilateral turning deficits in cases where the large cell column was completely removed but did not when the column was spared. The findings support the hypothesis that tectofugal signals involved in orienting turns descend uninterrupted to the spinal cord on something other than tectospinal axons, and suggest that the critical projections derive from the large cell column of the ventral tegmentum.
Collapse
Affiliation(s)
- T Masino
- Department of Anatomy, University of Chicago, IL 60637
| | | |
Collapse
|
19
|
Nudo RJ, Masterton RB. Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 1988; 277:53-79. [PMID: 3198796 DOI: 10.1002/cne.902770105] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In order to estimate the qualitative commonalities and range of variation among major descending spinal pathways relevant to mankind's ancestral lineage, the supraspinal cell groups originating fibers descending directly to the spinal cord were examined in 22 mammalian species. In a standardized retrograde tract-tracing procedure, flakes of raw HRP were applied directly to the freshly cut fibers of the spinal cord after it had been hemisected at the C1-C2 junction. After a 72-hour survival period, brain and spinal cord tissues were processed by conventional HRP-processing techniques. This procedure was performed on 94 individual animals. Of this total, 41 individual cases were eliminated by a rigorous culling procedure. The results are based on 53 individuals representing 15 species selected for their successive kinship with mankind and seven species in two other lineages selected for the convergence of their visual or sensorimotor systems with anthropoids. The 22 species represent 19 genera, 14 families, eight orders, and two subclasses of Mammalia. The results show that at least 27 supraspinal cell groups, each containing intensely labeled cells, can be readily identified in each of the species. Despite vast quantitative differences in cell number and cell size, this qualitative uniformity among the relatively large number of diverse taxa suggests that the same pathways were probably present in the extinct ancestors throughout mankind's mammalian lineage and are probably still present in extant viviparous mammals as well. If so, these pathways are as old in phylogenetic history as the last common ancestor of marsupial and placental mammals--dating from the late Jurassic to early Cretaceous, perhaps 145-120 million years ago. Further comparison of the results with similar experimental findings in members of other vertebrate classes supports the notion that several of these same pathways can be traced to even more remote ancestry, with some possibly as old as the entire vertebrate subphylum--dating from the early Devonian or before, perhaps 430 million years ago. Within mankind's ancestral lineage, from the appearance of vertebrates to the appearance of mammals, there seems to have been an irregular stepwise augmentation of the set of descending pathways until the full mammalian complement was finally attained with the appearance of the corticospinal tract.
Collapse
Affiliation(s)
- R J Nudo
- Department of Psychology, Florida State University, Tallahassee 32306-1051
| | | |
Collapse
|
20
|
Abstract
Horseradish peroxidase was used to describe the positions and approximate numbers of neurones with axons that descend to the lumbar spinal cord in normal axolotls and axolotls whose spinal cord had been transected 3-23 months previously. Three to 4 months after the transection approximately 10% of the axons had grown across the cut and returned to the lumbar spinal cord whereas 23 months after the transection the number and distribution of these cells were approaching those of the controls.
Collapse
Affiliation(s)
- J D Clarke
- Department of Anatomy and Human Biology, King's College London, U.K
| | | | | |
Collapse
|
21
|
Glover JC, Petursdottir G. Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo. J Comp Neurol 1988; 270:25-38, 60-1. [PMID: 3372737 DOI: 10.1002/cne.902700104] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The organization of the axonal pathways of reticulospinal and vestibulospinal projections in the 11-day chicken embryo was ascertained through retrograde tracing experiments. An in vitro preparation of the brainstem and cervical spinal cord facilitated precisely localized tracer applications. Single- and double-labelling experiments involving high cervical injections of tracers in combination with selective lesions defined the specific pathways by which different brainstem neurons project to the spinal cord. Coherent, and in many cases distinct, groups of reticulospinal and vestibulospinal neurons could thus be identified on the basis of their position and projection pathway. The organization of these groups and their projections in the 11-day chicken embryo is similar to that in avian and other vertebrate adults and therefore serves as a reference point for studies of pathfinding by bulbospinal axons during early development.
Collapse
Affiliation(s)
- J C Glover
- Institute of Physiology, University of Oslo, Norway
| | | |
Collapse
|
22
|
Prasada Rao PD, Jadhao AG, Sharma SC. Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 1987; 265:96-108. [PMID: 2826554 DOI: 10.1002/cne.902650107] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sources of descending spinal tracts in the goldfish, Carassius auratus, were visualized by retrograde transport of horseradish peroxidase (HRP) administered to the hemisected spinal cord. In the diencephalon, HRP-positive neurons were identified in the nucleus preopticus magnocellularis pars magnocellularis and ventromedial nucleus of the thalamus of the ipsilateral side. In the mesencephalic tegmentum, a few somata of the contralateral nucleus ruber and several ipsilateral neurons of the nucleus of the median longitudinal fasciculus were labeled. The reticular formation of the rhombencephalon was the major source of descending afferents to the spinal cord. A larger number of neurons were retrogradely labeled in the ipsilateral superior, middle, and inferior nuclei than in the contralateral nuclei. A few raphe neurons and the contralateral Mauthner neuron were also HRP-positive. The octaval area showed retrogradely labeled neurons in the anterior, magnocellular, descending, and posterior octaval nuclei of the ipsilateral side. A large number of neurons in the facial lobe and a few somata located adjacent to the descending trigeminal tract were labeled on the ipsilateral side. The pattern of descending spinal projections in goldfish is comparable to that of tetrapods and suggests that the spinal tracts have originated quite early in the course of vertebrate evolution.
Collapse
Affiliation(s)
- P D Prasada Rao
- Department of Ophthalmology, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|
23
|
Lamborghini JE. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J Comp Neurol 1987; 264:47-55. [PMID: 3680623 DOI: 10.1002/cne.902640105] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rohon-Beard neurons are primary sensory cells located in the spinal cord of embryonic lower vertebrates. The kinetics of their normal, gradual, but complete disappearance in Xenopus tadpoles has been followed. Levels of acid phosphatase activity, a common histochemical correlate of cell death, were assayed and found to increase at the time of onset of disappearance of Rohon-Beard cells. Ultrastructural examination revealed the presence of numerous secondary lysosomes, swelling of endoplasmic reticulum and mitochondria, and a decrease in nuclear density. The disappearance of Rohon-Beard neurons may be attributed to autophagic cell death involving lysosomal acid hydrolases. This process begins only a few days after the maturation of voltage- and neurotransmitter-dependent membrane conductances and the electrical uncoupling of these neurons. The loss of Rohon-Beard neurons in embryos whose development was arrested by crowding was appropriate for the developmental stage of the animals rather than their chronological age.
Collapse
Affiliation(s)
- J E Lamborghini
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
24
|
Abstract
Motoneuron number in the lumbar lateral motor column of the bullfrog, Rana catesbeiana, was investigated through the course of premetamorphic development and in postmetamorphic frogs. Motoneurons were distinguished on the basis of histological characteristics into two classes, type L (less differentiated) and type M (more differentiated). The number of type L motoneurons on each side showed a precipitous decline between stages V and VI (6,300 to 2,500) and a slower rate of loss until stage XI (to 550). Type M motoneurons increased in number between stages V and VII (560 to 2,775) and declined precipitously between stages VII and VIII to a value similar to that of juvenile frogs (1,100). These changes in motoneuron number do not correspond to the formation of myotubes or to the appearance of contractile properties in hindlimb muscles. The development of myotubes in the hindlimb occurs only after total motoneuron number has declined by 35%. Similarly, hindlimb muscle contraction develops after the early decline in type L motoneuron number and is restricted to proximal thigh at the peak of type M motoneuron number. In postmetamorphic frogs, a weak (r = 0.44) but statistically significant correlation was found between type M motoneuron number and body length. In the largest frogs (greater than 15 cm body length), 1262 +/- 157 (mean +/- s.d.) motoneurons were present, whereas the smallest frogs (less than 5 cm body length) had 1099 +/- 98 motoneurons. These results are not consistent with previous findings that the variance of motoneuron number among small frogs is greater than that among larger frogs. The present results are thus inconsistent with explanations of size-related differences in motoneuron number that are based on selection of small frogs with greater number of motoneurons for survival. The increase in motoneuron number may be due to a slow addition of newly born motoneurons to the LMC or to the differentiation of existing motoneurons. The latter possibility is supported by the finding that the number of presumptive type L profiles is less in larger frogs.
Collapse
|
25
|
Martin GF, Cabana T, Hazlett JC, Ho R, Waltzer R. Development of brainstem and cerebellar projections to the diencephalon with notes on thalamocortical projections: studies in the North American opossum. J Comp Neurol 1987; 260:186-200. [PMID: 3038968 DOI: 10.1002/cne.902600204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The North American opossum is born in a very immature state, 12 days after conception, and climbs into an external pouch where it remains attached to a nipple for an extended period of time. We have taken advantage of the opossum's embryology to study the development of brainstem and cerebellar projections to the diencephalon as well as the timing of diencephalic projections to somatosensory motor areas of neocortex. The techniques employed included immunocytochemistry for serotonin, the retrograde and orthograde transport of wheat germ agglutinin conjugated to horseradish peroxidase, and the selective impregnation of degenerating axons. Our results suggest that serotoninergic axons, presumably from the dorsal raphe and superior central nuclei, are present in the diencephalon at birth. Axons from the bulbar reticular formation, the vestibular complex, the trigeminal sensory nuclei, and the dorsal column nuclei reach at least mesencephalic (and probably diencephalic) levels by postnatal day (PND) 3, whereas those from the cerebellar nuclei may not grow into comparable levels until PND 5. The dorsal column and cerebellar nuclei innervate the ventral nuclei of the thalamus by estimated postnatal day (EPND) 17 and all of the diencephalic nuclei supplied in the adult animal by EPND 26. Diencephalic axons enter ventrolateral (face) areas of presumptive somatosensory motor cortex by PND 12, but do not reach dorsomedial (limb) regions until EPND 21. At both ages, diencephalic axons are limited to the cortical subplate and marginal zone; they do not innervate an identifiable internal granular layer until considerably later. Our results suggest that axons from the brainstem and cerebellum grow into the diencephalon early in development, but that they do not influence the cerebral cortex until relatively late. When the results of the present study are compared with those reported previously on the development of ascending spinal (Martin et al., '83) and corticofugal (Martin et al., '80; Cabana and Martin, '85b,c) projections, it appears that specific components of major somatosensory and motor circuits develop according to different timetables.
Collapse
|
26
|
Campbell HL, Beattie MS, Bresnahan JC. Circumferential cells of the developing Rana catesbeiana lumbar spinal cord. ANATOMY AND EMBRYOLOGY 1987; 176:155-63. [PMID: 2441625 DOI: 10.1007/bf00310048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neural elements in the lumbar enlargement of the developing Rana catesbeiana spinal cord were labelled by placing chips of dessicated horseradish peroxidase (HRP) into various lesions of the spinal cord. Of the elements labelled in the lumbar enlargement, a population of cells circumjacent to the gray matter was seen to be distinct from all others on the basis of their morphology, position and their putative embryonic origin. One cell type not previously described was a large circumferential cell (LCC) with primary processes completely circumscribing the gray matter. The ventral process crosses the midline and ascends or descends in the ventral funiculus. The dorsal primary process was observed to extend to the midline and turn ipsilaterally in a rostro-caudal direction in the dorsal funiculus. LCC's were present at early stages of larval development (stage III, Taylor and Kollros 1946) but could not be labelled in juvenile frogs. LCC's were only observed in the lumbar enlargement and could only be labelled through HRP applications at that level. They receive abundant synaptic input from the ipsilateral lateral funiculus. Possible roles for the LCC in the early function and development of the ranid lumbar spinal cord are discussed.
Collapse
|
27
|
Electrophysiological analysis of the organization of somatosensory thalamic inputs in the frog. NEUROPHYSIOLOGY+ 1987. [DOI: 10.1007/bf01057822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Bryz-Gornia WF, Stelzner DJ. Ascending tract neurons survive spinal cord transection in the neonatal rat. Exp Neurol 1986; 93:195-210. [PMID: 3732459 DOI: 10.1016/0014-4886(86)90159-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Retrograde axonal transport was used to determine which ascending nerve tracts from the lumbosacral spinal cord are present in the cervical spinal cord of the newborn rat and if their cell bodies survive axotomy. A pledget of true blue was applied to a low cervical spinal transection in the newborn rat (N = 4). After a 5-day survival period, neurons were labeled in the laminae of origin of all ascending nerve tracts throughout the lumbosacral spinal cord. Neurons labeled in the same way survived for at least 1 month postoperatively when the spinal cord was transected at a midthoracic level at 5 days of age (N = 4). No neurons in the lumbosacral spinal cord were labeled if the midthoracic spinal cord was transected at the same time as application of the dye to cervical spinal cord (N = 2). Therefore, neurons labeled with true blue from cervical spinal cord during the neonatal period are likely to have been axotomized by thoracic injury made at 5 days of age. Three months after midthoracic spinal transection of newborn rats, HRP was injected or a pledget was applied to the first spinal segment caudal to this lesion (N = 8). The same population of neurons was labeled as in adult rats receiving application of HRP to an acute midthoracic spinal transection (N = 4). Neurons were seldom labeled in adult rats in which HRP was injected and ascending nerve tract axons not damaged (N = 4). These results suggest that most ascending nerve tract axons are present in cervical spinal cord during the neonatal period (by 4 to 5 days of age).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
29
|
Ronan MC, Northcutt RG. The origins of descending spinal projections in lepidosirenid lungfishes. J Comp Neurol 1985; 241:435-44. [PMID: 4078041 DOI: 10.1002/cne.902410404] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The origins of descending spinal projections in the lepidosirenid lungfishes were identified by retrograde transport of horseradish peroxidase (HRP) introduced into the rostral spinal cords of juvenile African (Protopterus annectans and Protopterus amphibians) and South American (Lepidosiren paradoxa) lungfishes. Standard HRP histochemistry revealed retrogradely labeled neurons in the nucleus of the medial longitudinal fasciculus, midbrain tegmentum, red nucleus, optic tectum, mesencephalic trigeminal nucleus, granule cell layer of the cerebellum, superior, middle, and inferior medullary reticular nuclei, magnocellular and descending octaval nuclei, region of the descending trigeminal tract, solitary complex, and the margins of the spinal gray matter anterior to the spinal HRP implant. A small number of retrogradely labeled neurons were also present in the ventral thalamus of Protopterus. A descending spinal projection from the forebrain was not evident in either genus of lepidosirenid lungfishes. The presence of projections to the spinal cord from the diencephalon, medial reticular formation of the midbrain and medulla, octaval (vestibular) nuclei, solitary complex, and probable nucleus of the descendin trigeminal tract in lungfishes and their overall similarity to comparable projections in other vertebrates suggest that these pathways are among those representative of the primitive pattern of descending spinal projections in vertebrates.
Collapse
|
30
|
Jacobson M, Huang S. Neurite outgrowth traced by means of horseradish peroxidase inherited from neuronal ancestral cells in frog embryos. Dev Biol 1985; 110:102-13. [PMID: 4007259 DOI: 10.1016/0012-1606(85)90068-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Outgrowing neurites in Xenopus embryos were labeled with horseradish peroxidase which had been injected into a single blastomere at the 32-cell stage and had been inherited by all the descendants, including neurons. Neurite outgrowth was traced from labeled trigeminal ganglion cells and most or all types of neurons present in the spinal cord at embryonic stages 20-30: primary motoneurons, commissural, dorsal longitudinal, ventral longitudinal, and Rohon-Beard neurons. All types of nerve fibers grew by the most direct pathway, apparently without errors of initial outgrowth, pathway selection, or target selection. An initial transient phase of outgrowth of filopodial processes from neuronal cell bodies and shafts of short neurites was observed which disappeared after further elongation of the neurites. The first pioneer fibers grew out from all types in a 2-hr period, from stage 20 to 22, and these fibers arrived at the targets within 3.5 hr after initial outgrowth. Additional fibers grew later in contact with the pioneers to form fascicles. Nerve fibers elongated without branching until they neared or contacted their targets. The rate of elongation at 20 degrees C was 30-75 micron/hr. The rapid, unbranched, error-free initial outgrowth and elongation of neurites to their targets is discussed in relation to theories of development of nerve pathways.
Collapse
|
31
|
Liuzzi FJ, Beattie MS, Bresnahan JC. The development of the relationship between dorsal root afferents and motoneurons in the larval bullfrog spinal cord. Brain Res Bull 1985; 14:377-92. [PMID: 3873979 DOI: 10.1016/0361-9230(85)90198-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The relationship of dorsal root afferents to motoneuron somata and dendrites was studied by labelling dorsal and ventral roots of the tadpole lumbar enlargement with HRP at different stages of hindlimb development. Procedures were used which allowed for sequential light and electron microscopic analysis to determine whether close appositions between labelled elements represented synaptic contacts. Lateral motor column (LMC) motoneuron dendrites grow first into the lateral funiculus, and later begin arborizing within the spinal gray, concurrent with the arrival of developing dorsal root afferent fibers. Mature-appearing synaptic contacts between dorsal root afferents and motoneuron dendrites are established first on distal dendrites, and are observed on progressively more proximal dendrites as hindlimb development proceeds. Migrating motoneurons were also labelled in some animals. Distinct dorsal and ventral migratory pathways were noted; cells migrating dorsally were contacted by developing dorsal root afferents. Migrating motoneurons were associated with radially oriented processes, and were often closely apposed to other cells. The coincident development of dorsal root projections and the motoneuron dendrites which these fibers innervate in the adult, as well as the interaction between these two systems during cell migration, suggest that these two systems may be interdependent in establishing their normal relationship during development.
Collapse
|
32
|
Okado N, Oppenheim RW. The onset and development of descending pathways to the spinal cord in the chick embryo. J Comp Neurol 1985; 232:143-61. [PMID: 3973087 DOI: 10.1002/cne.902320202] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ontogenetic development of afferent (supraspinal and propriospinal) as well as efferent (ascending) fiber connections of the spinal cord was examined following the injection of horseradish peroxidase (HRP) or wheat germ agglutinin HRP (WGA-HRP) into the cervical and lumbar spinal cords (or brains) of embryos ranging in age from 4 to 14 days of incubation. A few cells were first reliably retrogradely labelled in the pontine reticular formation on embryonic day (E) 4 and E5 following the injection of WGA-HRP into the cervical and lumbar spinal cord, respectively. Propriospinal projections to the lumbar spinal cord, originating from brachial spinal cord, were found by E5, and from the cervical spinal cord by E5.5. Ascending fibers arising from neurons in the lumbar spinal cord could be followed to rostral mesencephalic levels in E5 embryos. Thus, the earliest supraspinal, propriospinal, and ascending fiber connections appear to be formed almost simultaneously. Retrogradely labelled cells were found in the raphe, reticular, vestibular, interstitial, and hypothalamic nuclei in E5.5 embryos following lumbar injections of WGA-HRP. Except for neurons in cerebellar nuclei, all the cell groups of origin that project to the cervical spinal cord of posthatching chicks were also retrogradely labelled by E8. There was a delay in the time of appearance of the projections from various regions of the brain stem to the lumbar versus the cervical spinal cord, ranging from 0.5 to 7 days, but typically of about 3 days duration. A large number of cells located in the ventral hypothalamic region, just dorsal to the optic chiasma, were found to be labelled following cervical HRP injection between E6 and E10. These cells may represent transient projections that are present only during embryonic stages since no labelled cells were found in this region in the newly-hatched chick.
Collapse
|
33
|
Nordlander RH, Baden ST, Ryba TM. Development of early brainstem projections to the tail spinal cord of Xenopus. J Comp Neurol 1985; 231:519-29. [PMID: 3968253 DOI: 10.1002/cne.902310409] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Horseradish peroxidase (HRP) was used to determine the sequence in which axons from different brain neurons reach the tail spinal cord during embryonic and early larval development of Xenopus laevis. Brainstem cells of several classes project to the tail at these stages: mesencephalic reticulospinal neurons of the nucleus of the medial longitudinal fasciculus, a variety of other reticulospinal neurons, vestibulospinal neurons, and a group of median basal cells which may be raphe neurons. Among the reticulospinal neurons the paired Mauthner cells are the most prominent. They and caudally situated reticular neurons are the first to label with HRP applied to the tail spinal cord (stage 37). Vestibulospinal and other reticular neurons begin to label next (stage 39), followed by mesencephalic and then median basal neurons (stage 41). Except for the Mauthner cells, the number of labeled cells belonging to each neuron class increases gradually as development proceeds.
Collapse
|
34
|
van Mier P, ten Donkelaar HJ. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis. ANATOMY AND EMBRYOLOGY 1984; 170:295-306. [PMID: 6335361 DOI: 10.1007/bf00318733] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The early development of descending pathways from the brain stem to the spinal cord has been studied in Xenopus laevis tadpoles. The relatively protracted development of this permanently aquatic amphibian as well as its transparency during development make this animal particularly attractive for experimental studies. Between the 5th and 10th myotome the spinal cord was crushed with a thin needle and dry horseradish peroxidase (HRP) crystals were applied. After a survival time of one day the tadpoles were fixed and the brain and spinal cord were stained as a whole according to a modification of the heavy metal intensification of the DAB-reaction, cleared in cedarwood oil and examined as wholemounts. At stage 28 (the neural tube has just closed) the first brain stem neurons projecting to the spinal cord were found in what appear to be the nucleus reticularis inferior and -medius. At this stage of development the first, uncoordinated swimming movements can be observed. At stage 30/31 (the tailbud is visible) both Mauthner cells project to the spinal cord as well as the interstitial nucleus of the fasciculus longitudinalis medialis situated in the mesencephalon. Towards stage 35/36 (the tail is now clearly visible), a more extensive reticulospinal innervation of the spinal cord appears, now including cells of the nucleus reticularis superior. At this stage also the first vestibulospinal and raphespinal projections were found. At stage 43/44 (the tadpoles have now a well-developed tail) the pattern of reticulospinal projections appears to be completed with the presence of labeled neurons in the nucleus reticularis isthmi. From stage 43/44 on, the number of HRP-positive cells is steadily increasing. At stage 47/48, when the hindlimb buds appear, the descending projections to the spinal cord are comparable with the adult situation except for the absence of a rubrospinal and a hypothalamospinal projection. The observations demonstrate that already very early in development reticulospinal fibers and, somewhat later, Mauthner cell axons and vestibulospinal fibers innervate the spinal cord. Furthermore, a caudorostral gradient appears to exist with regard to the development of descending projections to the spinal cord. However, the interstitial nucleus of the fasciculus longitudinalis medialis forms an exception to this rule.
Collapse
|
35
|
Abstract
To assay the axon tract organizing capabilities of different regions of the vertebrate CNS, Mauthner axons were redirected by grafting supernumerary hindbrains in Xenopus embryos. The 63 redirected Mauthner axons thus produced included donor axons projecting into the host CNS and host axons that grew through the graft or that were redirected in the host CNS. Two major phenomena were observed. Caudal to the optic chiasm, the Mauthner axons followed a single ipsilateral stereotyped route--the basal substrate pathway--extending in the ventral and ventrolateral marginal zone from the diencephalon to the caudal spinal cord. In contrast, rostral to the optic chiasm, these same Mauthner axons followed variable ipsilateral and contralateral routes. Even pairs of Mauthner axons entering the optic chiasm side-by-side eventually followed different routes in normal forebrains. The contrasting behaviors of the Mauthner axons growing in the rostral diencephalon and telencephalon and of the same Mauthner axons growing elsewhere suggest that there are differences in the effective guidance cues between these two regions of the developing brain. This is consistent with other types of neuroanatomical and neuroembryological evidence indicating a fundamental division between the rostral and the caudal diencephalon.
Collapse
|
36
|
Newman DB, Cruce WL, Bruce LL. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems. J Comp Neurol 1983; 215:17-32. [PMID: 6853763 DOI: 10.1002/cne.902150103] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Horseradish peroxidase was injected into various levels of the spinal cord of turtles (Pseudemys and Chrysemys), lizards (Tupinambis, Iquana, Gekko, Sauromelus, and Gerrhonotus), and a crocodilian (Caiman). The results suggest that brainstem reticulospinal projections in limbed reptiles rival mammalian reticulospinal systems in complexity. The reptilian myelencephalic reticular formation can be divided into four distinct reticulospinal nuclei. Reticularis inferior pars dorsalis (RID) contains multipolar neurons which project bilaterally to the spinal cord. Reticularis inferior pars ventralis (RIV), which is only found in lizards and crocodilians, contains fusiform neurons with horizontally running dendrites and it projects ipsilaterally to the spinal cord. Reticularis ventrolateralis (RVL), which is found only in field lizards, contains triangular neurons whose dendrites parallel the ventrolateral edge of the brainstem and it projects ipsilaterally to the spinal cord. The myelencephalic raphe (RaI) varies considerably. RaI of turtles contains large reticulospinal neurons which form a continuous population with more laterally situated RID cells. RaI of lizards contains a few small reticulospinal neurons. RaI of the crocodilian Caiman contains giant reticulospinal neurons with laterally directed dendrites. The caudal metencephalic reticular formation of reptiles can be divided into two distinct reticulospinal nuclei. Reticularis medius (RM) contains large neurons with long, ventrally directed dendrites; it projects ipsilaterally to the spinal cord. Reticularis medius pars lateralis (RML) contains small neurons with laterally directed dendrites; it projects contralaterally to the spinal cord. The rostral mesencephalic and caudal mesencephalic reticular formation of reptiles can be divided into three distinct reticulospinal nuclei. Reticularis superior pars medialis (RSM) consists mostly of small, spindle-shaped neurons which project bilaterally to the spinal cord. In the lizard Tupinambis, however, large multipolar, ipsilaterally projecting neurons are occasionally seen in RSM. Reticularis superior pars lateralis (RSL) contains large, ipsilaterally projecting neurons with long, ventrolaterally directed dendrites. SRL in lizards can be divided into a dorsomedial portion, which projects ipsilaterally to the spinal cord, and a ventrolateral portion which projects contralaterally. The locus ceruleus-subceruleus field (LC-SC) contains small spindle-shaped neurons which project bilaterally to the spinal cord. Labelled reticulospinal neurons were also observed in the rostral metencephalic raphe (RaS) of the turtle brainstem. These cells are small, spindle-shaped neurons which resemble the small cells of the adjacent RSM field.
Collapse
|