1
|
Engevik M, Ruan W, Visuthranukul C, Shi Z, Engevik KA, Engevik AC, Fultz R, Schady DA, Spinler JK, Versalovic J. Limosilactobacillus reuteri ATCC 6475 metabolites upregulate the serotonin transporter in the intestinal epithelium. Benef Microbes 2021; 12:583-599. [PMID: 34550056 DOI: 10.3920/bm2020.0216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The serotonin transporter (SERT) readily takes up serotonin (5-HT), thereby regulating the availability of 5-HT within the intestine. In the absence of SERT, 5-HT remains in the interstitial space and has the potential to aberrantly activate the many 5-HT receptors distributed on the epithelium, immune cells and enteric neurons. Perturbation of SERT is common in many gastrointestinal disorders as well as mouse models of colitis. Select commensal microbes regulate intestinal SERT levels, but the mechanism of this regulation is poorly understood. Additionally, ethanol upregulates SERT in the brain and dendritic cells, but its effects in the intestine have never been examined. We report that the intestinal commensal microbe Limosilactobacillus (previously classified as Lactobacillus) reuteri ATCC PTA 6475 secretes 83.4 mM ethanol. Consistent with the activity of L. reuteri alcohol dehydrogenases, we found that L. reuteri tolerated various levels of ethanol. Application of L. reuteri conditioned media or exogenous ethanol to human colonic T84 cells was found to upregulate SERT at the level of mRNA. A 4-(4-(dimethylamino) phenyl)-1-methylpyridinium (APP+) uptake assay confirmed the functional activity of SERT. These findings were mirrored in mouse colonic organoids, where L. reuteri metabolites and ethanol were found to upregulate SERT at the apical membrane. Finally, in a trinitrobenzene sulphonic acid model of acute colitis, we observed that mice treated with L. reuteri maintained SERT at the colon membrane compared with mice receiving phosphate buffered saline vehicle control. These data suggest that L. reuteri metabolites, including ethanol, can upregulate SERT and may be beneficial for maintaining intestinal homeostasis with respect to serotonin signalling.
Collapse
Affiliation(s)
- M Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, 173 Ashely Ave, BSB 626, Charleston, SC 29425, USA
| | - W Ruan
- Department of Pediatrics, Baylor College of Medicine, 6701 Fannin Street, Houston, TX 77030, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6701 Fannin St, Houston, TX 77030, USA
| | - C Visuthranukul
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Pediatric Nutrition Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Z Shi
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - K A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 7703, USA
| | - A C Engevik
- Departments of Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA
| | - R Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, USA
| | - D A Schady
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
2
|
Goldstein DS. The Catecholaldehyde Hypothesis for the Pathogenesis of Catecholaminergic Neurodegeneration: What We Know and What We Do Not Know. Int J Mol Sci 2021; 22:ijms22115999. [PMID: 34206133 PMCID: PMC8199574 DOI: 10.3390/ijms22115999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is the focus of the catecholaldehyde hypothesis for the pathogenesis of Parkinson’s disease and other Lewy body diseases. The catecholaldehyde is produced via oxidative deamination catalyzed by monoamine oxidase (MAO) acting on cytoplasmic dopamine. DOPAL is autotoxic, in that it can harm the same cells in which it is produced. Normally, DOPAL is detoxified by aldehyde dehydrogenase (ALDH)-mediated conversion to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. Genetic, environmental, or drug-induced manipulations of ALDH that build up DOPAL promote catecholaminergic neurodegeneration. A concept derived from the catecholaldehyde hypothesis imputes deleterious interactions between DOPAL and the protein alpha-synuclein (αS), a major component of Lewy bodies. DOPAL potently oligomerizes αS, and αS oligomers impede vesicular and mitochondrial functions, shifting the fate of cytoplasmic dopamine toward the MAO-catalyzed formation of DOPAL—destabilizing vicious cycles. Direct and indirect effects of DOPAL and of DOPAL-induced misfolded proteins could “freeze” intraneuronal reactions, plasticity of which is required for neuronal homeostasis. The extent to which DOPAL toxicity is mediated by interactions with αS, and vice versa, is poorly understood. Because of numerous secondary effects such as augmented spontaneous oxidation of dopamine by MAO inhibition, there has been insufficient testing of the catecholaldehyde hypothesis in animal models. The clinical pathophysiological significance of genetics, emotional stress, environmental agents, and interactions with numerous proteins relevant to the catecholaldehyde hypothesis are matters for future research. The imposing complexity of intraneuronal catecholamine metabolism seems to require a computational modeling approach to elucidate clinical pathogenetic mechanisms and devise pathophysiology-based, individualized treatments.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Sleurs C, Madoe A, Lagae L, Jacobs S, Deprez S, Lemiere J, Uyttebroeck A. Genetic Modulation of Neurocognitive Development in Cancer Patients throughout the Lifespan: a Systematic Review. Neuropsychol Rev 2019; 29:190-219. [DOI: 10.1007/s11065-019-09399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
4
|
Nam Y, Min YS, Sohn UD. Recent advances in pharmacological research on the management of irritable bowel syndrome. Arch Pharm Res 2018; 41:955-966. [PMID: 30132170 DOI: 10.1007/s12272-018-1068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS), a common gastrointestinal (GI) disorder, is associated with various factors, including lifestyle, infection, stress, intestinal flora, and related diseases. The pharmacotherapeutic stimulation of receptors and downstream signaling pathways is effective in reducing IBS symptoms; however, it is still associated with adverse effects. Various receptors related to GI motility and visceral hypersensitivity should be considered to enhance the benefit/risk ratio of IBS treatments. This review discusses recent pharmacological advances in IBS management. Several receptors related to GI motility and abdominal pain are investigated in various angles. 5-Hydroxytryptamine (5-HT) is an important neurotransmitter that activates the colonic mucosal 5-HT4 receptor without causing severe cardiovascular adverse effects. The clinical potential of ramosetron for diarrhea-predominant IBS has been suggested because of a lower risk of ischemic colitis than conventional 5-HT3 receptor antagonists. Toll-like receptors (TLRs), especially TLR2 and TLR4, show a significant effect on the post-infection symptoms and lipopolysaccharide-mediated regulation of GI motility. Histamine is a well-known nitrogenous compound that regulates inflammatory responses and visceral hypersensitivity. Histamine 1 receptor-mediated sensitization of the transient receptor potential vanilloid 1 is associated with IBS. Pharmacological approaches based on these signaling pathways could be useful in the development of novel IBS treatments.
Collapse
Affiliation(s)
- Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Young Sil Min
- Department of Medical Plant Science, Jung Won University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
6
|
Margolis KG, Gershon MD. Enteric Neuronal Regulation of Intestinal Inflammation. Trends Neurosci 2016; 39:614-624. [PMID: 27450201 DOI: 10.1016/j.tins.2016.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
Recent research has highlighted the importance of the two-way interaction between the nervous and immune systems. This interaction is particularly important in the bowel because of the unique properties of this organ. The lumen of the gut is lined by a very large but remarkably thin surface that separates the body from the enteric microbiome. Immune defenses against microbial invasion are thus well developed and neuroimmune interactions are important in regulating and integrating these defenses. Important concepts in the phylogeny of neuroimmunity, enteric neuronal and glial regulation of immunity, changes that occur in the enteric nervous system during inflammation, the fundamental role of serotonin (5-HT) in enteric neuroimmune mechanisms, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620 West 168th Street, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
7
|
Radak Z, Ihasz F, Koltai E, Goto S, Taylor AW, Boldogh I. The redox-associated adaptive response of brain to physical exercise. Free Radic Res 2013; 48:84-92. [PMID: 23870001 DOI: 10.3109/10715762.2013.826352] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated during metabolism. ROS are involved in redox signaling, but in significant concentrations they can greatly elevate oxidative damage leading to neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain a normal redox state in brain and spinal cord cell types. The complex effects of exercise benefit brain function, including functional enhancement as well as its preventive and therapeutic roles. Exercise can induce neurogenesis via neurotrophic factors, increase capillarization, decrease oxidative damage, and enhance repair of oxidative damage. Exercise is also effective in attenuating age-associated loss in brain function, which suggests that physical activity-related complex metabolic and redox changes are important for a healthy neural system.
Collapse
Affiliation(s)
- Z Radak
- Faculty of Physical Education and Sport Sciences, Institute of Sport Science, Semmelweis University , Budapest , Hungary
| | | | | | | | | | | |
Collapse
|
8
|
Krull KR, Bhojwani D, Conklin HM, Pei D, Cheng C, Reddick WE, Sandlund JT, Pui CH. Genetic mediators of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol 2013; 31:2182-8. [PMID: 23650422 DOI: 10.1200/jco.2012.46.7944] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Survivors of childhood acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive problems, with significant interindividual variability in outcome. This study examined genetic polymorphisms associated with variability in neurocognitive outcome. PATIENTS AND METHODS Neurocognitive outcomes were evaluated at the end of therapy in 243 survivors treated on an institutional protocol featuring risk-adapted chemotherapy without prophylactic cranial irradiation. Polymorphisms in genes related to pharmacokinetics or pharmacodynamics of antileukemic agents, drug metabolism, oxidative stress, and attention problems in noncancer populations were examined as predictors of outcome, using multiple general linear models and controlling for age at diagnosis, sex, race, and treatment intensity. RESULTS Compared with national norms, the cohort demonstrated significantly higher rates of problems on direct assessment of sustained attention (P = .01) and on parent ratings of attention problems (P = .02). Children with the A2756G polymorphism in methionine synthase (MS) were more likely to demonstrate deficits in attentiveness (P = .03) and response speed (P = .02), whereas those with various polymorphisms in glutathione S-transferase demonstrated increased performance variability (P = .01) and reduced attentiveness (P = .003). Polymorphisms in monoamine oxidase (T1460CA) were associated with increased attention variability (P = .03). Parent-reported attention problems were more common in children with the Cys112Arg polymorphism in apoliopoprotein E4 (P = .01). CONCLUSION These results are consistent with our previous report of association between attention problems and MS in an independent cohort of long-term survivors of childhood ALL treated with chemotherapy only. The results also raise the possibility of an impact from genetic predispositions related to oxidative stress and CNS integrity.
Collapse
Affiliation(s)
- Kevin R Krull
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med 2011; 32:305-15. [DOI: 10.1016/j.mam.2011.10.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
|
10
|
Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 2010; 30:6801-9. [PMID: 20463242 DOI: 10.1523/jneurosci.0603-10.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Astrocytes respond to synaptic activity in the CNS. Astrocytic responses are synapse specific and precisely regulate synaptic activity. Glia in the peripheral nervous system also respond to neuronal activity, but it is unknown whether glial responses are synapse specific. We addressed this issue by examining the activation of enteric glia by distinct neuronal subpopulations in the enteric nervous system. Enteric glia are unique peripheral glia that surround enteric neurons and respond to neuronally released ATP with increases in intracellular calcium ([Ca2+]i). Autonomic control of colonic function is mediated by intrinsic (enteric) and extrinsic (sympathetic, parasympathetic, primary afferent) neural pathways. Here we test the hypothesis that a defined population of neurons activates enteric glia using a variety of techniques to ablate or stimulate components of the autonomic innervation of the colon. Our findings demonstrate that, in the male guinea pig colon, activation of intrinsic neurons does not stimulate glial [Ca2+]i responses and fast enteric neurotransmission is not necessary to initiate glial responses. However, ablating extrinsic innervation significantly reduces glial responses to neuronal activation. Activation of primary afferent fibers does not activate glial [Ca2+]i responses. Selectively ablating sympathetic fibers reduces glial activation to a similar extent as total extrinsic denervation. Neuronal activation of glia follows the same frequency dependence as sympathetic neurotransmitter release, but the only sympathetic neurotransmitter that activates glial [Ca2+]i responses is ATP, suggesting that sympathetic fibers release ATP to activate enteric glia. Therefore, enteric glia discern activity in adjacent synaptic pathways and selectively respond to sympathetic activation.
Collapse
|
11
|
Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 2007; 132:397-414. [PMID: 17241888 DOI: 10.1053/j.gastro.2006.11.002] [Citation(s) in RCA: 1102] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Accepted: 11/06/2006] [Indexed: 12/11/2022]
Abstract
Serotonin is an important gastrointestinal signaling molecule. It is a paracrine messenger utilized by enterochromaffin (EC) cells, which function as sensory transducers. Serotonin activates intrinsic and extrinsic primary afferent neurons to, respectively, initiate peristaltic and secretory reflexes and to transmit information to the central nervous system. Serotonin is also a neurotransmitter utilized by a system of long descending myenteric interneurons. Serotonin is synthesized through the actions of 2 different tryptophan hydroxylases, TpH1 and TpH2, which are found, respectively, in EC cells and neurons. Serotonin is inactivated by the serotonin reuptake transporter (SERT)-mediated uptake into enterocytes or neurons. The presence of many serotonin receptor subtypes enables selective drugs to be designed to therapeutically modulate gastrointestinal motility, secretion, and sensation. Current examples include tegaserod, a 5-HT(4) partial agonist, which has been approved for treatment of irritable bowel syndrome (IBS) with constipation in women and for chronic constipation in men and women. The 5-HT(3) antagonists, granisetron and ondansetron, are useful in combating the nausea associated with cancer chemotherapy, and alosetron is employed in the treatment of IBS with diarrhea. Serotonergic signaling abnormalities have also been putatively implicated in the pathogenesis of functional bowel diseases. Other compounds, for which efficacy has not been rigorously established, but which may have value, include tricyclic antidepressants and serotonin selective reuptake inhibitors to combat IBS, and 5-HT(1) agonists, which enhance gastric accommodation, to treat functional dyspepsia. The initial success encountered with serotonergic agents holds promise for newer and more potent insights and therapies of brain-gut disorders.
Collapse
Affiliation(s)
- Michael D Gershon
- Department of Pathology & Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
12
|
Levin M, Buznikov GA, Lauder JM. Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 2006; 28:171-85. [PMID: 16679764 DOI: 10.1159/000091915] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/22/2023] Open
Abstract
Serotonin is a clinically important neurotransmitter regulating diverse aspects of cognitive function, sleep, mood, and appetite. Increasingly, it is becoming appreciated that serotonin signaling among non-neuronal cells is a novel patterning mechanism existing throughout diverse phyla. Here, we review the evidence implicating serotonergic signaling in embryonic morphogenesis, including gastrulation, craniofacial and bone patterning, and the generation of left-right asymmetry. We propose two models suggesting movement of neurotransmitter molecules as a novel mechanism for how bioelectrical events may couple to downstream signaling cascades and gene activation networks. The discovery of serotonin-dependent patterning events occurring long before the development of the nervous system opens exciting new avenues for future research in evolutionary, developmental, and clinical biology.
Collapse
Affiliation(s)
- Michael Levin
- The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | |
Collapse
|
13
|
Fukumoto T, Blakely R, Levin M. Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 2006; 27:349-63. [PMID: 16280633 DOI: 10.1159/000088451] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/22/2005] [Indexed: 01/03/2023] Open
Abstract
The neurotransmitter serotonin has been shown to regulate a number of embryonic patterning events in addition to its crucial role in the nervous system. Here, we examine the role of two serotonin transporters, the plasma membrane serotonin transporter (SERT) and the vesicular monoamine transporter (VMAT), in embryonic left-right asymmetry. Pharmacological or genetic inhibitors of either SERT or VMAT specifically randomized the laterality of the heart and viscera in Xenopus embryos. This effect takes place during cleavage stages, and is upstream of the left-sided gene XNR-1. Targeted microinjection of an SERT-dominant negative construct confirmed the necessity for SERT function in embryonic laterality and revealed that the descendants of the right ventral blastomere are the most dependent upon SERT signaling in left-right patterning. Moreover, the importance of SERT and VMAT in laterality is conserved in chick embryos, being upstream of the early left-sided gene Shh. Endogenous transcripts of SERT and VMAT are expressed from the initiation of the primitive streak in chick and are asymmetrically expressed in Hensen's node. Taken together our data characterize two new right-sided markers in chick gastrulation, identify a novel, early component of the left-right pathway in two vertebrate species, and reveal a new biological role for serotonin transport.
Collapse
Affiliation(s)
- Takahiro Fukumoto
- Cytokine Biology Department, The Forsyth Institute, Harvard Medical School, Boston, Mass. 02115, USA
| | | | | |
Collapse
|
14
|
Abstract
The bowel exhibits reflexes in the absence of CNS input. To do so, epithelial sensory transducers, such as enterochromaffin (EC) cells, activate the mucosal processes of intrinsic (IPANs) and extrinsic primary afferent (sensory) neurons. EC cells secrete serotonin (5-HT) in response to mucosal stimuli. Submucosal IPANs, which secrete acetylcholine and calcitonin gene-related peptide, initiate peristaltic and secretory reflexes and are activated via "5-HT1P" receptors. Release of neurotransmitters is enhanced by 5-HT4 receptors, which are presynaptic and strengthen neurotransmission in prokinetic pathways. 5-HT3 receptors mediate signaling to the CNS and thus ameliorate cancer chemotherapy-associated nausea and the visceral hypersensitivity of diarrhea-predominant irritable bowel syndrome (IBS-D); however, because 5-HT3 receptors also mediate fast ENS neurotransmission and activate myenteric IPANs, they may be constipating. 5-HT4 agonists are prokinetic and relieve discomfort and constipation in IBS-C and chronic constipation. 5-HT4 agonists do not initiate peristaltic and secretory reflexes but strengthen pathways that are naturally activated. Serotonergic signaling in the mucosa and the ENS is terminated by a transmembrane 5-HT transporter, SERT. Mucosal SERT and tryptophan hydroxylase-1 expression are decreased in experimental inflammation, IBS-C, IBS-D, and ulcerative colitis. Potentiation of 5-HT due to the SERT decrease could account for the discomfort and diarrhea of IBS-D, while receptor desensitization may cause constipation. Similar symptoms are seen in transgenic mice that lack SERT. The loss of mucosal SERT may thus contribute to IBS pathogenesis.
Collapse
Affiliation(s)
- Michael D Gershon
- Department of Anatomy and Cell Biology, Columbia University, P and S, New York, NY 10032, USA.
| |
Collapse
|
15
|
Hastings JA, Morris MJ, Lambert G, Lambert E, Esler M. NPY and NPY Y1 receptor effects on noradrenaline overflow from the rat brain in vitro. ACTA ACUST UNITED AC 2005; 120:107-12. [PMID: 15177927 DOI: 10.1016/j.regpep.2004.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 02/25/2004] [Indexed: 11/24/2022]
Abstract
Neurotransmitters and neuropeptides play important roles in the regulation of various neuroendocrine functions particularly feeding. The aim of this study was to investigate whether a functional interaction occurs among neuropeptide Y (NPY) at NPY Y1 receptors and noradrenaline overflow, as this may contribute to the regulation of appetite. The release of endogenous noradrenaline and its metabolite 3,4-dihydroxyphenylglycol (DHPG) were examined from hypothalamic and medullary prisms using the technique of in vitro superfusion and high performance liquid chromatography (HPLC) with coulometric detection. Noradrenaline and DHPG overflow was investigated at rest, in response to NPY (0.1 microM) and in response to the NPY Y1 receptor agonist, [Leu31,Pro34]NPY (0.1 microM). Perfusion with NPY and [Leu31,Pro34]NPY significantly reduced noradrenaline overflow from the hypothalamus and medulla. Perfusion with NPY and [Leu31,Pro34]NPY was without significant effect on hypothalamic DHPG overflow, while medullary DHPG overflow was significantly reduced by NPY and [Leu31,Pro34]NPY. Results from this study provide evidence of NPY Y1 receptor-mediated inhibition of noradrenaline release in the hypothalamus and medulla, further illustrating a complex interaction between neurotransmitters and neuropeptides within the rat brain.
Collapse
Affiliation(s)
- Jacqueline A Hastings
- Baker Heart Research Institute, Human Neurotransmitter Laboratory, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | |
Collapse
|
16
|
Gershon MD. Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 2004; 20 Suppl 7:3-14. [PMID: 15521849 DOI: 10.1111/j.1365-2036.2004.02180.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut is the only organ that can display reflexes and integrative neuronal activity even when isolated from the central nervous system. This activity can be triggered by luminal stimuli that are detected by nerves via epithelial intermediation. Epithelial enterochromaffin cells act as sensory transducers that activate the mucosal processes of both intrinsic and extrinsic primary afferent neurones through their release of 5-hydroxytryptamine (5-HT). Intrinsic primary afferent neurones are present in both the submucosal and myenteric plexuses. Peristaltic and secretory reflexes are initiated by submucosal intrinsic primary afferent neurones, which are stimulated by 5-HT acting at 5-HT(1P) receptors. 5-HT acting at 5-HT4 receptors enhances the release of transmitters from their terminals and from other terminals in prokinetic reflex pathways. Signalling to the central nervous system is predominantly 5-HT3 mediated, although serotonergic transmission within the enteric nervous system and the activation of myenteric intrinsic primary afferent neurones are also 5-HT3 mediated. The differential distribution of 5-HT receptor subtypes makes it possible to use 5-HT3 antagonists and 5-HT4 agonists to treat intestinal discomfort and motility. 5-HT3 antagonists alleviate the nausea and vomiting associated with cancer chemotherapy and the discomfort from the bowel in irritable bowel syndrome; however, because 5-HT-mediated fast neurotransmission within the enteric nervous system and the stimulation of mucosal processes of myenteric intrinsic primary afferent neurones are 5-HT3 mediated, 5-HT3 antagonists tend to be constipating and should be used only when pre-existing constipation is not a significant component of the problem to be treated. In contrast, 5-HT4 agonists, such as tegaserod, are safe and effective in the treatment of irritable bowel syndrome with constipation and chronic constipation. They do not stimulate nociceptive extrinsic nerves nor initiate peristaltic and secretory reflexes. Instead, they rely on natural stimuli to activate reflexes, which they strengthen by enhancing the release of transmitters in prokinetic pathways. Finally, when all the signalling by 5-HT is over, its action is terminated by uptake into enterocytes or neurones, which is mediated by the serotonin reuptake transporter. In inflammation, serotonergic signalling is specifically diminished in the mucosa. Transcripts encoding tryptophan hydroxylase-1 and serotonin reuptake transporter are both markedly decreased. Successive potentiation of 5-HT and/or desensitization of its receptor could account for the symptoms seen in diarrhoea-predominant and constipation-predominant irritable bowel syndrome, respectively. Symptoms associated with the down-regulation of the serotonin reuptake transporter in the human mucosa in irritable bowel syndrome are similar to the symptoms associated with the knockout of the serotonin reuptake transporter in mice. The observation that molecular defects occur in the human gut in irritable bowel syndrome strengthens the hand of those seeking to legitimize the disease. At least it is not 'all in your head'. The bowel contributes.
Collapse
Affiliation(s)
- M D Gershon
- Department of Anatomy & Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: Abnormal intestinal motility and the expression of cation transporters. J Neurosci 2001. [PMID: 11487658 DOI: 10.1523/jneurosci.21-16-06348.2001] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The enteric serotonin reuptake transporter (SERT) has been proposed to play a critical role in serotonergic neurotransmission and in the initiation of peristaltic and secretory reflexes. We analyzed potential compensatory mechanisms and enteric function in the bowels of mice with a targeted deletion of SERT. The guts of these animals were found to lack mRNA encoding SERT; moreover, high-affinity uptake of 5-HT into epithelial cells, mast cells, and enteric neurons was present in the SERT +/+ bowel but absent in the SERT -/- bowel. However, both the SERT +/+ gut and the -/- gut expressed molecules capable of transporting 5-HT, but with affinities and selectivity much lower than those of SERT. These included the dopamine transporter (DAT) and polyspecific organic cation transporters OCT-1 and OCT-3. DAT and OCT immunoreactivities were present in both the submucosal and myenteric plexuses, and the OCTs were also located in the mucosal epithelium. 5-HT was found in all of its normal sites in the SERT -/- bowel, which contained mRNA encoding tryptophan hydroxylase, but no 5-HT was present in the blood of SERT -/- animals. Stool water and colon motility were increased in most SERT -/- animals; however, the increase in motility (diarrhea) occasionally alternated irregularly with decreased motility (constipation). The watery diarrhea is probably attributable to the potentiation of serotonergic signaling in SERT -/- mice, whereas the transient constipation may be caused by episodes of enhanced 5-HT release leading to 5-HT receptor desensitization.
Collapse
|
18
|
Abstract
Alone among organs of the body, the gut is able to mediate reflexes in the absence of input from the brain or spinal cord. This ability appears to be caused by the secretion of serotonin (5-HT) by enterochromaffin (EC) cells of the mucosal epithelium. This 5-HT is secreted into the wall of the gut, where it stimulates the mucosal processes of intrinsic and extrinsic primary afferent neurons. The intrinsic primary afferents, which are activated by 5-HT1P/4 receptors, initiate peristaltic and secretory reflexes. The extrinsic primary afferent neurons send distress and other signals to the central nervous system. Extrinsic nerves are activated by 5-HT(3) receptors. The 5-HT that is involved in mucosal signaling is inactivated by uptake into mucosal epithelial cells, which are mediated by an integral membrane protein called the serotonin reuptake transporter (SERT). The epithelial SERT is the same molecule as that which transports 5-HT in the central and enteric nervous systems. Increasing evidence suggests that abnormal enteric release or inactivation of 5-HT is involved in the pathogenesis of irritable bowel syndrome (IBS). Spread of 5-HT to inappropriate sites in IBS may activate 5-HT(3) receptors on extrinsic afferent fibers and motor neurons, giving rise to visceral hypersensitivity and abnormal motility, respectively. A potent 5-HT(3) antagonist, such as alosetron, can prevent both of these effects and is therefore useful in treating IBS. 5-HT also appears to function as a growth factor in the development of enteric neurons. The developmental effects of 5-HT are mediated by the 5-HT(2B) receptor, which is developmentally regulated. The importance of serotonergic mechanisms in enteric physiology probably accounts for the gastrointestinal "side effects" of compounds that inhibit SERT. The newly discovered role of 5-HT in enteric neuronal development suggests that drugs that interfere with the action or inactivation of 5-HT should be used in pregnancy only with extreme caution, if at all.
Collapse
Affiliation(s)
- M D Gershon
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
19
|
Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G433-48. [PMID: 9724254 DOI: 10.1152/ajpgi.1998.275.3.g433] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of the guinea pig small intestine have suggested that serotonin (5-HT) may be a mucosal transmitter that stimulates sensory nerves and initiates peristaltic and secretory reflexes. We tested the hypothesis that guinea pig villus epithelial cells are able to inactivate 5-HT because they express the same 5-HT transporter as serotonergic neurons. A full-length cDNA, encoding a 630-amino acid protein (89.2% and 90% identical, respectively, to the rat and human 5-HT transporters) was cloned from the guinea pig intestinal mucosa. Evidence demonstrating that this cDNA encodes the guinea pig 5-HT transporter included 1) hybridization with a single species of mRNA ( approximately 3.7 kb) in Northern blots of the guinea pig brain stem and mucosa and 2) uptake of [3H]5-HT by transfected HeLa cells via a saturable, high-affinity (Michaelis constant 618 nM, maximum velocity 2.4 x 10(-17) mol . cell-1 . min-1), Na+-dependent mechanism that was inhibited by chlorimipramine > imipramine > fluoxetine > desipramine > zimelidine. Expression of the 5-HT transporter in guinea pig raphe and enteric neurons and the epithelium of the entire crypt-villus axis was demonstrated by in situ hybridization and immunocytochemistry. Inhibition of mucosal 5-HT uptake potentiates responses of submucosal neurons to mucosal stimulation. The epithelial reuptake of 5-HT thus appears to be responsible for terminating mucosal actions of 5-HT.
Collapse
Affiliation(s)
- J X Chen
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Vesicular monoamine transporter 2 expression in enteric neurons and enterochromaffin-like cells of the rat. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)13051-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Saura J, Nadal E, van den Berg B, Vila M, Bombi JA, Mahy N. Localization of monoamine oxidases in human peripheral tissues. Life Sci 1996; 59:1341-9. [PMID: 8876663 DOI: 10.1016/0024-3205(96)00459-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Localization of monoamine oxidases (MAO) A and B and beta-adrenoceptors, was studied in aged human peripheral tissues (age 68-80 years) by quantitative autoradiography. The tissues analyzed were heart, lung, liver, kidney, spleen and duodenum. [3H]Ro41-1049 and [3H]lazabemide, two recently characterized selective radioligands were used to map MAO-A and MAO-B respectively. The regional pattern of distribution of MAO-A and MAO-B did not differ markedly, except in kidney and especially in duodenum. Highest levels of MAOs were measured in liver, and lowest in spleen. MAO-A was more abundant than MAO-B in lung and duodenal mucosa, and the reverse was true in myocardium. These results show marked differences in the abundance and patterns of distribution of MAOs, particularly MAO-B, in human and rodent peripheral tissues.
Collapse
Affiliation(s)
- J Saura
- Biochemistry Unit, School of Medicine, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The peristaltic reflex can be evoked in the absence of input from the CNS because the responsible neural pathways are intrinsic to the intestine. Mucosal enterochromaffin cells have been postulated to be pressure transducers, which activate the intrinsic sensory neurons that initiate the reflex by secreting 5-HT. All of the criteria necessary to establish 5-HT as this transmitter have been fulfilled previously, except that no mucosal mechanism for 5-HT inactivation was known. In the current investigation, desensitization of 5-HT receptors was demonstrated to inhibit the peristaltic reflex in the guinea pig large intestine in vitro. At low concentration (1.0 nM), the 5-HT uptake inhibitor fluoxetine potentiated the reflex, but higher concentrations blocked it, suggesting that the peristaltic reflex depends on the 5-HT transporter-mediated inactivation of 5-HT. Specific (Na+ -dependent, fluoxetine-sensitive) uptake of 3H-5-HT by intestinal crypt epithelial cells was found by radioautography. mRNA encoding the neuronal 5-HT transporter was demonstrated in the intestinal mucosa by Northern analysis and located in crypt epithelial cells as well as in myenteric neurons by in situ hybridization. cDNA encoding the 5-HT transporter was cloned from the mucosa and completely sequenced. 5-HT transporter immunoreactivity was detected in crypt epithelial cells and enteric neurons. Mucosal epithelial cells thus express a plasmalemmal 5-HT transporter identical to that of serotonergic neurons. This molecule seems to play a critical role in the peristaltic reflex.
Collapse
|
23
|
Blaugrund E, Pham TD, Tennyson VM, Lo L, Sommer L, Anderson DJ, Gershon MD. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 1996; 122:309-20. [PMID: 8565843 DOI: 10.1242/dev.122.1.309] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enteric and sympathetic neurons have previously been proposed to be lineally related. We present independent lines of evidence that suggest that enteric neurons arise from at least two lineages, only one of which expresses markers in common with sympathoadrenal cells. In the rat, sympathoadrenal markers are expressed, in the same order as in sympathetic neurons, by a subset of enteric neuronal precursors, which also transiently express tyrosine hydroxylase. If this precursor pool is eliminated in vitro by complement-mediated lysis, enteric neurons continue to develop; however, none of these are serotonergic. In the mouse, the Mash-1−/− mutation, which eliminates sympathetic neurons, also prevents the development of enteric serotonergic neurons. Other enteric neuronal populations, however, including those that contain calcitonin gene related peptide are present. Enteric tyrosine hydroxylase-containing cells co-express Mash-1 and are eliminated by the Mash-1−/− mutation, consistent with the idea that in the mouse, as in the rat, these precursors generate serotonergic neurons. Serotonergic neurons are generated early in development, while calcitonin gene related peptide-containing enteric neurons are generated much later. These data suggest that enteric neurons are derived from at least two progenitor lineages. One transiently expresses sympathoadrenal markers, is Mash-1-dependent, and generates early-born enteric neurons, some of which are serotonergic. The other is Mash-1-independent, does not express sympathoadrenal markers, and generates late-born enteric neurons, some of which contain calcitonin gene related peptide.
Collapse
Affiliation(s)
- E Blaugrund
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Tharakan T, Kirchgessner AL, Baxi LV, Gershon MD. Appearance of neuropeptides and NADPH-diaphorase during development of the enteropancreatic innervation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:26-38. [PMID: 7720214 DOI: 10.1016/0165-3806(94)00142-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pancreatic ganglia are formed by neural crest-derived precursors, are innervated by enteric neurons, and contain neuropeptides. In addition, the enzyme NADPH-diaphorase is located in a subset of enteric and pancreatic neurons. The expression of neural markers (GAP-43 and NC-1), neurotransmitter-related markers (including neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP), galanin (GAL), dopamine beta hydroxylase (DBH), substance P (SP), calcitonin gene-related peptide (CGRP)), and NADPH-diaphorase was studied in the fetal and neonatal rat gut and pancreas (E12-P28) in situ and in vitro. NC-1, GAP-43 and DBH-immunoreactive cells were found in the primordial stomach on day E12, and in the pancreas on day E13, along with NPY in endocrine cells. Pancreatic NPY-immunoreactive neurons were detected by day E18. CGRP was seen in the foregut at day E12 but not in the pancreas until day E14. Other neuropeptides (SP, GAL, GRP and VIP) all appeared in the foregut earlier than in the pancreas. NADPH-diaphorase activity was first found in situ in foregut neurons on day E13, and in the pancreas on day E14, but seen in explants a day earlier. These observations show that development of neurons occurs earlier in the gut than in the pancreas, and that NADPH-diaphorase activity appears earlier than the immunoreactivities of the neuropeptides.
Collapse
Affiliation(s)
- T Tharakan
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
25
|
Kirchgessner AL, Liu MT, Gershon MD. NADPH diaphorase (nitric oxide synthase)-containing nerves in the enteropancreatic innervation: sources, co-stored neuropeptides, and pancreatic function. J Comp Neurol 1994; 342:115-30. [PMID: 7515904 DOI: 10.1002/cne.903420111] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pancreatic ganglia are innervated by neurons in the gut and are formed by precursor cells that migrate into the pancreas from the bowel. The innervation of the pancreas, therefore, may be considered an extension of the enteric nervous system. NADPH-diaphorase is present in a subset of enteric neurons. We investigated the presence of NADPH-diaphorase in the enteropancreatic innervation, the contribution of extrinsic nerves to the NADPH-diaphorase-containing fibers of the gut and pancreas, and the coincident expression of NADPH-diaphorase NADPH-diaphorase in intrinsic neurons of these organs with neuropeptides. The possible role of nitric oxide in the neural regulation of pancreatic secretion was studied in isolated pancreatic lobules. Neuronal perikarya with NADPH-diaphorase activity were found in both Dogiel type I and type II neurons of the myenteric plexus of the stomach and duodenum. All galanin (GAL)-immunoreactive neurons and a small subset of vasoactive intestinal polypeptide (VIP)- and neuropeptide Y (NPY)-immunoreactive neurons contained NADPH-diaphorase activity. NADPH-diaphorase activity was also found in a subset of VIP and NPY-immunoreactive pancreatic neurons. Retrograde tracing with FluoroGold established that NADPH-diaphorase-containing neurons in the bowel project to the pancreas. NADPH-diaphorase-containing fibers were also found to be provided to both organs by neurons in dorsal root ganglia. Secretion of amylase was evoked by L-arginine. This effect was prevented by N(G)-nitro-L-arginine (L-NNA), which also inhibited VIP-stimulated secretion of amylase; however, L-NNA had no effect on amylase secretion stimulated by carbachol. These results provide support for the hypothesis that nitric oxide plays a role in the neural regulation of pancreatic secretion.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
26
|
Kitahama K, Maeda T, Denney RM, Jouvet M. Monoamine oxidase: distribution in the cat brain studied by enzyme- and immunohistochemistry: recent progress. Prog Neurobiol 1994; 42:53-78. [PMID: 7480787 DOI: 10.1016/0301-0082(94)90021-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Localization of MAO-containing neurons, fibers and glial cells has been described by recent progress in MAO histochemistry and immunohistochemistry. It does not necessarily correspond to those containing monoamines. MAO-A is demonstrated in many noradrenergic cells, but it is hardly detectable in DA cells. Increase of 5-HT and DA concentration after inhibition of MAO-A indicates the possible existence of MAO-A in such neuronal structures. MAO-A is also undetectable in neurons containing 5-HT, a good substrate for MAO-A. These neurons contain MAO-B. There still remain contradictions to be solved in future. MAO is present in astroglial cells, in which monoamines released in extracellular space may be degraded. In glial cells, MAO may also play a role to regulate concentration of telemethylhistamine and trace amines. Such cells appear to transform MPTP to MPP+, a neurotoxin for nigral DA neurons.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, CNRS URA1195, INSERM U52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
27
|
Kirchgessner AL, Adlersberg MA, Gershon MD. Colonization of the developing pancreas by neural precursors from the bowel. Dev Dyn 1992; 194:142-54. [PMID: 1421524 DOI: 10.1002/aja.1001940207] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurons in ganglia of the myenteric plexus of the duodenum and stomach have recently been demonstrated to innervate pancreatic ganglia and transsynaptically to excite acinar and islet cells. The hypothesis that crest-derived cells first colonize the foregut and secondarily enter the pancreas by way of the pancreatic buds was tested. Studies were done with fetal rats (days E11-E15). Pancreatic rudiments and foregut were explanted separately and in co-culture. The development of neurons in the explants, identified by demonstrating the immunoreactivities of neurofilaments and growth-associated protein-43 (GAP-43), provided an indirect assay for the presence of neural precursors in the tissue at the time of explantation. Cells of putative neural crest origin were visualized immunocytochemically using the monoclonal antibody, NC-1. Additional markers included the immunoreactivities of dopamine-beta-hydroxylase (DBH), which is expressed by vagal crest-derived cells that colonize the bowel, neuropeptides (substance P and neuropeptide Y [NPY]) found in mature pancreatic neurons, and serotonin (5-HT), which is located in the cell bodies of enteric but not pancreatic neurons. Neurons were detected in cultures of foregut, but not pancreas, when these tissues were explanted by themselves at days E11 and E12. At E11 neural precursors did not leave explants of bowel or migrate into co-cultured pancreatic rudiments. When the foregut was explanted at E12, however, neural precursors migrated away from the bowel, giving rise both to distant ganglia and to neurons within co-cultured pancreatic rudiments. Intrapancreatic ganglia developed in the co-cultures even when the pancreatic attachment to the bowel was severed. Neurons appeared in pancreatic rudiments explanted by themselves on day E13. Neurons developing in pancreatic explants expressed the immunoreactivities of DBH, substance P, and NPY, but not 5-HT. These observations support the idea that pancreatic ganglia develop from crest-derived cells that first colonize the fetal rat foregut and there acquire the ability to colonize the pancreas. A later migration into the pancreatic rudiments of a subset of the original émigrés or their progeny between days E12 and E13 gives rise to a network of pancreatic ganglia that can be regarded as an extension of the enteric nervous system.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
28
|
Kirchgessner AL, Pintar JE. Guinea pig pancreatic ganglia: projections, transmitter content, and the type-specific localization of monoamine oxidase. J Comp Neurol 1991; 305:613-31. [PMID: 1710627 DOI: 10.1002/cne.903050407] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ganglionated plexus of the guinea pig pancreas was investigated by using histochemical, immunocytochemical, and tract-tracing methods in order to determine whether pancreatic ganglia are analogous to the ganglia of the enteric nervous system (ENS). Three lines of evidence suggest that the ganglia of the pancreas appear to be interconnected with one another, as are enteric ganglia. First, microinjections of the retrograde tracer Fluoro-Gold into individual pancreatic ganglia labeled the perikarya of neurons in distant pancreatic ganglia, whereas no labeling of neurons was observed if injections were placed in the connective tissue adjacent to pancreatic ganglia. Second, when the intercalating dye DiI was microinjected into single pancreatic ganglia in fixed tissues, DiI-labeled terminals were found in additional pancreatic ganglia. Finally, microinjections of the beta subunit of cholera toxin into individual pancreatic ganglia yielded similar results. The ganglionated plexus of the pancreas also expresses a diversity of transmitter content and cell type-specific localization of monoamine oxidase (MAO) that is analogous to the ENS. In common with guinea pig enteric ganglia, pancreatic ganglia contain highly varicose 5-hydroxytryptamine (5-HT)-immunoreactive axons and intrinsic neuropeptide Y (NPY)- and substance P (SP)-immunoreactive neurons. The vast majority, but not all, of SP-immunoreactive fibers in the pancreatic parenchyma also contain calcitonin gene-related peptide (CGRP) immunoreactivity. MAO-B was the primary type of MAO found in the intrinsic elements of the pancreas where it was located in neurons and fibers in the pancreatic parenchyma. In common with serotoninergic enteric neurons, MAO-B immunoreactivity was not found at the LM level in pancreatic serotoninergic neurites. In contrast, NPY- and tyrosine hydroxylase (TH)-immunoreactive perivascular axons were found to contain abundant MAO-A, but no MAO-B immunoreactivity. It is concluded that MAO-B immunoreactivity is characteristic of a portion of the intrinsic innervation of the pancreas, whereas MAO-A immunoreactivity is a marker for the extrinsic sympathetic innervation of the pancreas. Because of its receipt of a direct neural innervation from myenteric ganglia of the bowel (Kirchgessner and Gershon, '90: J. Neurosci 10:1626-1642), similar connections, transmitter content and localization of type-specific MAO, the ganglionated plexus of the pancreas should be regarded as an extension or subset of the ENS.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | |
Collapse
|