1
|
Federighi G, Asteriti S, Cangiano L. Lumbar spinal cord neurons putatively involved in ejaculation are sexually dimorphic in early postnatal mice. J Comp Neurol 2020; 528:624-636. [PMID: 31566721 DOI: 10.1002/cne.24776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023]
Abstract
A crucial role in ejaculation is thought to be played by a population of lumbar spino-thalamic neurons (LSt), which express galanin and other neuropeptides. In rats, these neurons are activated with ejaculation and their lesion selectively abolishes ejaculation but not other mating behaviors. Consistently with their role, in adult rats and humans, LSt neurons are sexually dimorphic, being more numerous in males. Here we examined whether sexual dimorphism arises early in development, using a transgenic mouse line in which the expression of fluorescent protein is driven by the galanin promoter. We focused on postnatal day 4, shortly after a transient perinatal androgen surge in males that could play an organizational role in LSt development. We found a population of brightly fluorescent neurons organized in bilateral columns dorsolateral to the central canal in segments L1-L5, the expected location of the LSt group. Their number was close to that of adult preparations and significantly greater in male than in female siblings (+19%; CI95% : +13% to +27%; p < .01). This was not due to a generalized higher galanin expression in the male since fluorescent L4 DRG neurons, innervating the hindlimbs and lower back, were not significantly dimorphic (-4%; CI95% : -10% to +8%; p = .92). Unexpectedly, we found in cervical segments a population of fluorescent neurons having a location relative to the central canal similar to the LSt. Thus, the LSt group is sexually dimorphic soon after birth. However, it is possible that only a subset of its neurons participate in the control of ejaculation.
Collapse
Affiliation(s)
| | - Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
3
|
Brumovsky P, Mennicken F, O'donnell D, Hökfelt T. Differential distribution and regulation of galanin receptors- 1 and -2 in the rat lumbar spinal cord. Brain Res 2006; 1085:111-20. [PMID: 16626647 DOI: 10.1016/j.brainres.2006.02.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 12/17/2022]
Abstract
The expression of the galanin receptor-1 and -2 (Gal(1) and Gal(2)) messenger ribonucleic acids (mRNAs) was studied in the lower spinal cord of rat by means of in situ hybridization, using ribonucleic acid probes (riboprobes). Naïve rats as well as rats with unilateral axotomy of the sciatic nerve or unilateral inflammation of the hindpaw were analyzed. In naïve rats, numerous Gal(1) mRNA-positive (+) neurons were detected in lamina (L) I-III. In addition, several Gal(1) mRNA(+) neurons were seen in deeper layers, including the ventral horns, area X, and the lateral spinal nucleus. In contrast, few and comparatively weakly labeled Gal(2) mRNA(+) neurons were observed, mostly in the ventral horns and in area X, with fewer in the dorsal horn and in the sympathetic and parasympathetic intermediate lateral cell columns. Axotomy induced a strong increase in intensity and number of Gal(2) mRNA(+) motoneurons ipsilateral to the lesion. In contrast, nerve cut or hindpaw inflammation did not alter the expression of Gal(1) or Gal(2) in the dorsal horn. The present (and previous) results suggest that galanin, acting through Gal(1) and Gal(2) receptors, has a modulatory role on spinal excitability, not only via interneurons in superficial dorsal horn, but also on neurons in deep layers and area X, as well as on the sympathetic and parasympathetic outflow. Furthermore, the nerve injury-induced Gal(2) upregulation in motor neurons suggests a role for galanin in survival/regeneration mechanisms.
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
4
|
Landry M, Liu HX, Shi TJ, Brumovsky P, Nagy F, Hökfelt T. Galaninergic mechanisms at the spinal level: focus on histochemical phenotyping. Neuropeptides 2005; 39:223-31. [PMID: 15893817 DOI: 10.1016/j.npep.2005.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
The 29/30 amino acid neuropeptide galanin is present in a small population of DRG neurons under normal condition but is strongly upregulated after nerve injury. There is evidence that this upregulated galanin has trophic actions, for example promoting neurite outgrowth as well as influencing pain processing. In fact, both pro- and antinociceptive effects have been reported, probably relating to activation of different receptors. It has been proposed that presynaptic GalR2 receptors are pro-nociceptive by enhancing release of excitatory transmitters in the dorsal horn, and anti-nociceptive via an action on GalR1-positive interneurons. These neurons have recently been shown to be glutamatergic. Several other peptides and molecules are also regulated by nerve injury. Here we focus on neuropeptide tyrosine (NPY), which is upregulated in parallel with galanin. We review data reporting on coexistence between galanin and NPY and between these two peptides and the two NPY receptors Y1 and Y2. The data show considerable overlap, and it will be an important task to analyse how cross-talk between these neuropeptides can influence pain processing. It is proposed that such cross-talk can occur by release of peptides from DRGs neuron somata within dorsal root ganglia. To what extent these mechanisms shown to exist in rodents also occur in human is important, if one wants to discuss novel strategies for pain treatment on the basis of these findings. So far information is limited, but it has been demonstrated that galanin is expressed in DRGs and possibly also regulated.
Collapse
Affiliation(s)
- M Landry
- INSERM E358, Institut Francois Magendie, Université Victor Segaleux Bordeaux 2, 146 rue Léo Saignat, 33077 Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
5
|
Landry M, Aman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hökfelt T. Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience 2003; 117:795-809. [PMID: 12654333 DOI: 10.1016/s0306-4522(02)00965-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human dorsal root ganglia (DRGs) were obtained during various procedures and processed for single and double in situ hybridisation using oligonucleotide probes complementary to three peptide mRNAs. Some postmortem ganglia were also analysed. In donor (unlesioned) DRGs 12.5% of the neuron profiles (NPs) were galanin mRNA-positive (mRNA(+)), 47.5% calcitonin gene-related peptide (CGRP) mRNA(+) and 32.7% substance P mRNA(+). The corresponding percentages for cervical/thoracic DRGs from patients suffering from severe brachial plexus injury were 32.8%, 57.4% and 34.5%, respectively. In these DRGs a high proportion of the galanin mRNA(+) NPs contained CGRP mRNA and substance P mRNA. In DRGs from a patient with migraine-like pain a comparatively small proportion expressed galanin, whereas in DRGs from a herpes zoster patient galanin mRNA(+) NPs were comparatively more frequent. The results from human postmortem DRGs revealed only weak peptide mRNA signals. The present results demonstrate that galanin is expressed in DRGs not only in a number of animal species including monkey as previously shown, but also in a considerable proportion of human DRG neurons, often together with CGRP and substance P, and mostly in small neurons. Thus, galanin may play a role in processing of sensory information, especially pain, in human DRGs and dorsal horn. However, to what extent a similarly dramatic upregulation of galanin expression can be seen after peripheral nerve lesion in man, as has been reported for rat, mouse and monkey, remains to be analysed.
Collapse
Affiliation(s)
- M Landry
- Department of Neuroscience, Retzius väg 8, B3:4, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arvidsson U, Risling M, Cullheim S, Dagerlind A, Lindå H, Shupliakov O, Ulfhake B, Hökfelt T. On the Distribution of GAP-43 and its Relation to Serotonin in Adult Monkey and Cat Spinal Cord and Lower Brainstem. Eur J Neurosci 2002; 4:777-784. [PMID: 12106322 DOI: 10.1111/j.1460-9568.1992.tb00187.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By use of a monoclonal antibody, the distribution of growth-associated protein (GAP)-43-like immunoreactivity (LI) has been studied in the spinal cord of adult grey monkeys (Macaca fascicularis) and adult cats by use of immunofluorescence and peroxidase - antiperoxidase techniques. The brainstem was also studied with in situ hybridization histochemistry. In both monkeys and cats, a dense innervation of GAP-43-immunoreactive (IR) fibres was seen in close apposition to large cell bodies and their processes in the motor nucleus of the ventral horn. Double-labelling experiments revealed a high degree of coexistence between GAP-43- and 5-hydroxytryptamine (5-HT, serotonin)-LI in the monkey motor nucleus, while in the cat no such colocalization could be verified. At the electron microscopic level, GAP-43 labelling was seen as a coating of vesicles and axolemma inside the terminals. In both monkey and cat, cell bodies expressing mRNA encoding GAP-43 were demonstrated in the medullary midline raphe nuclei. A similar location was also encountered for mRNA for aromatic l-amino acid decarboxylase, an enzyme found in both catecholamine- and serotonin-containing neurons. The present results suggest that GAP-43 is present in the 5-HT bulbospinal pathway of the monkey. In the cat, GAP-43 mRNA-expressing cell bodies were demonstrated in areas where descending 5-HT neurons are located, but no convincing colocalization of 5-HT- and GAP-43-LI was found at spinal cord levels, despite the existence of extensive fibre networks containing either of the two compounds. Possible explanations for this species discrepancy are discussed. The function of GAP-43 in nerve terminals impinging on the motoneurons is unknown. However, it may play a role in transmitter release and/or plasticity, since such roles have been proposed for this protein in other systems.
Collapse
|
7
|
Elcock C, Boissonade FM, Robinson PP. Neuropeptide expression in the ferret trigeminal ganglion following ligation of the inferior alveolar nerve. Arch Oral Biol 2001; 46:729-43. [PMID: 11389865 DOI: 10.1016/s0003-9969(01)00029-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have found changes in neuropeptide expression in trigeminal ganglion cells after inferior alveolar nerve (IAN) section. These changes may play a part in the persistent sensory abnormalities that can be experienced after trigeminal nerve injuries. Here, neuropeptide expression after IAN ligation was studied, as this type of injury is thought to be more likely to result in sensory disturbances. The neuropeptides investigated were substance P, calcitonin gene-related peptide, enkephalin (ENK), galanin (GAL), neuropeptide Y (NPY) and vasoactive intestinal polypeptide. In anaesthetised adult female ferrets the left IAN was sectioned and the central stump tightly ligated. Recovery was allowed for 3 days, 3 or 12 weeks before perfusion-fixation. In a second procedure, 1 week before perfusion, the IAN was exposed and an injection made central to the injury site, using a mixture of 4% Fluorogold and 4% Isolectin B4 conjugated to horseradish peroxidase, to identify cell bodies with axons in the inferior alveolar nerve and cells with unmyelinated axons within this population, respectively. Control experiments involved tracer injection alone. After harvesting the tissue, sagittal sections were taken from both the right and left ganglia and immunohistochemical staining used to reveal the presence of peptides and Isolectin B4 tracer. The results showed a significant decrease in GAL expression after injury and an increase in ENK and NPY expression. No significant differences were seen in the expression of the other peptides or in the proportion of lectin-positive cells at any time after injury. When compared with previous data, significant differences were found between peptide expression following nerve ligation and nerve section. These results reveal that the changes in neuropeptide expression in the trigeminal ganglion that follow IAN injury are dependent upon the type of injury. The extent to which changes in the central neuropeptide levels contribute to the development of sensory disorders remains to be established.
Collapse
Affiliation(s)
- C Elcock
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, S10 2TA, Sheffield, UK.
| | | | | |
Collapse
|
8
|
Elcock C, Boissonade FM, Robinson PP. Changes in neuropeptide expression in the trigeminal ganglion following inferior alveolar nerve section in the ferret. Neuroscience 2001; 102:655-67. [PMID: 11226702 DOI: 10.1016/s0306-4522(00)00508-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in neuropeptide expression in afferent nerve fibres may play a role in the persistent sensory abnormalities that can be experienced following trigeminal nerve injuries. We have therefore studied changes in the expression of the neuropeptides substance P, calcitonin gene-related peptide, enkephalin, galanin, neuropeptide Y and vasoactive intestinal polypeptide in the trigeminal ganglion following peripheral nerve injury. In anaesthetised adult female ferrets, the left inferior alveolar nerve was sectioned and recovery allowed for three days, three weeks or 12 weeks prior to perfusion-fixation. During a second procedure, one week prior to perfusion, the inferior alveolar nerve was exposed and an injection made central to the injury site using a mixture of 4 % Fluorogold and 4 % isolectin B4 conjugated to horseradish peroxidase to identify cell bodies with axons in the inferior alveolar nerve and cells with unmyelinated axons within this population, respectively. Control animals received tracer injection alone. After harvesting the tissue, sagittal sections were taken from both the right and left ganglia and immunohistochemical staining was used to reveal the presence of peptides and isolectin B4-horseradish peroxidase tracer. Within the Fluorogold-labelled population, cell counts revealed a significant reduction in the proportion of substance P-containing cells at three days (P = 0.0025), three weeks (P = 0.0094) and three months (P = 0.0149) after nerve section, and a significant reduction in the proportion of calcitonin gene-related peptide-containing cells at three days (P = 0.0003) and three weeks (P = 0.007). No significant changes were seen in the expression of the other peptides, or at other time periods. A significant reduction in the number of isolectin B4-horseradish peroxidase-positive cells (with unmyelinated axons) was seen at three days (P = 0.0025), three weeks (P = 0.0074) and three months after the injury (P = 0.0133). These results demonstrate a significant reduction in the expression of some neuropeptides in the early stages after inferior alveolar nerve section. Some of the results differ markedly from those reported previously in other systems, and may be related to the specific nerve studied, species variations or differences between spinal and trigeminal nerves.
Collapse
Affiliation(s)
- C Elcock
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, S10 2TA, Sheffield, UK.
| | | | | |
Collapse
|
9
|
Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull 2000; 53:689-710. [PMID: 11165804 DOI: 10.1016/s0361-9230(00)00402-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past 40 years, much has been learned about the role of serotonin in spinal cord reflex modulation and locomotor pattern generation. This review presents an historical overview and current perspective of this literature. The primary focus is on the mammalian nervous system. However, where relevant, major insights provided by lower vertebrate models are presented. Recent studies suggest that serotonin-sensitive locomotor network components are distributed throughout the spinal cord and the supralumbar regions are of particular importance. In addition, different serotonin receptor subtypes appear to have different rostrocaudal distributions within the locomotor network. It is speculated that serotonin may influence pattern generation at the cellular level through modulation of plateau properties, an interplay with N-methyl-D-aspartate receptor actions, and afterhyperpolarization regulation. This review also summarizes the origin and maturation of bulbospinal serotonergic projections, serotonin receptor distribution in the spinal cord, the complex actions of serotonin on segmental neurons and reflex pathways, the potential role of serotonergic systems in promoting spinal cord maturation, and evidence suggesting serotonin may influence functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- B J Schmidt
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
10
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
11
|
Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas AP, Pieribone V, Seroogy K, Ulfhake B. Multiple messengers in descending serotonin neurons: localization and functional implications. J Chem Neuroanat 2000; 18:75-86. [PMID: 10708921 DOI: 10.1016/s0891-0618(99)00037-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In the present review article we summarize mainly histochemical work dealing with descending bulbospinal serotonin neurons which also express a number of neuropeptides, in particular substance P and thyrotropin releasing hormone. Such neurons have been observed both in rat, cat and monkey, and may preferentially innervate the ventral horns of the spinal cord, whereas the serotonin projections to the dorsal horn seem to lack these coexisting peptides. More recent studies indicate that a small population of medullary raphe serotonin neurons, especially at rostral levels, also synthesize the inhibitory neurotransmitter gamma-amino butyric acid (GABA). Many serotonin neurons contain the glutamate synthesizing enzyme glutaminase and can be labelled with antibodies raised against glutamate, suggesting that one and the same neuron may release several signalling substances, causing a wide spectrum of post- (and pre-) synaptic actions.
Collapse
Affiliation(s)
- T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Box 60 400, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stefani MR, Gold PE. Intra-septal injections of glucose and glibenclamide attenuate galanin-induced spontaneous alternation performance deficits in the rat. Brain Res 1998; 813:50-6. [PMID: 9824666 DOI: 10.1016/s0006-8993(98)00876-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injection of the neuroactive peptide galanin into the rat hippocampus and medial septal area impairs spatial memory and cholinergic system activity. Conversely, injection of glucose into these same brain regions enhances spatial memory and cholinergic system activity. Glucose and galanin may both modulate neuronal activity via opposing actions at ATP-sensitive K+ (K-ATP) channels. The experiments described in this report tested the ability of glucose and the direct K-ATP channel blocker glibenclamide to attenuate galanin-induced impairments in spontaneous alternation performance in the rat. Intra-septal injection of galanin (2.5 microgram), 30 min prior to plus-maze spontaneous alternation performance, significantly decreased alternation scores compared to those of rats receiving injections of vehicle solution. Co-injection of glucose (20 nmol) or the K-ATP channel blocker glibenclamide (5 nmol) attenuated the galanin-induced performance deficits. Glibenclamide produced an inverted-U dose-response curve in its interaction with galanin, with doses of 0.5 and 10 nmol having no effect on galanin-induced spontaneous alternation deficits. Drug treatments did not alter motor activity, as measured by overall number of arm entries during spontaneous alternation testing, relative to vehicle injected controls. These findings support the hypothesis that, in the septal region, galanin and glucose act via K-ATP channels to modulate neural function and behavior.
Collapse
Affiliation(s)
- M R Stefani
- Neuroscience Graduate Program and Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
13
|
Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:28-66. [PMID: 9233541 DOI: 10.1016/s0165-0173(97)00010-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsal horn of the spinal cord is a primary receiving area for somatosensory input and contains high concentrations of a large variety of receptors. These receptors tend to congregate in lamina II, which is a major receiving center for fine, presumably nociceptive, somatosensory input. There are rapid reorganizations of many of these receptors in response to various stimuli or pathological situations. These receptor localizations in the normal and their changes after various pertubations modify present concepts about the wiring diagram of the nervous system. Accordingly, the present work reviews the receptor localizations and relates them to classic organizational patterns in the mammalian dorsal horn.
Collapse
Affiliation(s)
- R E Coggeshall
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
14
|
|
15
|
Maxwell L, Maxwell DJ, Neilson M, Kerr R. A confocal microscopic survey of serotoninergic axons in the lumbar spinal cord of the rat: co-localization with glutamate decarboxylase and neuropeptides. Neuroscience 1996; 75:471-80. [PMID: 8931011 DOI: 10.1016/0306-4522(96)00366-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Patterns of co-localization of serotonin with glutamate decarboxylase (the synthetic enzyme for GABA) or each one of eight neuropeptides (calcitonin gene-related peptide, dynorphin, enkephalin, galanin, neuropeptide Y, neurotensin, substance P and somatostatin) were investigated with dual-colour confocal laser scanning microscopy in the lumbar spinal cords of three adult rats. Four regions of the gray matter were studied (laminae I-II, V, IX and X). The extent of co-localization was estimated by direct assessment of merged pairs of optical sections and by automated image analysis. Co-localization of serotonin and glutamate decarboxylase was found only in a few axons of laminae I-II but was not detected in other laminae. Peptides were not co-localized with serotonin in the superficial dorsal horn but considerable co-localization was found in motor nuclei and sparse co-localization was found in laminae V and X. Galanin and substance P frequently co-existed with serotonin in lamina IX but some co-localization with dynorphin, somatostatin, [Met]enkephalin and neuropeptide Y was also detected. Galanin, substance P and dynorphin were also co-localized with serotonin in a few axons of the deep dorsal horn and in the gray matter around the central canal. Neurotensin and calcitonin gene-related compound did not co-exist with serotonin in any of the laminae investigated. This evidence suggests that different populations of serotoninergic axons project to different regions of the spinal gray matter. Those containing glutamate decarboxylase terminate in the superficial dorsal horn and are likely to be involved in antinociception, whereas those containing peptides terminate principally in motor nuclei and are likely to modulate motor activity.
Collapse
Affiliation(s)
- L Maxwell
- Laboratory of Human Anatomy, University of Glasgow, U.K
| | | | | | | |
Collapse
|
16
|
Abstract
Like non-peptidergic transmitters, neuropeptides and their receptors display a wide distribution in specific cell types of the nervous system. The peptides are synthesized, typically as part of a larger precursor molecule, on the rough endoplasmic reticulum in the cell body. In the trans-Golgi network, they are sorted to the regulated secretory pathway, packaged into so-called large dense-core vesicles, and concentrated. Large dense-core vesicles are preferentially located at sites distant from active zones of synapses. Exocytosis may occur not only at synaptic specializations in axonal terminals but frequently also at nonsynaptic release sites throughout the neuron. Large dense-core vesicles are distinguished from small, clear synaptic vesicles, which contain "classical' transmitters, by their morphological appearance and, partially, their biochemical composition, the mode of stimulation required for release, the type of calcium channels involved in the exocytotic process, and the time course of recovery after stimulation. The frequently observed "diffuse' release of neuropeptides and their occurrence also in areas distant to release sites is paralleled by the existence of pronounced peptide-peptide receptor mismatches found at the light microscopic and ultrastructural level. Coexistence of neuropeptides with other peptidergic and non-peptidergic substances within the same neuron or even within the same vesicle has been established for numerous neuronal systems. In addition to exerting excitatory and inhibitory transmitter-like effects and modulating the release of other neuroactive substances in the nervous system, several neuropeptides are involved in the regulation of neuronal development.
Collapse
Affiliation(s)
- G K Zupanc
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Physikalische Biologie, Tübingen, Germany.
| |
Collapse
|
17
|
Rydh-Rinder M, Holmberg K, Elfvin LG, Wiesenfeld-Hallin Z, Hokfelt T. Effects of peripheral axotomy on neuropeptides and nitric oxide synthase in dorsal root ganglia and spinal cord of the guinea pig: an immunohistochemical study. Brain Res 1996; 707:180-8. [PMID: 8919294 DOI: 10.1016/0006-8993(95)01231-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of axotomy (3, 10 and 21 days) on the expression of some neuronal markers was analysed in dorsal root ganglia and spinal cord of guinea-pigs using immunohistochemistry. Three weeks following injury, substance P-like immunoreactivity (-LI) was slightly reduced in the DRGs of the ipsilateral side, whereas a marked increase in neuropeptide Y(NPY)-LI could be detected ipsilaterally and a smaller increase contralaterally. NPY-LI was mainly expressed in small, but also some medium-sized and large neuron profiles after axotomy. Galanin-LI showed a moderate bilateral increase. No significant changes could be observed in DRGs for calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- or nitric oxide synthase-LIs. In the ventral horn CGRP-LI was slightly increased bilaterally in motoneurons, most pronounced on the injured side. Autotomy behaviour was seen in seven of the nine animals in the twenty-one day group. The present results demonstrate that also in guinea-pigs several peptides undergo distinct changes in their expression after peripheral nerve injury. However, in contrast to rats and monkeys, galanin-LI is only moderately increased in guinea-pigs. Neuropeptide Y showed a dramatic increase mainly in small neurons, in contrast to the upregulation in large neurons in the rat. Thus, distinct species differences exist with regard to the cellular response to nerve injury.
Collapse
|
18
|
Holstege JC. The ventro-medial medullary projections to spinal motoneurons: ultrastructure, transmitters and functional aspects. PROGRESS IN BRAIN RESEARCH 1996; 107:159-81. [PMID: 8782519 DOI: 10.1016/s0079-6123(08)61864-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J C Holstege
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Cullheim S, Arvidsson U. The peptidergic innervation of spinal motoneurons via the bulbospinal 5-hydroxytryptamine pathway. PROGRESS IN BRAIN RESEARCH 1995; 104:21-40. [PMID: 8552770 DOI: 10.1016/s0079-6123(08)61782-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Cullheim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
20
|
Grimes PA, McGlinn AM, Koeberlein B, Stone RA. Galanin immunoreactivity in autonomic innervation of the cat eye. J Comp Neurol 1994; 348:234-43. [PMID: 7529268 DOI: 10.1002/cne.903480206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In an immunohistochemical study, we find that galanin is much more widely distributed in the peripheral innervation of the cat eye than in other animals so far examined. Previous studies of rat and pig eyes have revealed sparse galanin-positive nerves that presumably originate in the trigeminal ganglion. In contrast, the cat has a rich supply of galanin-containing nerve fibers throughout the uvea. Galanin-positive varicose nerves concentrate densely in iris muscles and distribute more sparsely in the ciliary muscle. The ciliary processes have a plexus of galanin-positive nerves underlying the ciliary epithelium at their base and positive nerve fibers coursing within their stroma. The ciliary artery and its branch vessels in the uvea are invested with a dense plexus of galanin-positive nerves. All autonomic ganglia supplying the eye contain cells that express galanin. It is present in 97% of superior cervical ganglion cells, coexisting with both tyrosine hydroxylase and neuropeptide Y; in 80% of pterygopalatine ganglion cells, most of which also contain vasoactive intestinal peptide; and in approximately 25% of ciliary ganglion cells. After unilateral superior cervical ganglionectomy, galanin-positive nerves almost totally disappear from the iris muscles, demonstrating that they are predominantly of sympathetic origin. Galanin-positive nerves investing the ciliary artery and choroidal blood vessels are not detectably reduced by sympathectomy, indicating that perivascular parasympathetic nerves from the pterygopalatine ganglion also express galanin. Other galanin-containing nerves in the eye can originate from the trigeminal and ciliary ganglia. The prominence of galanin in the ocular autonomic innervation of the cat provides an opportunity to explore the physiological effects of this neuropeptide in the eye.
Collapse
Affiliation(s)
- P A Grimes
- Department of Ophthalmology, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
21
|
Arvidsson U, Cullheim S, Ulfhake B, Luppi PH, Kitahama K, Jouvet M, Hökfelt T. Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. J Chem Neuroanat 1994; 7:3-12. [PMID: 7528511 DOI: 10.1016/0891-0618(94)90003-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By use of the indirect immunofluorescence technique the distributions of 5-hydroxytryptamine (5-HT)-, substance P- and thyrotropin-releasing hormone (TRH)-immunoreactive (IR) neurons have been studied in the midline raphe nuclei and nucleus reticularis lateralis of the caudal brainstem (levels P18.3-P8.5; according to Berman (1968), in the cat, after treatment with colchicine. In addition, by use of the double-labelling technique, the coexistence between 5-HT-, substance P- and TRH-like immunoreactivity (LI) in these neurons was analysed. The results show that cell bodies in the midline raphe nuclei and nucleus reticularis lateralis contain 5-HT-, substance P- and TRH-LI. 5-HT-IR cells were more abundant than peptidergic neurons in all areas analysed. Quantitative estimations indicated that the total number of 5-HT-IR cells in the regions studied was about 17 x 10(3), while the corresponding numbers for substance P- and TRH-IR cells were 11 x 10(3) and 12 x 10(3), respectively. From double-labelled sections it was concluded that the vast majority of peptidergic cells also contained 5-HT-LI (87-100%). However, a subpopulation of 5-HT-IR neurons lacked peptide-LI (10-55%). The degree of coexistence varied with the brainstem level, in that neurons at more rostral locations showed a lower incidence of coexistence between 5-HT and peptide(s). The presence of all three compounds in one and the same cell body could also be demonstrated. In summary, 5-HT-, substance P- and TRH-IR cell bodies were encountered in medullary nuclei known to contain neurons with projection to the spinal cord. A high degree of coexistence between the compounds was demonstrated in these nuclei. The obtained results fit well with earlier studies on the patterns of distribution and peptide colocalization of 5-HT fibres in the spinal cord. The existence of biochemically distinct neuronal subpopulations within the 5-HT bulbospinal pathway is discussed.
Collapse
Affiliation(s)
- U Arvidsson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Suh HW, Song DK, Choi YS, Cheon SH, Kim YH. Differential effects of intrathecally injected galanin on antinociception induced by beta-endorphin and morphine administered intracerebroventricularly in mice. Neuropeptides 1994; 26:297-303. [PMID: 7520552 DOI: 10.1016/0143-4179(94)90114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of intrathecal (i.t.) and intracerebroventricular (i.c.v.) treatments with galanin on inhibition of the tail-flick and paw-licking hot-plate responses induced by beta-endorphin and morphine administered i.c.v. were studied in ICR mice. Galanin (100 ng) given i.t. effectively antagonized inhibition of the tail-flick response induced by i.c.v. administered beta-endorphin (1 microgram) but not morphine (1 microgram). However, the same dose of galanin given i.t. did not affect inhibition of the hot-plate response induced by beta-endorphin and morphine administered i.c.v. Intrathecal treatment with various doses of galanin (0.1-100 ng) dose-dependently antagonized the inhibition of the tail-flick response induced by beta-endorphin administered i.c.v. Galanin (100 ng) in combination with beta-endorphin (1 microgram) or morphine (1 microgram) given i.c.v. did not affect beta-endorphin- or morphine-induced inhibition of the tail-flick and hot-plate responses. It is concluded that galanin given i.t. selectively attenuates i.c.v. beta-endorphin-induced inhibition of the tail-flick response by inhibiting descending epsilon-opioid system activated by supraspinally applied beta-endorphin.
Collapse
Affiliation(s)
- H W Suh
- Department of Pharmacology, College of Medicine, Hallym University, Kangwon-Do, Korea
| | | | | | | | | |
Collapse
|
23
|
Zhang X, Nicholas AP, Hökfelt T. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 1993; 57:365-84. [PMID: 7509467 DOI: 10.1016/0306-4522(93)90069-r] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to investigate galanin-like immunoreactivity in primary afferent terminals and its relationship to other neuropeptides in laminae I and II of the fourth and fifth lumbar segments of normal rat spinal cord using immunofluorescence and pre- and post-embedding electron-microscopic immunocytochemistry. Triple-immunofluorescence staining showed that galanin-like immunoreactivity co-localized with substance P- and calcitonin gene-related peptide-like immunoreactivities in many nerve fibres and terminals in laminae I and II of the dorsal horn. At the ultrastructural level, using pre-embedding immunocytochemistry, galanin-like immunoreactivity was found in type I glomeruli with an electron-dense central terminal containing many densely packed synaptic vesicles and several large dense-core vesicles. Both the cytoplasm and the core of the large vesicles were immunoreactive. In type II glomeruli with an electron-lucent central terminal and loosely packed synaptic vesicles the large dense-core vesicles and the cytoplasm were only weakly galanin-positive. Post-embedding immunocytochemistry revealed that galanin-like immunoreactivity co-existed with substance P- and calcitonin gene-related peptide-like immunoreactivities in many terminals and in individual large dense-core vesicles in lamina II. These terminals were considered to represent primary afferents, since there is evidence that calcitonin gene-related peptide in the dorsal horn only occurs in nerve endings originating in dorsal root ganglia. Evidence was also unexpectedly obtained for the occurrence of several other peptides in calcitonin gene-related peptide-positive terminals, i.e. in presumably primary afferents. Thus galanin-like immunoreactivity sometimes also co-localized with cholecystokinin- and neuropeptide tyrosine-like immunoreactivities in calcitonin gene-related peptide-immunoreactive terminals and in some large dense-core vesicles in such terminals. A small number of calcitonin gene-related peptide immunoreactive, presumably primary afferent terminals contained enkephalin-, neurotensin- (and galanin-)like immunoreactivities. These results indicated that galanin can be co-stored with several other neuropeptides in large dense-core vesicles in primary afferent terminals and may presumably be released together with them in the superficial layer of the dorsal horn. Since various combinations of peptides, presumably at varying concentrations, occur in the large dense-core vesicles in a given nerve ending, it is likely that the individual large dense-core vesicles produced in a neuron are heterogenous with regard to peptide content and thus to the message that they transmit upon release.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Benzing WC, Kordower JH, Mufson EJ. Galanin immunoreactivity within the primate basal forebrain: evolutionary change between monkeys and apes. J Comp Neurol 1993; 336:31-9. [PMID: 7504703 DOI: 10.1002/cne.903360103] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Galanin immunoreactivity (GAL-ir) is differentially expressed within the basal forebrain of monkeys and humans. Most monkey magnocellular basal forebrain neurons colocalize GAL-ir. In contrast, virtually no human magnocellular basal forebrain neurons express GAL-ir. Rather, an extrinsic galaninergic fiber plexus innervates these neurons in humans. The present study examined the expression of GAL-ir within the basal forebrain of apes to establish the phylogenetic level at which this transformation occurs. The staining patterns of GAL-ir within the basal forebrain of both lesser (gibbons) and great (chimpanzee and gorilla) apes were compared to that previously observed within monkeys and humans. All apes displayed a pattern of basal forebrain GAL-ir indistinguishable from humans. GAL-ir was not expressed within ape basal forebrain magnocellular neurons as seen in monkeys. Rather like humans, a dense collection of GAL-ir fibers was seen in close apposition to magnocellular perikarya. In addition, a few GAL-ir parvicellular neurons were scattered within the ape basal forebrain. These data indicate that the evolutionary change in the expression of GAL-ir within the primate basal forebrain occurs at the branch point of monkeys and apes.
Collapse
Affiliation(s)
- W C Benzing
- Department of Neurological Sciences, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612
| | | | | |
Collapse
|
25
|
Johnson H, Ulfhake B, Dagerlind A, Bennett GW, Fone KC, Hökfelt T. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus. Synapse 1993; 15:63-89. [PMID: 7508641 DOI: 10.1002/syn.890150108] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 5-hydroxytryptamine (5HT) containing bulbospinal pathway was studied with immunohistochemical (IF) and chemical techniques in 2-3 and 30 months old male Sprague-Dawley rats. The coexisting neuropeptides substance P (SP), thyrotropin-releasing hormone (TRH) and galanin were also analysed. Furthermore, the expression of mRNA encoding aromatic L-amino acid decarboxylase (AADC), prepro-TRH, and preprotachykinin (prepro-SP) was analysed with in situ hybridization (ISH) in the midline raphé nuclei inthe lower brainstem. The results showed a decreased number of axonal 5HT fibers with a normal morphology in the ventral horn of the aged rat lumbosacral spinal cord, and several 5HT immunoreactive (IR) fibers with an aberrant morphology, suggestive of axonal degeneration, were intermingled. This was evident in both the dorsal and ventral horn of the spinal cord. The 5HT-IR fibers with an aberrant morphology usually also contained TRH-and/or SP- and/or galanin-like immunoreactivity (LI) in the ventral horn. These signs of degeneration were clearly less evident in the thoracic and cervical spinal cord segments. Moreover, these changes varied between aged litter-mates. This was in agreement with behavioural signs of motor disturbances, present in about 40% of the aged rats and which in all cases were confined to the hindlimbs. Chemical analyses disclosed significantly lower levels of TRH-LI and, in particular, SP-LI in both the ventral and dorsal quandrants of the spinal cord in the aged rat compared to young adults. The differences were largest in the lumbar regions of the spinal cord. Corresponding analysis of 5HT and 5-hydroxyindoleacetic acid (5HIAA) in the same tissue specimens revealed largely unaltered levels of 5HT and a slight increase in 5HIAA, indicating the possibility of an increased 5HT turnover in the aged rat spinal cord. Neurons in nucleus raphé obscurus and nucleus raphé pallidus were immunoreactive to 5HT, and after pretreatment with colchicine to TRH-, SP-, and galanin-LI as well. There was no obvious difference in number of labeled cells, or labeling intensity, between colchicine-treated young adult and aged rats, although, in the corresponding region of medulla oblongata, chemical analysis disclosed significantly lower levels of 5HT, TRH, and, in particular, SP in untreated aged rats. In contrast, in situ hybridization analysis revealed increased mRNA levels encoding prepro-TRH and prepro-SP in old rats, while mRNA content encoding AADC mRNA was similar in young adult and aged rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H Johnson
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Lopes P, Kar S, Tousignant C, Regoli D, Quirion R, Couture R. Autoradiographic localization of [125I-Tyr8]-bradykinin receptor binding sites in the guinea pig spinal cord. Synapse 1993; 15:48-57. [PMID: 8310425 DOI: 10.1002/syn.890150106] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study aimed to localize and characterize [125I-Tyr8]-BK binding sites in all major segments of the guinea pig spinal cord using in vitro quantitative receptor autoradiography. [125I-Tyr8]-BK specific binding sites were localized predominantly in superficial layers of the dorsal horn, with lamina II depicting the highest labelling. The density of specific binding in laminae I and III was moderate, whereas in other areas, i.e., laminae IV-X, lower amounts of labelling were noticed. The B2 receptor antagonists D-Arg[Hyp3,Thi5,D-Tic7,Oic8]-BK (Hoe 140), D-Arg[Hyp3,D-Phe7,Leu8]-BK, Tyr0,D-Arg[Hyp3,D-Phe7,Leu8]-BK, D-Arg[Tyr3,D-Phe7,Leu8]-BK, D-Arg[Hyp2,Thi5,8,D-Phe7]-BK, D-Arg[Hyp3,Leu8]-BK and D-Arg[Hyp3,Gly6,Leu8]-BK as well as unlabelled [Tyr8]-BK inhibited [125I-Tyr8]-BK binding with respective Ki values of 0.04, 12.4, 23.4, 34.5, 43.5, 33.5, 23.0, and 0.6 nM while B1 related molecules (Tyr0,des-Arg10-kallidin and [Leu8]-des-Arg9-BK) did not significantly inhibit [125I-Tyr8]-BK binding up to micromolar concentrations. These results indicate that the specific [125I-Tyr8]-BK binding sites present in the guinea pig spinal cord belong to the B2 receptor subtype. The high density of B2 binding sites in the substantia gelatinosa provides an anatomical evidence in favour of a role for BK as a modulator of nociceptive information.
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, University of Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Wall JT, Rhoades RW. Lesion-induced changes in the central terminal distribution of galanin-immunoreactive axons in the dorsal column nuclei. J Comp Neurol 1993; 332:378-89. [PMID: 7687258 DOI: 10.1002/cne.903320309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rats that sustained forelimb removal on either embryonic day (E) 16, on the day of birth (P-0), or transection of the brachial plexus in adulthood had brainstem sections stained for galanin, calcitonin gene-related peptide (CGRP), or substance P (SP) at various intervals after these lesions were made. In normal adult rats, only a few galanin-immunoreactive fibers are present in the cuneate nucleus and most are located in its caudal portion. CGRP-positive axons are also sparse in the cuneate and are distributed mainly in the periphery of the nucleus. SP-positive axons are seen throughout the cuneate nucleus. In rats that sustained forelimb removals at birth or transection of the brachial plexus in adulthood, dense galanin immunoreactivity was present throughout the cuneate nucleus at all rostrocaudal levels on the side of the brainstem ipsilateral to the lesion. The changes after lesions that were made in the adult animals were apparent within 1 week, the earliest time analyzed. Increases in galanin immunoreactivity in the cuneate of animals that sustained forelimb removals on P-0 were first visible on P-2. Neither forelimb removal at birth nor brachial plexus lesions in adulthood had any qualitative effect upon the distribution or density of CGRP- or SP-immunoreactivity in the cuneate nucleus. Removal of a forelimb on E-16 did not increase the density of galanin-immunoreactive fibers in the cuneate nucleus. Such lesions also failed to produce any appreciable change in the density of either CGRP- or SP-positive fibers in the cuneate nucleus. The present data raise the possibility that large caliber, non-peptidergic primary afferent axons which innervate the cuneate nucleus may express galanin after damage at birth or in adulthood.
Collapse
Affiliation(s)
- B F Hoeflinger
- Department of Anatomy, Medical College of Ohio, Toledo 43699-0008
| | | | | | | | | | | |
Collapse
|
28
|
Zhang X, Ju G, Elde R, Hökfelt T. Effect of peripheral nerve cut on neuropeptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin. JOURNAL OF NEUROCYTOLOGY 1993; 22:342-81. [PMID: 7686215 DOI: 10.1007/bf01195558] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using the indirect immunofluorescence method and in situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatta) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin- or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- X Zhang
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
The effects of estradiol and growth hormone-releasing hormone (GHRH) on galanin release from anterior pituitary cells were examined in vitro. 17-beta-Estradiol (0.001-10 nM) increased galanin secretion from anterior pituitary cells in a concentration-dependent manner. Estradiol (10 nM) increased galanin release 300 and 600% from pituitary cells of ovariectomized and male rats, respectively. Immunocytochemical studies demonstrated that estradiol (10 nM) increased the number of galanin-containing cells twofold after 4 days in culture. Growth hormone-releasing hormone (1 and 10 nM) increased and SRIF (1 and 10 nM) decreased galanin release from pituitary cells of ovariectomized and male rats. We conclude that estradiol increases galanin release by a direct effect on pituitary cells, in part by increasing the number of pituitary cells synthesizing galanin. In addition, GHRH stimulates galanin release when estradiol levels are low.
Collapse
Affiliation(s)
- A Hemmer
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington 40536
| | | |
Collapse
|
30
|
Ellenberger HH, Vera PL, Feldman JL, Holets VR. Multiple putative neuromessenger inputs to the phrenic nucleus in rat. J Chem Neuroanat 1992; 5:375-82. [PMID: 1384555 DOI: 10.1016/0891-0618(92)90053-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunohistochemical reactions for 12 putative neuromessengers combined with retrograde labeling of phrenic motoneurons identified seven neuromessengers (5-hydroxytryptamine, substance P, thyrotropin-releasing hormone, methionine enkephalin, cholecystokinin, galanin, neuropeptide Y) located within terminal varicosities in the phrenic nucleus. The degree of terminal labeling in the phrenic nucleus varied depending on the peptide. Substance P, thyrotropin-releasing hormone and methionine enkephalin were each tested for colocalization with 5-hydroxytryptamine within terminal varicosities in the phrenic nucleus, and the coincidence of double-labeling varied for each peptide. These results indicate that phrenic motoneurons are subject to modulation by many peptide neuromessengers that may alter their responsiveness to primary excitatory and inhibitory inputs.
Collapse
Affiliation(s)
- H H Ellenberger
- Department of Physiological Science, University of California, Los Angeles 90024-1527
| | | | | | | |
Collapse
|
31
|
Mufson EJ, Brashers-Krug T, Kordower JH. p75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Res 1992; 589:115-23. [PMID: 1422811 DOI: 10.1016/0006-8993(92)91169-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of nerve growth factor receptor (NGFR) immunoreactive profiles was investigated in the adult human brainstem and spinal cord using a monoclonal antibody directed against the primate low affinity (p75) NGFR. In the human brainstem, p75NGFR immunoreactive profiles were seen within the mesencephalic and descending nucleus of the trigeminal nerve, the nucleus and tractus solitarius, glossopharyngeal nerve, hypoglossal nucleus, nucleus subtrigeminalis, subnucleus ventralis of the central nucleus of the medulla, nucleus cuneatus and gracilis. At the level of the upper cervical spinal cord, p75NGFR immunoreactive profiles were also seen within the incoming dorsal roots, zone of Lissauer and substantia gelatanosa (lamina II). Virtually no immunoreactivity was associated with cervical spinal cord motor neurons. The demonstration of the p75NGFR in brainstem and spinal cord regions associated with the central transmission of peripheral sensory information suggests that these systems may be influenced by the trophic substance nerve growth factor.
Collapse
Affiliation(s)
- E J Mufson
- Department of Neurological Sciences, Rush Alzheimer's Research Disease Center, Chicago, IL 60612
| | | | | |
Collapse
|
32
|
Arvidsson U, Ulfhake B, Cullheim S, Shupliakov O, Brodin E, Franck J, Bennett GW, Fone KC, Visser TJ, Hökfelt T. Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract. J Comp Neurol 1992; 322:293-310. [PMID: 1517482 DOI: 10.1002/cne.903220302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of thyrotropin-releasing hormone (TRH)-like immunoreactivity (LI) has been studied in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata by the use of indirect immunofluorescence and the peroxidase-antiperoxidase (PAP) technique. Furthermore, double-labeling experiments were performed in order to study colocalization of 5-hydroxytryptamine (5-HT)- and substance P-LI. A dense innervation of TRH-immunoreactive (IR) varicose fibers was found in the ventral horn motor nuclei, in the region surrounding the central canal, in the intermediolateral cell column, and in the dorsal horn laminae II and III. In addition, cell bodies harboring TRH-LI were found in the dorsal horn laminae II-IV. In the ventral horn, many of the large cell bodies and their proximal dendrites were totally encapsulated by TRH-IR fibers. From double-labeled sections a high degree of coexistence could be established between TRH-/5-HT-LI, TRH-/substance P-LI, and 5-HT-/substance P-LI in fibers in the motor nuclei; as a consequence, a large proportion of these fibers should harbor TRH-/5-HT-/substance P-LI. A coexistence between TRH-/5-HT-LI could also be demonstrated in the intermediolateral cell column. However, no unequivocal coexistence could be found between TRH-/substance P-LI and 5-HT-/substance P-LI in this region. In the dorsal horn, no clear coexistence could be encountered for any of the above indicated combinations. Electron microscopic analysis of material from the lumbar lateral motor nucleus demonstrated TRH-IR terminals making synapses with large cell bodies and dendrites. In addition, contacts lacking synaptic specializations could also be verified. In the medulla oblongata, with the use of the PAP technique, a large number of cell bodies containing TRH-LI were encountered in the midline raphe nuclei and in nucleus reticularis lateralis. A similar distribution pattern could be found for 5-HT-LI, but no cell bodies containing substance P-LI could be seen in these regions. Chemical analysis of specimens from cervical, thoracic, and lumbar spinal cord revealed higher concentrations of TRH- and 5-HT-LI in the ventral quadrants, whereas substance P-LI dominated in the dorsal quadrants. Thus, the concentrations of TRH-, 5-HT-, and substance P-LI was in accordance with the observed regional variation in density of IR-fibers and varicosities found in the spinal cord. We have shown that TRH-LI has a distribution in the monkey spinal cord and medulla oblongata similar to that previously demonstrated in other species.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- U Arvidsson
- Department of Anatomy, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arvidsson U, Cullheim S, Ulfhake B, Ramírez V, Dagerlind A, Luppi PH, Kitahama K, Jouvet M, Terenius L, Aman K. Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse 1992; 11:85-104. [PMID: 1626315 DOI: 10.1002/syn.890110202] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of enkephalin (ENK)-like immunoreactivity (LI) in spinal cord and medulla oblongata of cat and gray monkey (Macaca fascicularis) was studied by use of immunofluorescence and peroxidase antiperoxidase (PAP) techniques. Possible coexistence between ENK- and 5-hydroxytryptamine (5-HT)-LI was also analyzed with double labeling immunofluorescence. Furthermore, in situ hybridization was used to demonstrate cell bodies in the brain stem expressing mRNA encoding for ENK. ENK-immunoreactive (IR) axonal varicosities and fibers were demonstrated throughout the spinal cord gray matter, with the highest density in the superficial dorsal horn, the area around the central canal, the intermediolateral cell column, the sacral parasympathetic nucleus, and in Onuf's nucleus. In the monkey ventral horn, ENK-IR varicose fibers could in some cases be demonstrated in very close apposition to cell bodies. A low degree of co-localization between ENK- and 5-HT-LI was seen in the spinal cord of both species. Still, fibers containing both compounds could as a rule be demonstrated in every section studied. The highest degree of coexistence was encountered in the motor nucleus of the ventral horn. Six weeks after a low thoracic spinal cord transection a decreased staining for ENK-LI was demonstrated in the ventral horn motor nucleus, whereas other parts of the spinal cord appeared unaffected. In the brain stem of cats after colchicine treatment, ENK-LI was found in a majority of the 5-HT-IR cell bodies in the raphe nuclei (nucleus raphe magnus, pallidus and obscurus) and in the lateral reticular nucleus (rostroventrolateral reticular nucleus). In cat not pretreated with colchicine, a few weakly stained ENK-IR cell bodies could be found in the midline raphe nuclei and in the lateral reticular nucleus with the PAP technique. In the monkey brain stem without colchicine treatment, using the PAP technique, heavily stained ENK-IR cell bodies could be seen in the lateral reticular nucleus whereas, as in the cat, only a few, weakly stained ENK-IR cell bodies could be seen in the midline raphe nuclei. Using in situ hybridization technique, ENK mRNA expressing cells were demonstrated in the lateral reticular nucleus while no convincing mRNA signal could be found over cell bodies in the raphe nuclei. It is concluded that part of the ENKergic innervation of the cord in both species derives from supraspinal or suprasegmental levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- U Arvidsson
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nicholas AP, Pieribone VA, Arvidsson U, Hökfelt T. Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate. Neuroscience 1992; 48:545-59. [PMID: 1376453 DOI: 10.1016/0306-4522(92)90401-m] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Serotonergic neurons of the medulla oblongata have been proposed to play a role in the control of sensory, motor and autonomic cells in the spinal cord. Many of these raphe neurons have been shown to contain the undecapeptide substance P as well as the tripeptide thyrotropin-releasing hormone, but evidence for the presence of an excitatory amino acid in these pathways has not yet been documented. In colchicine-treated rats, we have used a combination of retrograde tracing and tri-color immunohistofluorescence techniques to study co-localization of serotonin- and substance P- with glutamate- or aspartate-like immunoreactivities in medullary neurons and the possible spinal projections of these cells. In addition, the distributions of serotonin-, substance P- and glutamate-immunoreactive terminal fields in the dorsal, ventral and lateral horns of the spinal cord were examined with tri-color immunofluorescence in the rat and the primate Macaca fasciculata. In colchicine-treated rats, glutamate- and aspartate-like immunoreactivity was found in practically all serotonin- and substance P-immunoreactive neurons of the B1, B2 and B3 cell groups. Some of these neurons also contained wheat-germ agglutinin conjugated to inactivated horseradish peroxidase and colloidal gold particles retrogradely transported from the spinal cord. In the spinal cords of non-colchicine-treated monkeys and rats, striking co-localization of serotonin, substance P- and glutamate-like immunoreactivities was seen in large boutons, surrounding the dendrites and cell bodies of large alpha motor neurons in the ventral horn. These observations suggest the existence of spinally projecting serotonin/substance P neurons containing excitatory amino acids such as glutamate or aspartate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A P Nicholas
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Kordower JH, Le HK, Mufson EJ. Galanin immunoreactivity in the primate central nervous system. J Comp Neurol 1992; 319:479-500. [PMID: 1377713 DOI: 10.1002/cne.903190403] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Galanin-immunoreactive profiles were localized within the monkey and human central nervous system. In the monkey telencephalon, galanin-immunoreactive perikarya were seen within the anterior olfactory nucleus, basal forebrain, endopiriform nucleus, hippocampus, and bed nucleus of the stria terminalis. The caudate nucleus and putamen contained galanin-immunoreactive perikarya whereas the nucleus accumbens displayed only galanin-immunoreactive fibers. In the diencephalon, galanin-immunoreactive profiles were seen within the medial preoptic area, periventricular, suprachiasmatic, paraventricular, and arcuate nuclei as well as the lateral hypothalamic area. Within the thalamus, only galanin-immunoreactive fibers were seen within the midline paraventricular, reuniens, and rhomboid nuclei. In the mesencephalon, scattered galanin-immunoreactive fibers were seen in the periaquaductal gray, ventral tegmental area, and midbrain reticular formation. In the metencephalon, galanin-immunoreactive neurons were observed in the medial vestibular nucleus and nucleus prepositus. In the myelencephalon, galanin-immunoreactive perikarya were seen within the nucleus of the tractus solitarius and hypoglossal nucleus. Dense collections of galanin-immunoreactive fibers were found in the spinal descending tract of V, nucleus of the tractus solitarius, and dorsal motor nucleus of X. Galanin immunoreactivity was also observed within all circumventricular organs. Spinal anterior horn neurons expressed galanin immunoreactivity, and immunopositive fibers were seen within the tract of Lissauer and the substantia gelatinosa. Although the distribution of galanin immunoreactivity was generally similar between monkeys and humans, there were a few striking exceptions. The human supraoptic nucleus contained galanin-immunoreactive neurons, whereas the monkey supraoptic nucleus displayed only immunopositive fibers. Similarly, galanin-immunoreactive perikarya and fibers were seen in the human locus coeruleus and subcoeruleus, whereas in monkeys these regions contained only fibers. These data demonstrate a widespread distribution of galanin-containing profiles in primates, suggesting that galanin may modulate cognitive, sensory, motor, and autonomic processes.
Collapse
Affiliation(s)
- J H Kordower
- Department of Neurological Sciences, Rush Presbyterian/St. Lukes Medical Medical Center, Chicago, Illinois
| | | | | |
Collapse
|