1
|
Gasparini S, Almeida‐Pereira G, Munuzuri ASP, Resch JM, Geerling JC. Molecular Ontology of the Nucleus of Solitary Tract. J Comp Neurol 2024; 532:e70004. [PMID: 39629676 PMCID: PMC11615840 DOI: 10.1002/cne.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
The nucleus of the solitary tract (NTS) receives visceral information and regulates appetitive, digestive, and cardiorespiratory systems. Within the NTS, diverse processes operate in parallel to sustain life, but our understanding of their cellular composition is incomplete. Here, we integrate histologic and transcriptomic analysis to identify and compare molecular features that distinguish neurons in this brain region. Most glutamatergic neurons in the NTS and area postrema co-express the transcription factors Lmx1b and Phox2b, except for a ventral band of neurons in the far-caudal NTS, which include the Gcg-expressing neurons that produce glucagon-like peptide 1 (GLP-1). GABAergic interneurons intermingle through the Lmx1b+Phox2b macropopulation, and dense clusters of GABAergic neurons surround the NTS. The Lmx1b+Phox2b macropopulation includes subpopulations with distinct distributions expressing Grp, Hsd11b2, Npff, Pdyn, Pou3f1, Sctr, Th, and other markers. These findings highlight Lmx1b-Phox2b co-expression as a common feature of glutamatergic neurons in the NTS and improve our understanding of the organization and distribution of neurons in this critical brain region.
Collapse
Affiliation(s)
| | | | | | - Jon M. Resch
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats. J Neurosci Res 2024; 102:e25390. [PMID: 39373381 DOI: 10.1002/jnr.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Inge Estefania Guerrero
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Barraclough BN, Stubbs WT, Bohic M, Upadhyay A, Abraira VE, Ramer MS. Direct comparison of Hoxb8-driven reporter distribution in the brains of four transgenic mouse lines: towards a spinofugal projection atlas. Front Neuroanat 2024; 18:1400015. [PMID: 38817241 PMCID: PMC11137224 DOI: 10.3389/fnana.2024.1400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Hox genes govern rostro-caudal identity along the developing spinal cord, which has a well-defined division of function between dorsal (sensory) and ventral (motor) halves. Here we exploit developmental Hoxb8 expression, normally restricted to the dorsal cord below the obex, to genetically label spinal cord-to-brain ("spinofugal") axons. Methods We crossed two targeted (knock-in) and two non-targeted recombinase-expressing lines (Hoxb8-IRES-Cre and Hoxb8-T2AFlpO; Hoxb8-Cre and Hoxb8-FlpO, respectively) with appropriate tdtomato-expressing reporter strains. Serial sectioning, confocal and superresolution microscopy, as well as light-sheet imaging was used to reveal robust labeling of ascending axons and their terminals in expected and unexpected regions. Results This strategy provides unprecedented anatomical detail of ascending spinal tracts anterior to the brainstem, and reveals a previously undescribed decussating tract in the ventral hypothalamus (the spinofugal hypothalamic decussating tract, or shxt). The absence of Hoxb8-suppressing elements led to multiple instances of ectopic reporter expression in Hoxb8-Cre mice (retinal ganglion and vomeronasal axons, anterior thalamic nuclei and their projections to the anterior cingulate and retrosplenial cortices and subiculum, and a population of astrocytes at the cephalic flexure) and Hoxb8-FlpO mice (Cajal-Retzius cells of the dentate gyrus, and mesenchymal cells of the choroid plexus). While targeted transgenic lines were similar in terms of known spinofugal projections, Hoxb8-IRES-Cre reporters had an additional projection to the core of the facial motor nucleus, and more abundant Hoxb8-lineage microglia scattered throughout the brain than Hoxb8-T2A-FlpO (or any other) mice, suggesting dysregulated Hoxb8-driven reporter expression in one or both lines. Discussion This work complements structural and connectivity atlases of the mouse central nervous system, and provides a platform upon which their reactions to injury or disease can be studied. Ectopic Hoxb8-driven recombinase expression may also be a useful tool to study structure and function of other cell populations in non-targeted lines.
Collapse
Affiliation(s)
- Bridget N. Barraclough
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - W. Terrence Stubbs
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Victoria E. Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
5
|
Sibbach BM, Karim HT, Lo D, Kasibhatla N, Santini T, Weber JC, Ibrahim TS, Banihashemi L. Manual segmentation of the paraventricular nucleus of the hypothalamus and the dorsal and ventral bed nucleus of stria terminalis using multimodal 7 Tesla structural MRI: probabilistic atlases for a stress-control triad. Brain Struct Funct 2024; 229:273-283. [PMID: 37812278 PMCID: PMC10917873 DOI: 10.1007/s00429-023-02713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is uniquely capable of proximal control over autonomic and neuroendocrine stress responses, and the bed nucleus of the stria terminalis (BNST) directly modulates PVN function, as well as playing an important role in stress control itself. The dorsal BNST (dBNST) is predominantly preautonomic, while the ventral BNST (vBNST) is predominantly viscerosensory, receiving dense noradrenergic signaling. Distinguishing the dBNST and vBNST, along with the PVN, may facilitate our understanding of dynamic interactions among these regions. T1-weighted MPRAGE and high resolution gradient echo (GRE) modalities were acquired at 7T. GRE was coregistered to MPRAGE and segmentations were performed in MRIcroGL based on their Atlas of the Human Brain depictions. The dBNST, vBNST and PVN were manually segmented in 25 participants; 10 images were rated by 2 raters. These segmentations were normalized and probabilistic atlases for each region were generated in MNI space, now available as resources for future research. We found moderate-high inter-rater reliability [n = 10; Mean Dice (SD); PVN = 0.69 (0.04); dBNST = 0.77 (0.04); vBNST = 0.62 (0.04)]. Probabilistic atlases were reverse normalized into native space for six additional participants that were segmented but not included in the original 25. We also found moderate to moderate-high reliability between the probabilistic atlases and manual segmentations [n = 6; Mean Dice (SD); PVN = 0.55 (0.12); dBNST = 0.60 (0.10); vBNST = 0.47 (0.12 SD)]. By isolating these hypothalamic and BNST subregions using ultra-high field MRI modalities, more specific delineations of these regions can facilitate greater understanding of mechanisms underlying stress-related function and psychopathology.
Collapse
Affiliation(s)
- Brandon M Sibbach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Daniel Lo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nithya Kasibhatla
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessica C Weber
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Holt MK. The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections. J Neuroendocrinol 2022; 34:e13132. [PMID: 35509189 PMCID: PMC9286632 DOI: 10.1111/jne.13132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
The body and brain are in constant two-way communication. Driving this communication is a region in the lower brainstem: the dorsal vagal complex. Within the dorsal vagal complex, the caudal nucleus of the solitary tract (cNTS) is a major first stop for incoming information from the body to the brain carried by the vagus nerve. The anatomy of this region makes it ideally positioned to respond to signals of change in both emotional and bodily states. In turn, the cNTS controls the activity of regions throughout the brain that are involved in the control of both behaviour and physiology. This review is intended to help anyone with an interest in the cNTS. First, I provide an overview of the architecture of the cNTS and outline the wide range of neurotransmitters expressed in subsets of neurons in the cNTS. Next, in detail, I discuss the known inputs and outputs of the cNTS and briefly highlight what is known regarding the neurochemical makeup and function of those connections. Then, I discuss one group of cNTS neurons: glucagon-like peptide-1 (GLP-1)-expressing neurons. GLP-1 neurons serve as a good example of a group of cNTS neurons, which receive input from varied sources and have the ability to modulate both behaviour and physiology. Finally, I consider what we might learn about other cNTS neurons from our study of GLP-1 neurons and why it is important to remember that the manipulation of molecularly defined subsets of cNTS neurons is likely to affect physiology and behaviours beyond those monitored in individual experiments.
Collapse
Affiliation(s)
- Marie K. Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
7
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
8
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
9
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
10
|
Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol 2021; 179:642-658. [PMID: 34050926 PMCID: PMC8820208 DOI: 10.1111/bph.15576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon‐like peptide‐1 (GLP‐1) and prolactin‐releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP‐1 neurons. We outline their co‐activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP‐1 neurons and outline unexplored areas of the research field. Based on the current state‐of‐knowledge, PrRP and GLP‐1 neurons may be compelling targets in the treatment of stress‐related disorders.
Collapse
Affiliation(s)
- Marie K Holt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
11
|
Thorsdottir D, Cruickshank NC, Einwag Z, Hennig GW, Erdos B. BDNF downregulates β-adrenergic receptor-mediated hypotensive mechanisms in the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol 2019; 317:H1258-H1271. [PMID: 31603352 DOI: 10.1152/ajpheart.00478.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli such as stress and hyperosmolality, and BDNF acting in the PVN plays a key role in elevating sympathetic activity and blood pressure. However, downstream mechanisms mediating these effects remain unclear. We tested the hypothesis that BDNF increases blood pressure, in part by diminishing inhibitory hypotensive input from nucleus of the solitary tract (NTS) catecholaminergic neurons projecting to the PVN. Male Sprague-Dawley rats received bilateral PVN injections of viral vectors expressing either green fluorescent protein (GFP) or BDNF and bilateral NTS injections of vehicle or anti-dopamine-β-hydroxylase-conjugated saporin (DSAP), a neurotoxin that selectively lesions noradrenergic and adrenergic neurons. BDNF overexpression in the PVN without NTS lesioning significantly increased mean arterial pressure (MAP) in awake animals by 18.7 ± 1.8 mmHg. DSAP treatment also increased MAP in the GFP group, by 9.8 ± 3.2 mmHg, but failed to affect MAP in the BDNF group, indicating a BDNF-induced loss of NTS catecholaminergic hypotensive effects. In addition, in α-chloralose-urethane-anesthetized rats, hypotensive responses to PVN injections of the β-adrenergic agonist isoprenaline were significantly attenuated by BDNF overexpression, whereas PVN injections of phenylephrine had no effect on blood pressure. BDNF treatment was also found to significantly reduce β1-adrenergic receptor mRNA expression in the PVN, whereas expression of other adrenergic receptors was unaffected. In summary, increased BDNF expression in the PVN elevates blood pressure, in part by downregulating β-receptor signaling and diminishing hypotensive catecholaminergic input from the NTS to the PVN.NEW & NOTEWORTHY We have shown that BDNF, a key hypothalamic regulator of blood pressure, disrupts catecholaminergic signaling between the NTS and the PVN by reducing the responsiveness of PVN neurons to inhibitory hypotensive β-adrenergic input from the NTS. This may be occurring partly via BDNF-mediated downregulation of β1-adrenergic receptor expression in the PVN and results in an increase in blood pressure.
Collapse
Affiliation(s)
| | | | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Grant W Hennig
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Noble DJ, Hochman S. Hypothesis: Pulmonary Afferent Activity Patterns During Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. Front Physiol 2019; 10:1176. [PMID: 31572221 PMCID: PMC6753868 DOI: 10.3389/fphys.2019.01176] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Control of respiration provides a powerful voluntary portal to entrain and modulate central autonomic networks. Slowing and deepening breathing as a relaxation technique has shown promise in a variety of cardiorespiratory and stress-related disorders, but few studies have investigated the physiological mechanisms conferring its benefits. Recent evidence suggests that breathing at a frequency near 0.1 Hz (6 breaths per minute) promotes behavioral relaxation and baroreflex resonance effects that maximize heart rate variability. Breathing around this frequency appears to elicit resonant and coherent features in neuro-mechanical interactions that optimize physiological function. Here we explore the neurophysiology of slow, deep breathing and propose that coincident features of respiratory and baroreceptor afferent activity cycling at 0.1 Hz entrain central autonomic networks. An important role is assigned to the preferential recruitment of slowly-adapting pulmonary afferents (SARs) during prolonged inhalations. These afferents project to discrete areas in the brainstem within the nucleus of the solitary tract (NTS) and initiate inhibitory actions on downstream targets. Conversely, deep exhalations terminate SAR activity and activate arterial baroreceptors via increases in blood pressure to stimulate, through NTS projections, parasympathetic outflow to the heart. Reciprocal SAR and baroreceptor afferent-evoked actions combine to enhance sympathetic activity during inhalation and parasympathetic activity during exhalation, respectively. This leads to pronounced heart rate variability in phase with the respiratory cycle (respiratory sinus arrhythmia) and improved ventilation-perfusion matching. NTS relay neurons project extensively to areas of the central autonomic network to encode important features of the breathing pattern that may modulate anxiety, arousal, and attention. In our model, pronounced respiratory rhythms during slow, deep breathing also support expression of slow cortical rhythms to induce a functional state of alert relaxation, and, via nasal respiration-based actions on olfactory signaling, recruit hippocampal pathways to boost memory consolidation. Collectively, we assert that the neurophysiological processes recruited during slow, deep breathing enhance the cognitive and behavioral therapeutic outcomes obtained through various mind-body practices. Future studies are required to better understand the physio-behavioral processes involved, including in animal models that control for confounding factors such as expectancy biases.
Collapse
Affiliation(s)
- Donald J. Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
13
|
Rossetti I, Zambusi L, Maccioni P, Sau R, Provini L, Castelli MP, Gonciarz K, Colombo G, Morara S. Predisposition to Alcohol Drinking and Alcohol Consumption Alter Expression of Calcitonin Gene-Related Peptide, Neuropeptide Y, and Microglia in Bed Nucleus of Stria Terminalis in a Subnucleus-Specific Manner. Front Cell Neurosci 2019; 13:158. [PMID: 31114482 PMCID: PMC6502997 DOI: 10.3389/fncel.2019.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle “alcohol vs. water” regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Laura Zambusi
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Paola Maccioni
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Roberta Sau
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Luciano Provini
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Krzysztof Gonciarz
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giancarlo Colombo
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
15
|
Kawai Y. Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 2018; 12:63. [PMID: 30087599 PMCID: PMC6066510 DOI: 10.3389/fnana.2018.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
To integrate and broadcast neural information, local microcircuits and global macrocircuits interact within certain specific nuclei of the central nervous system. The structural and functional architecture of this interaction was determined for the caudal nucleus of the tractus solitarius (NTS) at the level of the area postrema (AP), a relay station of peripheral viscerosensory information that is processed and conveyed to brain regions concerned with autonomic-affective and other interoceptive reflexive functions. Axon collaterals of most small NTS cells (soma <150 μm2) establish excitatory or inhibitory local microcircuits likely to control the activity of nearby NTS cells and to transfer peripheral signals to efferent projection neurons. At least two types of cells that constitute efferent pathways from the caudal NTS (cNTS) were distinguished: (1) a greater numbers of small cells, seemingly forming local excitatory microcircuits via recurrent axon collaterals, that project specifically and unidirectionally to the lateral parabrachial nucleus; and (2) a much smaller numbers of cells likely to establish multiple global connections, mostly via the medial forebrain bundle (MFB) or the dorsal longitudinal fascicle (DLF), with a wide range of brain regions, including the ventrolateral medulla (VLM), hypothalamus, central nucleus of the amygdala (ACe), bed nucleus of the stria terminalis (BNST), spinal cord dorsal horn, brainstem reticular formation, locus coeruleus (LC), periaqueductal gray (PAG) and periventricular diencephalon (including the epithalamus). The evidence presented here suggests that distinct cNTS cell types distinguished by projection pattern and related structural and functional features participate differentially in the computation of viscerosensory information and coordination of global macro-networks in a highly organized manner.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Yeganeh F, Nasimi A, Hatam M. Interaction of GABA and norepinephrine in the lateral division of the bed nucleus of the stria terminals in anesthetized rat, correlating single-unit and cardiovascular responses. Neuroscience 2017; 356:255-264. [PMID: 28576724 DOI: 10.1016/j.neuroscience.2017.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BST) consists of multiple anatomically distinct nuclei. The lateral division, which receives dense noradrenergic innervation, has been implicated in cardiovascular regulation and modulation of responses to stress. This study is performed to identify the cardiovascular and single-unit responses of the lateral BST to norepinephrine (NE), involved adrenoceptors, and possible interaction with GABAergic system of the BST in urethane-anesthetized rats. NE, adrenoreceptor antagonists, and GABAA antagonist were microinjected into the lateral division of BST, while arterial pressure (AP), heart rate (HR), and single-unit responses were simultaneously recorded. NE microinjected into the lateral division of BST produced depressor and bradycardic responses. The decrease in AP and HR to NE was blocked by prazosin, an α1-adrenoreceptor antagonist, but not by yohimbine, an α2 antagonist. Furthermore, injections of the GABAA receptor antagonist, bicuculline methiodide (BMI), into the lateral BST abolished the NE-induced depressor and bradycardic responses. We also observed single-unit responses consisting of excitatory and inhibitory responses correlated with cardiovascular function to the microinjection of NE. In conclusion, these data provide the first evidence that microinjection of NE in the lateral division of BST produces depressor and bradycardic responses in urethane-anesthetized rat. The depressor and bradycardiac response are mediated by local α1- but not α2-adrenoceptors. α1-AR activates the GABAergic system within the BST, which in turn produces depressor and bradycardic responses.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Dept. of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am J Physiol Regul Integr Comp Physiol 2017; 313:R229-R239. [PMID: 28615161 DOI: 10.1152/ajpregu.00413.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
Abstract
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Huan Zhao
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
18
|
Gonzáles MA, Miranda AP, Orrego H, Silva R, Forray MI. Enduring attenuation of norepinephrine synaptic availability and augmentation of the pharmacological and behavioral effects of desipramine by repeated immobilization stress. Neuropharmacology 2017; 117:249-259. [PMID: 28232061 DOI: 10.1016/j.neuropharm.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
Here we provide evidence that repeated immobilization stress (RIS) in rats induces a persistent increase in noradrenergic activity in the anterior aspects of the anterolateral bed nucleus of the stria terminalis (alBNST). This increase in noradrenergic activity results from both enhanced synthesis and reuptake of norepinephrine (NE). It leads to a decrease in the synaptic availability of NE, which elicits an augmented noradrenergic response to the inhibitors of NE reuptake (NRIs), such as desipramine (DMI), an antidepressant. The enduring depression-like behavior and the augmentation of the climbing behavior seen in repeatedly stressed rats following subchronic administration of DMI in the forced swimming test (FST) might be explained by a dysregulation of noradrenergic transmission observed in alBNST. Taken together, we propose that dysregulation of noradrenergic transmission such as the one described in the present work may represent a mechanism underlying major depressive disorders (MDD) with melancholic features in humans.
Collapse
Affiliation(s)
- Marco A Gonzáles
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pamela Miranda
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Horacio Orrego
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodolfo Silva
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Inés Forray
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
19
|
McDougall SJ, Guo H, Andresen MC. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J Physiol 2016; 595:901-917. [PMID: 27616729 DOI: 10.1113/jp272898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Haoyao Guo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
D'Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, Garcia AP, Land BB, Lowell BB, Dileone RJ, Heisler LK. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife 2016; 5. [PMID: 26974347 PMCID: PMC4861598 DOI: 10.7554/elife.12225] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
Abstract
The nucleus of the solitary tract (NTS) is a key gateway for meal-related signals entering the brain from the periphery. However, the chemical mediators crucial to this process have not been fully elucidated. We reveal that a subset of NTS neurons containing cholecystokinin (CCKNTS) is responsive to nutritional state and that their activation reduces appetite and body weight in mice. Cell-specific anterograde tracing revealed that CCKNTS neurons provide a distinctive innervation of the paraventricular nucleus of the hypothalamus (PVH), with fibers and varicosities in close apposition to a subset of melanocortin-4 receptor (MC4RPVH) cells, which are also responsive to CCK. Optogenetic activation of CCKNTS axon terminals within the PVH reveal the satiating function of CCKNTS neurons to be mediated by a CCKNTS→PVH pathway that also encodes positive valence. These data identify the functional significance of CCKNTS neurons and reveal a sufficient and discrete NTS to hypothalamus circuit controlling appetite. DOI:http://dx.doi.org/10.7554/eLife.12225.001 Obesity primarily results from eating more food than the body requires, the energy from which is then stored as fat. In recent years obesity has become increasingly common, with the resulting health problems presenting one of the major healthcare challenges of the twenty-first century. New ways to tackle the obesity epidemic are therefore required to improve human health on a global scale. To regulate how much food is eaten, the gut sends chemical messengers to the brain about how much food has been consumed. These messengers activate particular cells in the brain that signal to other brain regions to trigger a decision about whether we’ve had enough food to eat. This raises a question: if we can artificially activate these cells, can we ‘trick’ the brain into thinking that food has been consumed? A brain region called the nucleus of the solitary tract (NTS) is known to play a key role in receiving signals from the gut about meals. By studying mice, D’Agostino et al. found that cells in the NTS that make a brain hormone called cholecystokinin (CCK) are particularly activated by food. Further experiments then used a technique called optogenetics to activate these cells in mice that had free access to different types of food. This activation significantly reduced how hungry the mice were, causing them to eat less food and lose weight. D’Agostino et al. also showed that CCK cells relay the signal about food intake to a brain region called the hypothalamus. Overall, D’Agostino et al. have found a way to trick the brain into thinking that food has been eaten when it actually hasn’t, and for this reason mice eat less without feeling hungry and lose weight. The next step is to try and find a way to activate the CCK cells in obese humans who have health complications associated with excess body weight. DOI:http://dx.doi.org/10.7554/eLife.12225.002
Collapse
Affiliation(s)
- Giuseppe D'Agostino
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom.,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David J Lyons
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Cristiano
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - John N Campbell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Ana Paula Garcia
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin B Land
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Ralph J Dileone
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Lora K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom.,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Psychological Benefits of Nonpharmacological Methods Aimed for Improving Balance in Parkinson's Disease: A Systematic Review. Behav Neurol 2015; 2015:620674. [PMID: 26236107 PMCID: PMC4508472 DOI: 10.1155/2015/620674] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a serious condition with a major negative impact on patient's physical and mental health. Postural instability is one of the cardinal difficulties reported by patients to deal with. Neuroanatomical, animal, and clinical studies on nonparkinsonian and parkinsonian subjects suggest an important correlation between the presence of balance dysfunction and multiple mood disorders, such as anxiety, depression, and apathy. Considering that balance dysfunction is a very common symptom in PD, we can presume that by its management we could positively influence patient's state of mind too. This review is an analysis of nonpharmacological methods shown to be effective and successful for improving balance in patients suffering from PD. Strategies such as general exercise, robotic assisted training, Tai Chi, Qi Gong, Yoga, dance (such as tango or ballet), box, virtual reality-based, or neurofeedback-based techniques and so forth can significantly improve the stability in these patients. Beside this physical outcome, many methods have also shown effect on quality of life, depression level, enjoyment, and motivation to continue in practicing the method independently. The purpose of this review is to provide information about practical and creative methods designed to improve balance in PD and highlight their positive impact on patient's psychology.
Collapse
|
22
|
Bundzikova-Osacka J, Ghosal S, Packard BA, Ulrich-Lai YM, Herman JP. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats. Stress 2015; 18:221-32. [PMID: 25765732 PMCID: PMC4503520 DOI: 10.3109/10253890.2015.1013531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.
Collapse
Affiliation(s)
- Jana Bundzikova-Osacka
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati OH 45237, USA
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati OH 45237, USA
| | - Benjamin A. Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati OH 45237, USA
| | - Yvonne M. Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati OH 45237, USA
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati OH 45237, USA
| |
Collapse
|
23
|
Menani JV, De Luca LA, Johnson AK. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol 2014; 306:R201-10. [PMID: 24401989 DOI: 10.1152/ajpregu.00251.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In states of sodium deficiency many animals seek and consume salty solutions to restore body fluid homeostasis. These behaviors reflect the presence of sodium appetite that is a manifestation of a pattern of central nervous system (CNS) activity with facilitatory and inhibitory components that are affected by several neurohumoral factors. The primary focus of this review is on one structure in this central system, the lateral parabrachial nucleus (LPBN). However, before turning to a more detailed discussion of the LPBN, a brief overview of body fluid balance-related body-to-brain signaling and the identification of the primary CNS structures and humoral factors involved in the control of sodium appetite is necessary. Angiotensin II, mineralocorticoids, and extracellular osmotic changes act on forebrain areas to facilitate sodium appetite and thirst. In the hindbrain, the LPBN functions as a key integrative node with an ascending output that exerts inhibitory influences on forebrain regions. A nonspecific or general deactivation of LPBN-associated inhibition by GABA or opioid agonists produces NaCl intake in euhydrated rats without any other treatment. Selective LPBN manipulation of other neurotransmitter systems [e.g., serotonin, cholecystokinin (CCK), corticotrophin-releasing factor (CRF), glutamate, ATP, or norepinephrine] greatly enhances NaCl intake when accompanied by additional treatments that induce either thirst or sodium appetite. The LPBN interacts with key forebrain areas that include the subfornical organ and central amygdala to determine sodium intake. To summarize, a model of LPBN inhibitory actions on forebrain facilitatory components for the control of sodium appetite is presented in this review.
Collapse
Affiliation(s)
- Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil; and Departments of Psychology, Pharmacology and Health, and Human Physiology and the Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
24
|
Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa FM, Herman JP. Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 2013; 11:141-59. [PMID: 23997750 PMCID: PMC3637669 DOI: 10.2174/1570159x11311020002] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in controlling autonomic, neuroendocrine and behavioral responses. The BNST is thought to serve as a key relay connecting limbic forebrain structures to hypothalamic and brainstem regions associated with autonomic and neuroendocrine functions. Its control of physiological and behavioral activity is mediated by local action of numerous neurotransmitters. In the present review we discuss the role of the BNST in control of both autonomic and neuroendocrine function. A description of BNST control of cardiovascular and hypothalamus-pituitary-adrenal axisactivity at rest and during physiological challenges (stress and physical exercise) is presented. Moreover, evidence for modulation of hypothalamic magnocellular neurons activity is also discussed. We attempt to focus on the discussion of BNST neurochemical mechanisms. Therefore, the source and targets of neurochemical inputs to BNST subregions and their role in control of autonomic and neuroendocrine function is discussed in details.
Collapse
Affiliation(s)
- Carlos C Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Smith CD, Piasecki CC, Weera M, Olszewicz J, Lonstein JS. Noradrenergic alpha-2 receptor modulators in the ventral bed nucleus of the stria terminalis: effects on anxiety behavior in postpartum and virgin female rats. Behav Neurosci 2013; 127:582-97. [PMID: 23796237 PMCID: PMC3947518 DOI: 10.1037/a0032776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emotional hyperreactivity can inhibit maternal responsiveness in female rats and other animals. Maternal behavior in postpartum rats is disrupted by increasing norepinephrine release in the ventral bed nucleus of the stria terminalis (BSTv) with the α2-autoreceptor antagonist, yohimbine, or the more selective α2-autoreceptor antagonist, idazoxan (Smith et al., 2012). Because high noradrenergic activity in the BSTv can also increase anxiety-related behaviors, increased anxiety may underlie the disrupted mothering of dams given yohimbine or idazoxan. To assess this possibility, anxiety-related behaviors in an elevated plus maze were assessed in postpartum rats after administration of yohimbine or idazoxan. It was further assessed if the α2-autoreceptor agonist clonidine (which decreases norepinephrine release) would, conversely, reduce dams' anxiety. Groups of diestrous virgins were also examined. It was found that peripheral or intra-BSTv yohimbine did increase anxiety-related behavior in postpartum females. However, BSTv infusion of idazoxan did not reproduce yohimbine's anxiogenic effects and anxiety was not reduced by peripheral or intra-BSTv clonidine. Because yohimbine is a weak 5HT1A receptor agonist, other groups of females received BSTv infusion of the 5HT1A receptor agonist 8OH-DPAT, but it did not alter their anxiety-related behavior. Lastly, levels of norepinephrine and serotonin in tissue punches from the BSTv did not differ between postpartum and diestrous rats, but serotonin turnover was lower in mothers. These results suggest that the impaired maternal behavior after BSTv infusion of yohimbine or idazoxan cannot both be readily explained by an increase in dams' anxiety, and that BSTv α2-autoreceptor modulation alone has little influence on anxiety-related behaviors in postpartum or diestrous rats.
Collapse
Affiliation(s)
- Carl D. Smith
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Christopher C. Piasecki
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Marcus Weera
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joshua Olszewicz
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joseph S. Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| |
Collapse
|
26
|
Sugita M, Yamamoto K, Hirono C, Shiba Y. Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience 2013; 250:166-80. [PMID: 23850686 DOI: 10.1016/j.neuroscience.2013.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
Abstract
Bitter reception is mediated by taste receptor cells that coexpress multiple T2Rs, a family of G-protein-coupled receptors. However, it remains elusive how bitter taste information is translated in the brain into appropriate behavioral responses. Here we used a combination of genetic tracing and electrophysiological and immunohistochemical analyses in mice to functionally characterize the neurons in the solitary tract nuclei of the medulla, which receive input from mT2R5-expressing cells. The neurons defined by a transneuronal tracer originating from mT2R5-expressing cells receive glutamatergic synaptic input via the AMPA receptor. The satiety peptide cholecystokinin increases glutamatergic transmission, suggesting an interaction between information processing of taste and the homeostatic control of feeding. Nevertheless, the tracer-labeled neuron types are heterogeneous, and can be classified into catecholamine and pro-opiomelanocortin neurons. Our data reveal that the architectural solution in the first-order central relay that processes information from mT2R5-expressing cells uses unique ensembles of neurons with different neurotransmitters.
Collapse
Affiliation(s)
- M Sugita
- Department of Physiology and Oral Physiology, Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | |
Collapse
|
27
|
de Souza E, Aguilar LA, Díaz-Cabiale Z, Narváez JA, Coveñas R. Mapping of neurotensin in the alpaca (Lama pacos) brainstem. Anat Histol Embryol 2013; 43:245-56. [PMID: 23692174 DOI: 10.1111/ahe.12067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/24/2013] [Indexed: 11/30/2022]
Abstract
We studied the distribution of cell bodies and fibres containing neurotensin (NT) in the brainstem of the alpaca using an indirect immunoperoxidase technique. Immunoreactive fibres were widely distributed throughout the brainstem, whereas the distribution of cell bodies was less widespread. Immunoreactive perikarya were only found in the mesencephalic and bulbar reticular formation, periaqueductal grey, nucleus of the solitary tract, laminar spinal trigeminal nucleus and in the inferior colliculus. A high density of fibres containing NT was found in the dorsal nucleus of the raphe, marginal nucleus of the brachium conjunctivum, locus coeruleus, inferior colliculus, inter-peduncular nucleus, substantia nigra, periaqueductal grey, reticular formation of the mesencephalon, pons and medulla oblongata, nucleus of the solitary tract, laminar spinal trigeminal nucleus, hypoglossal nucleus, inferior central nucleus and in the tegmental reticular nucleus. The widespread distribution indicates that NT might be involved in multiple physiological actions in the alpaca brainstem; this must be investigated in the future as alpacas lives from 0 m above sea level to altitudes of up 5000 m and hence the involvement of this neuropeptide in special and unique regulatory physiological mechanisms could be suggested.
Collapse
Affiliation(s)
- E de Souza
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
28
|
Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin. Brain Struct Funct 2013; 219:751-76. [PMID: 23479178 PMCID: PMC4023077 DOI: 10.1007/s00429-013-0533-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Emotional and motivational dysfunctions observed in Parkinson's disease, schizophrenia, and drug addiction are associated to an alteration of the mesocortical and mesolimbic dopaminergic pathways, which include axons projecting to the prefrontal cortex, the ventral striatum, and the amygdala. Subpopulations of catecholaminergic neurons have been described in the cortex and striatum of several mammals, but the presence of such cells in the adult amygdala is unclear in murine rodents, and in other rodents appears to show variations depending on the species. Moreover, the embryonic origin of telencephalic tyrosine hydroxylase (TH) cells is unknown, which is essential for trying to understand aspects of their evolution, distribution and function. Herein we investigated the expression of TH mRNA and protein in cells of the striatum and amygdala of developing and adult mice, and analyzed the embryonic origin of such cells using in vitro migration assays. Our results showed the presence of TH mRNA and protein expressing cells in the striatum (including nucleus accumbens), central and medial extended amygdala during development, which are persistent in adulthood although they are less numerous, generally show weak mRNA expression, and some appear to lack the protein. Fate mapping analysis showed that these cells include at least two subpopulations with different embryonic origin in either the commissural preoptic area of the subpallium or the supraopto-paraventricular domain of the alar hypothalamus. These data are important for future studies trying to understand the role of catecholamines in modulation of emotion, motivation, and reward.
Collapse
|
29
|
Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs. J Neurosci 2013; 32:16530-8. [PMID: 23152635 DOI: 10.1523/jneurosci.1372-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.
Collapse
|
30
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
31
|
Andresen MC, Fawley JA, Hofmann ME. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front Neurosci 2013; 6:191. [PMID: 23335875 PMCID: PMC3541483 DOI: 10.3389/fnins.2012.00191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST) with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presynaptic receptors for angiotensin (AT1), vasopressin (V1a), oxytocin, opioid (MOR), ghrelin (GHSR1), and cholecystokinin differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
32
|
Effects of noradrenergic alpha-2 receptor antagonism or noradrenergic lesions in the ventral bed nucleus of the stria terminalis and medial preoptic area on maternal care in female rats. Psychopharmacology (Berl) 2012; 224:263-76. [PMID: 22644129 PMCID: PMC3652389 DOI: 10.1007/s00213-012-2749-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/12/2012] [Indexed: 12/22/2022]
Abstract
RATIONALE Maternal behavior in laboratory rats requires a network of brain structures including the ventral bed nucleus of the stria terminalis (BSTv) and medial preoptic area (mPOA). Neurotransmitter systems in the BSTv and mPOA influencing maternal behaviors are not well understood, although norepinephrine is an excellent candidate because the BSTv contains the densest noradrenergic fiber plexus in the forebrain and norepinephrine in the mPOA is known to influence other female reproductive functions. OBJECTIVES We hypothesized that downregulated noradrenergic activity in the BSTv and mPOA is necessary for mothering. METHODS Postpartum mother-litter interactions were observed after BSTv infusion of yohimbine (an α2 autoreceptor antagonist that increases norepinephrine release), and after BSTv or mPOA infusion of the more selective α2 autoreceptor antagonist idazoxan. Lastly, noradrenergic input to the BSTv/mPOA was selectively lesioned in nulliparous rats with anti-DBH-saporin to determine if this would facilitate mothering. RESULTS BSTv yohimbine almost abolished retrieval of pups but did not significantly affect dams' ability to initiate contact, lick, or nurse them. BSTv idazoxan disrupted retrieval somewhat less than yohimbine, but significantly reduced nursing. mPOA idazoxan impaired retrieval more severely than that found after BSTv infusion. Anti-DBH-saporin almost eliminated noradrenergic terminals in the BSTv and reduced them by over 60% in the mPOA, but did not promote maternal responding. It also did not affect females' anxiety-related behavior. CONCLUSIONS Downregulated noradrenergic activity in the BSTv and mPOA is necessary for postpartum maternal behavior in rats, but eliminating this system alone is insufficient to promote maternal behaviors in nulliparous females.
Collapse
|
33
|
Cui RJ, Roberts BL, Zhao H, Andresen MC, Appleyard SM. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience 2012; 222:181-90. [PMID: 22796075 DOI: 10.1016/j.neuroscience.2012.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids could control autonomic functions and modulate reward and opioid withdrawal symptoms at the level of the NTS.
Collapse
Affiliation(s)
- R J Cui
- Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
34
|
Daubert DL, McCowan M, Erdos B, Scheuer DA. Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. J Physiol 2012; 590:4881-95. [PMID: 22753543 DOI: 10.1113/jphysiol.2012.232314] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Catecholaminergic neurons within the central nervous system are an integral part of stress-related neurocircuitry, and the nucleus of the solitary tract (NTS) plays a critical role in cardiovascular regulation. We tested the hypothesis that NTS catecholaminergic neurons attenuate psychological stress-induced increases in blood pressure and promote neuroendocrine activation in response to psychological stress.Anti-dopamine-β-hydroxylase antibody conjugated to the neurotoxin saporin (DSAP) or saline vehicle was microinjected into the NTS to lesion catecholaminergic neurons in male Sprague-Dawley rats, and 17 days later the rats were subjected to 60 min of restraint stress for five consecutive days. DSAP treatment significantly enhanced the integrated increase in mean arterial pressure during restraint on the first (800 ± 128 and 1115 ± 116 mmHg (min) for saline- and DSAP-treated rats) and fifth days (655 ± 116 and 1035 ± 113 mmHg (min) for saline- and DSAP-treated rats; P<0.01 for overall effect of DSAP treatment) of restraint. In contrast, after 60 min of restraint plasma corticosterone concentration was significantly lower in DSAP-treated compared with saline-treated rats (25.9 ± 7 compared with 46.8 ± 7 μg dl(-1) for DSAP- and saline-treated rats; P <0.05). DSAP treatment also significantly reduced baseline plasma adrenaline concentration (403 ± 69 compared with 73 ± 29 pg ml(-1) for saline- and DSAP-treated rats), but did not alter the magnitude of the adrenaline response to restraint. The data suggest that NTS catecholaminergic neurons normally inhibit the arterial pressure response, but help maintain the corticosterone response to restraint stress.
Collapse
Affiliation(s)
- Daisy L Daubert
- Ferris State University, Department of Biological Sciences, Big Rapids, MI 49307, USA
| | | | | | | |
Collapse
|
35
|
Chen CC, Williams CL. Interactions between epinephrine, ascending vagal fibers, and central noradrenergic systems in modulating memory for emotionally arousing events. Front Behav Neurosci 2012; 6:35. [PMID: 22754515 PMCID: PMC3384987 DOI: 10.3389/fnbeh.2012.00035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023] Open
Abstract
It is well-established that exposure to emotionally laden events initiates secretion of the arousal-related hormone epinephrine in the periphery. These neuroendocrine changes and the subsequent increase in peripheral physiological output play an integral role in modulating brain systems involved in memory formation. The impermeability of the blood brain barrier to epinephrine represents an important obstacle in understanding how peripheral hormones initiate neurochemical changes in the brain that lead to effective memory formation. This obstacle necessitated the identity of a putative pathway capable of conveying physiological changes produced by epinephrine to limbic structures that incorporate arousal and affect related information into memory. A major theme of the proposed studies is that ascending fibers of the vagus nerve may represent such a mechanism. This hypothesis was tested by evaluating the contribution of ascending vagal fibers in modulating memory for responses learned under behavioral conditions that produce emotional arousal by manipulating appetitive stimuli. A combination of electrophysiological recording of vagal afferent fibers and in vivo microdialysis was employed in a second study to simultaneously assess how elevations in peripheral levels of epinephrine affect vagal nerve discharge and the subsequent potentiation of norepinephrine release in the basolateral amygdala. The final study used double immunohistochemistry labeling of c-fos and dopamine beta hydroxylase (DBH), the enzyme for norepinephrine synthesis to determine if epinephrine administration alone or stimulation of the vagus nerve at an intensity identical to that which improved memory in Experiment 1 produces similar patterns of neuronal activity in brain areas involved in processing memory for emotional events. Findings emerging from this collection of studies establish the importance of ascending fibers of the vagus nerve as an essential pathway for conveying the peripheral consequences of physiological arousal on brain systems that encode new information into memory storage.
Collapse
Affiliation(s)
- C C Chen
- Department of Psychology, The University of Virginia, Charlottesville VA, USA
| | | |
Collapse
|
36
|
Na+ appetite induced by depleting extracellular fluid volume activates the enkephalin/mu-opioid receptor system in the rat forebrain. Neuroscience 2011; 192:398-412. [DOI: 10.1016/j.neuroscience.2011.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
|
37
|
Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2010; 300:R222-35. [PMID: 20962208 DOI: 10.1152/ajpregu.00556.2010] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Central noradrenergic (NA) signaling is broadly implicated in behavioral and physiological processes related to attention, arousal, motivation, learning and memory, and homeostasis. This review focuses on the A2 cell group of NA neurons, located within the hindbrain dorsal vagal complex (DVC). The intra-DVC location of A2 neurons supports their role in vagal sensory-motor reflex arcs and visceral motor outflow. A2 neurons also are reciprocally connected with multiple brain stem, hypothalamic, and limbic forebrain regions. The extra-DVC connections of A2 neurons provide a route through which emotional and cognitive events can modulate visceral motor outflow and also a route through which interoceptive feedback from the body can impact hypothalamic functions as well as emotional and cognitive processing. This review considers some of the hallmark anatomical and chemical features of A2 neurons, followed by presentation of evidence supporting a role for A2 neurons in modulating food intake, affective behavior, behavioral and physiological stress responses, emotional learning, and drug dependence. Increased knowledge about the organization and function of the A2 cell group and the neural circuits in which A2 neurons participate should contribute to a better understanding of how the brain orchestrates adaptive responses to the various threats and opportunities of life and should further reveal the central underpinnings of stress-related physiological and emotional dysregulation.
Collapse
Affiliation(s)
- Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
38
|
Anatomically specific patterns of glial activation in the periaqueductal gray of the sub-population of rats showing pain and disability following chronic constriction injury of the sciatic nerve. Neuroscience 2010; 166:1167-84. [PMID: 20109535 DOI: 10.1016/j.neuroscience.2010.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 01/07/2010] [Accepted: 01/21/2010] [Indexed: 11/21/2022]
Abstract
Neuropathic pain conditions for which treatment is sought are characterized by complex behavioural disturbances, as well as "pain." Recent studies using chronic constriction injury of the sciatic nerve have shown that rats develop three distinct patterns of disability characterized by changes in social-interactions and sleep-wake cycle behaviours post-injury: (i) Persistent Disability, (ii) Transient Disability and (iii) No Disability. These patterns occur despite all rats showing identical levels of allodynia and hyperalgesia (i.e., pain). In rats, social-interactions and sleep-wake cycle behaviours are regulated in part, by neural networks, which converge on the periaqueductal grey (PAG). We sought therefore to identify neural adaptations in the PAG, 6 days following chronic constriction injury (CCI), the time at which rats in which disabilities persist are first distinguished from those without disabilities (i.e., No Disability and Transient Disability). GeneChips, RT-PCR and Western blotting revealed the select up-regulation in translation and transcription of glial fibrillary acidic protein (GFAP) and Vimentin in rats with Persistent Disability. Significant increases in GFAP immunoreactivity were localized histologically to the lateral and caudal ventrolateral columns of the PAG. This anatomically specific pattern of increased GFAP suggests activation of astrocytes by select neural pathways, which likely include afferents of both spinal and nucleus of the solitary tract (NTS) origin. The PAG columns in which astrocytes are activated play significant roles in modulating both social-interactions and the sleep-wake cycle. It is possible therefore that the persistent disabilities seen in a subgroup of CCI rats are in part a functional consequence of this specific pattern of astrocyte activation.
Collapse
|
39
|
Banihashemi L, Rinaman L. Repeated brief postnatal maternal separation enhances hypothalamic gastric autonomic circuits in juvenile rats. Neuroscience 2010; 165:265-77. [PMID: 19800939 PMCID: PMC2788015 DOI: 10.1016/j.neuroscience.2009.09.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/11/2009] [Accepted: 09/30/2009] [Indexed: 02/03/2023]
Abstract
Maternal separation of rat pups for 15 min each day over the first one to two postnatal weeks (MS15) has been shown to increase the active maternal care received by pups and to decrease their later neuroendocrine and behavioral stress reactivity compared to non-separated (NS) controls. Stress responses prominently feature altered gastric secretion and motility, and we previously reported that the developmental assembly of forebrain circuits underlying gastric autonomic control, including gastric responses to stress, is delayed by MS15 in neonatal rats [Card JP, Levitt P, Gluhovsky M, Rinaman L (2005) J Neurosci 25(40):9102-9111]. To determine how this early delay affects the later organization of central gastric autonomic circuits, the present study examined the effects of neonatal MS15 on central pre-gastric circuits assessed in post-weaning, juvenile rats. For this purpose, the retrograde transynaptic viral tracer, pseudorabies virus (PRV), was microinjected into the stomach wall of 28-30 day old male rats with an earlier developmental history of either MS15 or NS. Rats were perfused 72 h later and tissue was processed to reveal PRV-positive cells. Transynaptic PRV immunolabeling was quantified in selected preautonomic brainstem and forebrain regions, including the area postrema, bed nucleus of the stria terminalis, central nucleus of the amygdala, paraventricular nucleus of the hypothalamus (PVN), and visceral cortices. Compared to NS controls, MS15 rats displayed a significantly greater amount of PRV labeling within the PVN, including both the dorsal cap and ventral subnuclei. There were no postnatal group differences in the amount of PRV labeling within any other brain region examined in this study. This effect of MS15 to enhance hypothalamic preautonomic circuit structure indicates a strengthening of this pathway and may provide insight into how early life experience produces differential effects on later stress reactivity, including gastric secretory and motor responses to stress.
Collapse
Affiliation(s)
- L Banihashemi
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
40
|
Pereira A, Rawson J, Jakubowska A, Clarke IJ. Estradiol-17beta-responsive A1 and A2 noradrenergic cells of the brain stem project to the bed nucleus of the stria terminalis in the ewe brain: a possible route for regulation of gonadotropin releasing hormone cells. Neuroscience 2009; 165:758-73. [PMID: 19857554 DOI: 10.1016/j.neuroscience.2009.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
Abstract
We have studied brain stem cells in the ewe brain that project to the bed nucleus of the stria terminalis (BNST) and determined if these cells are activated by estradiol-17beta. This would predicate an indirect role in the estradiol-17beta regulation of gonadotropin releasing hormone (GnRH) cells, since these receive input from the BNST. Ovariectomized ewes received 50 mug estradiol-17beta benzoate (i.m.) 1 h prior to brain collection, so that activated cells could be identified by Fos immunohistochemistry. Retrograde tracer (FluoroGold; FG), was injected into the three divisions of the BNST and labeled cells were mapped to the A1 and A2 regions and the parabrachial nucleus (PBN) of the brain stem. With FG injection into the dorsal and lateral BNST, all FG-containing cells in the caudal A1 and 45% of those in A2 stained for dopamine-beta-hydroxylase (DBH), indicating noradrenergic type. No FG-labelled cells in the PBN were DBH-positive. In A1 and A2 respectively, 42% and 46% of FG-labelled cells were Fos-positive, with no double-labeling in cells of the PBN. In ewes receiving FG injections into the ventral BNST, estrogen receptor (ER)alpha-immunoreactive nuclei were found in 82% of A1-FG labeled and 38% of A2-FG labeled cells. No FG-labelled cells of the PBN were ERalpha-positive. Anterograde tracing from A1 with microruby injection identified projections to the PBN, BNST and preoptic area (POA). Thus, A1 and A2 noradrenergic neurons project to the BNST in the ewe brain, express ERalpha and are activated by estradiol-17beta. These noradrenergic, estrogen-responsive cells may provide indirect input to GnRH cells, via the BNST.
Collapse
Affiliation(s)
- A Pereira
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
41
|
Sabban EL, Maharjan S, Nostramo R, Serova LI. Divergent effects of estradiol on gene expression of catecholamine biosynthetic enzymes. Physiol Behav 2009; 99:163-8. [PMID: 19638280 DOI: 10.1016/j.physbeh.2009.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 12/15/2022]
Abstract
Within the catecholaminergic systems, there are contradictory findings regarding ability of estradiol to regulate expression of genes related to catecholamine biosynthesis. Several parameters important for effects of estradiol on the catecholamine (CA) related enzyme gene expression were examined in two CA regions. Ovariectomized (OVX) female rats were given prolonged estradiol treatments, either in a pulsatile fashion by injections or continuously by pellets. The mode affected the response of tyrosine hydroxylase (TH) and GTP cyclohydrolase I (GTPCH) mRNAs differentially in the nucleus of solitary tract (NTS) and the locus coeruleus (LC). In rostral-medial NTS, TH mRNA levels were increased with injections, but declined in rats administered estradiol by pellets. In LC, a significant change was only observed in GTPCH with injections. These differences may reflect activation of different estrogen receptors (ER). The response to estradiol in the presence of ERalpha and ER beta was examined in PC12 cell culture. Estradiol directly regulated promoter activity of TH, GTPCH and dopamine beta-hydroxylase (DBH) genes. With ERalpha, 17 beta-estradiol elevated TH promoter activity, while there was a decline with ERbeta. In contrast, both DBH and GTPCH promoters were enhanced by 17 beta-estradiol over a wide range of concentrations with either ER subtype. Thus, mode of administration, location examined and ER subtype expressed are important considerations in the overall response of catecholamine related enzymes to estradiol.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | |
Collapse
|
42
|
Crestani CC, Alves FHF, Tavares RF, Corrêa FMA. Role of the bed nucleus of the stria terminalis in the cardiovascular responses to acute restraint stress in rats. Stress 2009; 12:268-78. [PMID: 18850495 DOI: 10.1080/10253890802331477] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl(2) (0.1 nmol/100 nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the alpha(2)-adrenoceptor antagonist RX821002 or the beta-adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that alpha(1)-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2 mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local alpha(1)-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Collapse
Affiliation(s)
- C C Crestani
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, RibeirãoPreto, São Paulo, Brazil
| | | | | | | |
Collapse
|
43
|
Léger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 2008; 37:149-57. [PMID: 19152834 DOI: 10.1016/j.jchemneu.2008.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
Noradrenaline is known to induce waking (W) and to inhibit paradoxical sleep (PS or REM). Both roles have been exclusively attributed to the noradrenergic neurons of the locus coeruleus (LC, A6), shown to be active during W and inactive during PS. However, the A1, A2, A5 and A7 noradrenergic neurons could also be responsible. Therefore, to determine the contribution of each of the noradrenergic groups in W and in PS inhibition, rats were maintained in continuous W for 3h in a novel environment or specifically deprived of PS for 3 days, with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. Thirty percent of the LC noradrenergic cells were found to be Fos-positive after exposure to the novel environment and less than 2% after PS deprivation. In contrast, a significant number of double-labeled neurons (up to 40% of the noradrenergic neurons) were observed in the A1/C1, A2 and A5 groups, after both novel environment and PS deprivation. After PS recovery and in control condition, less than 1% of the noradrenergic neurons were Fos-immunoreactive, regardless of the noradrenergic group. These results indicate that the brainstem noradrenergic cell groups are activated during W and silent during PS. They further suggest that the inhibitory effect of noradrenaline on PS may be due to the A1/C1, A2 and to a lesser degree to A5 neurons but not from those of the LC as previously hypothesized.
Collapse
|
44
|
Role of chemoreceptors in mediating dyspnea. Respir Physiol Neurobiol 2008; 167:9-19. [PMID: 19118647 DOI: 10.1016/j.resp.2008.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 11/22/2022]
Abstract
Dyspnea, or the uncomfortable awareness of respiratory distress, is a common symptom experienced by most people at some point during their lifetime. It is commonly encountered in individuals with pulmonary disease, such as chronic obstructive pulmonary disease (COPD), but can also be seen in healthy individuals after strenuous exercise, at altitude or in response to psychological stress. Dyspnea is a multifactorial sensation involving the brainstem, cortex, and limbic system, as well as mechanoreceptors, irritant receptors and chemoreceptors. Chemoreceptors appear to contribute to the sensation of dyspnea in two ways. They stimulate the respiratory control system in response to hypoxia and/or hypercapnia, and the resultant increase respiratory motor output can be consciously perceived as unpleasant. They also can induce the sensation of dyspnea through an as yet undetermined mechanism-potentially via direct ascending connections to the limbic system and cortex. The goal of this article is to briefly review how changes in blood gases reach conscious awareness and how chemoreceptors are involved in dyspnea.
Collapse
|
45
|
Abstract
The ventrolateral bed nucleus of the stria terminalis (BSTvl) receives direct input from two specific subpopulations of neurons in the nucleus tractus solitarius (NTS). It is heavily innervated by aldosterone-sensitive NTS neurons, which are selectively activated by sodium depletion, and by the A2 noradrenergic neurons, which are activated by visceral and immune- and stress-related stimuli. Here, we used a retrograde neuronal tracer to identify other brain sites that innervate the BSTvl. Five general brain regions contained retrogradely labeled neurons: cerebral cortex (infralimbic and insular regions), rostral forebrain structures (subfornical organ, organum vasculosum of the lamina terminalis, taenia tecta, nucleus accumbens, lateral septum, endopiriform nucleus, dorsal BST, substantia innominata, and, most prominently the amygdala--primarily its basomedial and central subnuclei), thalamus (central medial, intermediodorsal, reuniens, and, most prominently the paraventricular thalamic nucleus), hypothalamus (medial preoptic area, perifornical, arcuate, dorsomedial, parasubthalamic, and posterior hypothalamic nuclei), and brainstem (periaqueductal gray matter, dorsal and central superior raphe nuclei, parabrachial nucleus, pre-locus coeruleus region, NTS, and A1 noradrenergic neurons in the caudal ventrolateral medulla). In the arcuate hypothalamic nucleus, some retrogradely labeled neurons contained either agouti-related peptide or cocaine/amphetamine-regulated transcript. Of the numerous retrogradely labeled neurons in the perifornical hypothalamic area, few contained melanin-concentrating hormone or orexin. In the brainstem, many retrogradely labeled neurons were either serotoninergic or catecholaminergic. In summary, the BSTvl receives inputs from a variety of brain sites implicated in hunger, salt and water intake, stress, arousal, and reward.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
46
|
Crestani CC, Alves FH, Resstel LB, Correa FM. Bed nucleus of the stria terminalis α1-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 2008; 1245:108-15. [DOI: 10.1016/j.brainres.2008.09.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/24/2008] [Accepted: 09/28/2008] [Indexed: 02/05/2023]
|
47
|
De Oliveira L, De Luca L, Menani J. Opioid activation in the lateral parabrachial nucleus induces hypertonic sodium intake. Neuroscience 2008; 155:350-8. [DOI: 10.1016/j.neuroscience.2008.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 04/26/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
|
48
|
Delaney AJ, Crane JW, Sah P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 2008; 56:880-92. [PMID: 18054863 DOI: 10.1016/j.neuron.2007.10.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 09/14/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
Abstract
The lateral division of the central amygdala (CeAL) is the target of ascending fibers from the pain-responsive and stress-responsive nuclei in the brainstem. We show that single fiber inputs from the nociceptive pontine parabrachial nucleus onto CeAL neurons form suprathreshold glutamatergic synapses with multiple release sites. Noradrenaline, acting at presynaptic alpha2 receptors, potently inhibits this synapse. This inhibition results from a decrease in the number of active release sites with no change in release probability. Introduction of a presynaptic scavenger of Gbetagamma subunits blocked the effects of noradrenaline, and botulinum toxin A reduced its effects, showing a direct action of betagamma subunits on the release machinery. These data illustrate a mechanism of presynaptic modulation where the output of a large multiple-release-site synapse is potently regulated by endogenously released noradrenaline and suggests that the CeA may be a target for the central nociceptive actions of noradrenaline.
Collapse
Affiliation(s)
- Andrew J Delaney
- The Queensland Brain Institute, The University of Queensland, QLD 4072 Australia
| | | | | |
Collapse
|
49
|
James P, Rivier C, Lee S. Presence of corticotrophin-releasing factor and/or tyrosine hydroxylase in cells of a neural brain-testicular pathway that are labelled by a transganglionic tracer. J Neuroendocrinol 2008; 20:173-81. [PMID: 18047555 DOI: 10.1111/j.1365-2826.2007.01630.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our laboratory has shown that male testosterone levels are not solely controlled by the release of hypothalamic gonadotrophin-releasing hormone and pituitary luteinising hormone, but are also regulated by a multisynaptic pathway connecting the brain and the testis that interferes with the testosterone response to gonadotrophins. This pathway, which is independent of the pituitary gland, is activated by an i.c.v. injection of either the stress-related peptide corticotrophin-releasing factor (CRF) or of beta-adrenoceptor agonists, both of which alter androgen release and decrease levels of the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein within Leydig cells. Our original studies used the retrograde transganglionic tracer pseudorabies virus (PRV) to map progression of the virus from the testes to upper brain levels. The present study aimed to extend this work by identifying the regions where CRF and catecholamine neurones represented components of the stress-activated, brain-testicular pathway that prevents testosterone increases. To this end, anaesthetised adult male rats received an intra-testicular injection of PRV. Using immunofluorescence, we identified co-labelling of PRV and either CRF or tyrosine hydroxylase (TH), the enzyme responsible for biogenic amine synthesis. Co-labelling of PRV and CRF was found in the bed nucleus of the stria terminalis, the paraventricular nucleus of the hypothalamus (PVN) and the central amygdala. Co-labelling of PRV and TH was found in the PVN, substantia nigra, A7/Kölliker-Fuse area, area of A5, locus coeruleus, nucleus of solitary tract, area of C3, area of C2 and the area of C1/A1. These results indicate that most cell groups of the ventral noradrenergic pathway have neurones that are a part of the brain-testicular pathway. This suggests that the stress hormones CRF and catecholamines may act as neurotransmitters that signal the pathway to inhibit increases in plasma testosterone levels.
Collapse
Affiliation(s)
- P James
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
50
|
Shigematsu N, Fukuda T, Yamamoto T, Nishioku T, Yamaguchi T, Himeno M, Nakayama KI, Tsukuba T, Kadowaki T, Okamoto K, Higuchi S, Yamamoto K. Association of cathepsin E deficiency with the increased territorial aggressive response of mice. J Neurochem 2008; 105:1394-404. [PMID: 18221376 DOI: 10.1111/j.1471-4159.2008.05242.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cathepsin E is an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, but physiological functions of this protein in the brain remains unclear. In this study, we investigate the behavioral effect of disrupting the gene encoding cathepsin E in mice. We found that the cathepsin E-deficient (CatE-/-) mice were behaviorally normal when housed communally, but they became more aggressive compared with the wild-type littermates when housed individually in a single cage. The increased aggressive response of CatE-/- mice was reduced to the level comparable to that seen for CatE+/+ mice by pretreatment with an NK-1-specific antagonist. Consistent with this, the neurotransmitter substance P (SP) level in affective brain areas including amygdala, hypothalamus, and periaqueductal gray was significantly increased in CatE-/- mice compared with CatE+/+ mice, indicating that the increased aggressive behavior of CatE-/- mice by isolation housing followed by territorial challenge is mainly because of the enhanced SP/NK-1 receptor signaling system. Double immunofluorescence microscopy also revealed the co-localization of SP with synaptophysin but not with microtubule-associated protein-2. Our data thus indicate that cathepsin E is associated with the SP/NK-1 receptor signaling system and thereby regulates the aggressive response of the animals to stressors such as territorial challenge.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Pharmacology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|