1
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Roome RB, Yadav A, Flores L, Puarr A, Nardini D, Richardson A, Waclaw RR, Arkell RM, Menon V, Johnson JE, Levine AJ. Ontogeny of the spinal cord dorsal horn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643370. [PMID: 40161840 PMCID: PMC11952496 DOI: 10.1101/2025.03.14.643370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The dorsal horn of the mammalian spinal cord is an exquisite example of form serving function. It is comprised of diverse neuronal populations stacked into laminae, each of which receives different circuit connections and plays specialized roles in behavior. An outstanding question is how this organization emerges during development from an apparently homogeneous pool of neural progenitors. Here, we found that dorsal neurons are diversified by time, with families of related cell types born as temporal cohorts, and by a spatial-molecular gradient that specifies the full array of individual cell types. Excitatory dorsal neurons then settle in a chronotopic arrangement that transforms their progressive birthdates into anatomical order. This establishes the dorsal horn laminae, as these neurons are also required for spatial organization of inhibitory neurons and sensory axons. This work reveals essential ontogenetic principles that shape dorsal progenitors into the diverse cell types and architecture that subserve sensorimotor behavior.
Collapse
Affiliation(s)
- Robert Brian Roome
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Archana Yadav
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Amrit Puarr
- Maternal-foetal Precision Health Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Diana Nardini
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander Richardson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ronald R. Waclaw
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruth M. Arkell
- Maternal-foetal Precision Health Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariel J. Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
3
|
Gradwell MA, Ozeri-Engelhard N, Eisdorfer JT, Laflamme OD, Gonzalez M, Upadhyay A, Medlock L, Shrier T, Patel KR, Aoki A, Gandhi M, Abbas-Zadeh G, Oputa O, Thackray JK, Ricci M, George A, Yusuf N, Keating J, Imtiaz Z, Alomary SA, Bohic M, Haas M, Hernandez Y, Prescott SA, Akay T, Abraira VE. Multimodal sensory control of motor performance by glycinergic interneurons of the mouse spinal cord deep dorsal horn. Neuron 2024; 112:1302-1327.e13. [PMID: 38452762 DOI: 10.1016/j.neuron.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
Collapse
Affiliation(s)
- Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nofar Ozeri-Engelhard
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jaclyn T Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olivier D Laflamme
- Dalhousie PhD program, Dalhousie University, Halifax, NS, Canada; Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tara Shrier
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Adin Aoki
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Gandhi
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gloria Abbas-Zadeh
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olisemaka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA; Tourette International Collaborative Genetics Study (TIC Genetics)
| | - Matthew Ricci
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arlene George
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nusrath Yusuf
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zarghona Imtiaz
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Simona A Alomary
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael Haas
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yurdiana Hernandez
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Vieillard J, Franck MCM, Hartung S, Jakobsson JET, Ceder MM, Welsh RE, Lagerström MC, Kullander K. Adult spinal Dmrt3 neurons receive direct somatosensory inputs from ipsi- and contralateral primary afferents and from brainstem motor nuclei. J Comp Neurol 2023; 531:5-24. [PMID: 36214727 PMCID: PMC9828095 DOI: 10.1002/cne.25405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
In the spinal cord, sensory-motor circuits controlling motor activity are situated in the dorso-ventral interface. The neurons identified by the expression of the transcription factor Doublesex and mab-3 related transcription factor 3 (Dmrt3) have previously been associated with the coordination of locomotion in horses (Equus caballus, Linnaeus, 1758), mice (Mus musculus, Linnaeus, 1758), and zebrafish (Danio rerio, F. Hamilton, 1822). Based on earlier studies, we hypothesized that, in mice, these neurons may be positioned to receive sensory and central inputs to relay processed commands to motor neurons. Thus, we investigated the presynaptic inputs to spinal Dmrt3 neurons using monosynaptic retrograde replication-deficient rabies tracing. The analysis showed that lumbar Dmrt3 neurons receive inputs from intrasegmental neurons, and intersegmental neurons from the cervical, thoracic, and sacral segments. Some of these neurons belong to the excitatory V2a interneurons and to plausible Renshaw cells, defined by the expression of Chx10 and calbindin, respectively. We also found that proprioceptive primary sensory neurons of type Ia2, Ia3, and Ib, defined by the expression of calbindin, calretinin, and Brn3c, respectively, provide presynaptic inputs to spinal Dmrt3 neurons. In addition, we demonstrated that Dmrt3 neurons receive inputs from brain areas involved in motor regulation, including the red nucleus, primary sensory-motor cortex, and pontine nuclei. In conclusion, adult spinal Dmrt3 neurons receive inputs from motor-related brain areas as well as proprioceptive primary sensory neurons and have been shown to connect directly to motor neurons. Dmrt3 neurons are thus positioned to provide sensory-motor control and their connectivity is suggestive of the classical reflex pathways present in the spinal cord.
Collapse
Affiliation(s)
- Jennifer Vieillard
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Marina C. M. Franck
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden,Present address: Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Sunniva Hartung
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Jon E. T. Jakobsson
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Mikaela M. Ceder
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Robert E. Welsh
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Malin C. Lagerström
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Klas Kullander
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Doperalski AE, Montgomery LR, Mondello SE, Howland DR. Anatomical Plasticity of Rostrally Terminating Axons as a Possible Bridging Substrate across a Spinal Injury. J Neurotrauma 2020; 37:877-888. [PMID: 31774025 DOI: 10.1089/neu.2018.6193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfer of information across a spinal lesion is required for many aspects of recovery across diverse motor systems. Our understanding of axonal plasticity and which subpopulations of neurons may contribute to bridging substrates following injury, however, remains relatively incomplete. Most recently, attention has been directed to propriospinal neurons (PSNs), with research suggesting that they are capable of bridging a spinal lesion in rodents. In the current study, subpopulations of both long (C5) and short (T6, T8) PSNs-as well as a supraspinal system, the rubrospinal tract (RST)-were assessed following low thoracic (T9) hemisection in the cat using the retrograde tracer Fluoro-Gold. Acutely, within 2 weeks post-hemisection, the numbers of short and long PSNs, as well as contralateral RST neurons, with axons crossing the lesion were significantly decreased relative to uninjured controls. This decrease persisted bilaterally and was permanent in the long PSNs and the contralateral red nucleus (RN). However, by 16 weeks post-hemisection, the numbers of ipsilesional and contralesional short PSNs bridging the lesion were significantly increased. Further, the number of contralesional contributing short PSNs was significantly greater in injured animals than in uninjured animals. A significant increase over uninjured numbers also was seen in the ipsilateral (non-axotomized) RN. These findings suggest that a novel substrate of undamaged axons, which normally terminates rostral to the lesion, grows past a thoracic lesion after injury. This rostral population represents a major component of the bridging substrate seen and may represent an important anatomical target for evolving rehabilitation approaches as a substrate capable of contributing to functional recovery.
Collapse
Affiliation(s)
- Adele E Doperalski
- Department of Biology, American University, Washington DC.,Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Lynnette R Montgomery
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| | - Sarah E Mondello
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dena R Howland
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
6
|
Wild BM, Mohan R, Morris R. Rat motor neurons caudal to a rubrospinal tract (RST) transection remain viable. Neuroscience 2017; 364:157-163. [PMID: 28918261 DOI: 10.1016/j.neuroscience.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
In the rat, the rubrospinal tract (RST) is a descending motor pathway involved in the production of skilled reaching movement. The RST originates in the red nucleus in the midbrain and runs down the spinal cord in the lateral most aspect of the dorsolateral funiculus (DLF). The RST makes monosynaptic contact with interneurons within the intermediate laminae of the cord, however a contingent of RST axons constitutes direct supraspinal input for spinal cord motor neurons. The current study investigated the effects of unilateral RST transection at cervical levels C3-4 on the population of motor neurons in both spinal segments C5-6 and L2-3. The total number of large, medium and small motor neurons in these segments was estimated with stereological techniques in both ventral horns at 1, 3, 7 and 14days post-injury. In both spinal cord segments under investigation, no change was detected in mean number of motor neurons over time, in either ventral horn. That the loss of direct supraspinal input resulting from the RST transection does not affect the viability of motor neurons caudal to the injury indicates that these neurons have the potential to be re-innervated, should the RST injury be repaired.
Collapse
Affiliation(s)
- Brandon M Wild
- Translational Neuroscience Facility, School of Medical Science, UNSW Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Rahul Mohan
- Translational Neuroscience Facility, School of Medical Science, UNSW Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renée Morris
- Translational Neuroscience Facility, School of Medical Science, UNSW Medicine, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Tuszynski MH, Murai K, Blesch A, Grill R, Miller I. Functional Characterization of Ngf-Secreting Cell Grafts to the Acutely Injured Spinal Cord. Cell Transplant 2017; 6:361-8. [PMID: 9171168 DOI: 10.1177/096368979700600318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previously we reported that grafts of cells genetically modified to produce human nerve growth factor (hNGF) promoted specific and robust sprouting of spinal sensory, motor, and noradrenergic axons. In the present study we extend these investigations to assess NGF effects on corticospinal motor axons and on functional outcomes after spinal cord injury. Fibroblasts from adult rats were transduced to express human NGF; control cells were not genetically modified. Fibroblasts were then grafted to sites of midthoracic spinal cord dorsal hemisection lesions. Three months later, recipients of NGF-secreting grafts showed deficits on conditioned locomotion over a wire mesh that did not differ in extent from control-lesioned animals. On histological examination, NGF-secreting grafts elicited specific sprouting from spinal primary sensory afferent axons, local motor axons, and putative cerulospinal axons as previously reported, but no specific responses from corticospinal axons. Axons responding to NGF robustly penetrated the grafts but did not exit the grafts to extend to normal innervation territories distal to grafts. Grafted cells continued to express NGF protein through the experimental period of the study. These findings indicate that 1) spinal cord axons show directionally sensitive growth responses to neurotrophic factors, 2) growth of axons responding to a neurotrophic factor beyond an injury site and back to their natural target regions will likely require delivery of concentration gradients of neurotrophic factors toward the target, 3) corticospinal axons do not grow toward a cellular source of NGF, and 4) functional impairments are not improved by strictly local sprouting response of nonmotor systems.
Collapse
Affiliation(s)
- M H Tuszynski
- Department of Neurosciences, University of California-San Diego, La Jolla 92093-0608, USA
| | | | | | | | | |
Collapse
|
8
|
Thomaty S, Pezard L, Xerri C, Brezun JM. Acute granulocyte macrophage-colony stimulating factor treatment modulates neuroinflammatory processes and promotes tactile recovery after spinal cord injury. Neuroscience 2017; 349:144-164. [DOI: 10.1016/j.neuroscience.2017.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
|
9
|
Garbuzova-Davis S, Haller E, Tajiri N, Thomson A, Barretta J, Williams SN, Haim ED, Qin H, Frisina-Deyo A, Abraham JV, Sanberg PR, Van Loveren H, Borlongan CV. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia. J Neuropathol Exp Neurol 2016; 75:673-88. [PMID: 27283328 DOI: 10.1093/jnen/nlw040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS).
| | - Edward Haller
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Naoki Tajiri
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Avery Thomson
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Jennifer Barretta
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Stephanie N Williams
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Eithan D Haim
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Hua Qin
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Aric Frisina-Deyo
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Jerry V Abraham
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Paul R Sanberg
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Harry Van Loveren
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Cesario V Borlongan
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| |
Collapse
|
10
|
Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke. J Neurosci 2016; 36:455-67. [PMID: 26758837 DOI: 10.1523/jneurosci.2399-15.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the effect of intensive limb use.
Collapse
|
11
|
Rácz É, Gaál B, Matesz C. Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat. Neuroscience 2016; 322:1-17. [PMID: 26868971 DOI: 10.1016/j.neuroscience.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of neurons than previously reported.
Collapse
Affiliation(s)
- É Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - B Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - C Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| |
Collapse
|
12
|
Morris R, Vallester KK, Newton SS, Kearsley AP, Whishaw IQ. The differential contributions of the parvocellular and the magnocellular subdivisions of the red nucleus to skilled reaching in the rat. Neuroscience 2015; 295:48-57. [PMID: 25813707 DOI: 10.1016/j.neuroscience.2015.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 03/14/2015] [Indexed: 11/30/2022]
Abstract
During the execution of the skilled reaching task, naïve rats bring their elbow to the midline of their body to aim at the food target, perform the arpeggio movement to grasp it and supinate the paw to bring the food to their mouth. Red nucleus lesions in the rat interfere with each of these three movement elements of reaching. On the other hand, lesions to the rubrospinal tract, which originate from the magnocellular subdivision of the red nucleus, only interfere with the arpeggio movement. This latter evidence strongly suggests that impairment in aiming and supinating could be under the control of the parvocellular subdivision of the red nucleus. In order to test this hypothesis, rats were trained on the skilled reaching task and then received either complete lesions of the red nucleus or lesions restricted to its parvo- or magnocellular subdivision. In line with previous data, complete excitotoxic lesions of the red nucleus compromised limb aiming, arpeggio and supination. Lesions restricted to the parvocellular division of the red nucleus abolish supination and interfere with aiming, although the latter result did not reach significance. The results are discussed in terms of the distinct connectivity and functional significance of these two architectonic subdivisions of the red nucleus.
Collapse
Affiliation(s)
- R Morris
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - K K Vallester
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - S S Newton
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - A P Kearsley
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - I Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
13
|
Abstract
Purkinje cells (PCs) of the cerebellar cortex are necessary for controlling movement with precision, but a mechanistic explanation of how the activity of these inhibitory neurons regulates motor output is still lacking. We used an optogenetic approach in awake mice to show for the first time that transiently suppressing spontaneous activity in a population of PCs is sufficient to cause discrete movements that can be systematically modulated in size, speed, and timing depending on how much and how long PC firing is suppressed. We further demonstrate that this fine control of movement kinematics is mediated by a graded disinhibition of target neurons in the deep cerebellar nuclei. Our results prove a long-standing model of cerebellar function and provide the first demonstration that suppression of inhibitory signals can act as a powerful mechanism for the precise control of behavior.
Collapse
|
14
|
Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for motor control pathways. Nat Neurosci 2014; 17:586-93. [PMID: 24609464 PMCID: PMC4569558 DOI: 10.1038/nn.3675] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/28/2022]
Abstract
The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called 'motor synergies'. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.
Collapse
Affiliation(s)
- Ariel J Levine
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Christopher A Hinckley
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Kathryn L Hilde
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shawn P Driscoll
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tiffany H Poon
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jessica M Montgomery
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Samuel L Pfaff
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
15
|
Du Beau A, Shakya Shrestha S, Bannatyne BA, Jalicy SM, Linnen S, Maxwell DJ. Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience 2012; 227:67-79. [PMID: 23018001 DOI: 10.1016/j.neuroscience.2012.09.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 12/01/2022]
Abstract
Descending systems from the brain exert a major influence over sensory and motor processes within the spinal cord. Although it is known that many descending systems have an excitatory effect on spinal neurons, there are still gaps in our knowledge regarding the transmitter phenotypes used by them. In this study we investigated transmitter phenotypes of axons in the corticospinal tract (CST); the rubrospinal tract (RST); the lateral component of the vestibulospinal tract (VST); and the reticulospinal tract (ReST). They were labelled anterogradely by stereotaxic injection of the b subunit of cholera toxin (CTb) into the motor cortex, red nucleus, lateral vestibular nucleus and medial longitudinal fascicle (MLF) to label CST, RST, VST and ReST axons respectively. Neurotransmitter content of labelled axons was investigated in lumbar segments by using immunoflurescence; antibodies against vesicular glutamate transporters (VGLUT1 and VGLUT2) were used to identify glutamatergic terminals and the vesicular GABA transporter (VGAT) was used to identify GABA- and glycinergic terminals. The results show that almost all CST (96%) axons contain VGLUT1 whereas almost all RST (97%) and VST (97%) axons contain VGLUT2. Although the majority of ReST axons contain VGLUT2 (59%), a sizable minority contains VGAT (20%) and most of these terminals can be subdivided into those that are GABAergic or those that are glycinergic because only limited evidence for co-localisation was found for the two transmitters. In addition, there is a population of ReST terminals that apparently does not contain markers for the transmitters tested and is not serotoninergic. We can conclude that the CST, RST and VST are 'pure' excitatory systems whereas the ReST consists of a heterogeneous population of excitatory and inhibitory axons. It is anticipated that this information will enable inputs to spinal networks to be defined with greater confidence.
Collapse
Affiliation(s)
- A Du Beau
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
16
|
Paes-Branco D, Abreu-Villaça Y, Manhães AC, Filgueiras CC. Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice. Exp Brain Res 2012; 218:465-76. [PMID: 22367398 DOI: 10.1007/s00221-012-3034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/06/2012] [Indexed: 01/23/2023]
Abstract
Evidence exists indicating that cerebral lateralization is a fundamental feature of all vertebrates. In humans, a series of studies demonstrated that the left hemisphere plays a major role in controlling movement. No such asymmetries have been identified in rodents, in spite of the fact that these animals have been frequently used in studies assessing motor behavior. In this regard, here, we used unilateral hemispherectomy to study the relative importance of each hemisphere in controlling movement. Adult Swiss mice were submitted to right unilateral hemispherectomy (RH), left unilateral hemispherectomy (LH) or sham surgery. Fifteen days after surgery, motor performance was assessed in the accelerating rotarod test and in the foot-fault test (in which performance depends on skilled limb use) and in the elevated body swing test (in which performance depends on trunk movements). The surgical removal of the right hemisphere caused a more pronounced impairment in performance than the removal of the left hemisphere both in the rotarod and in the foot-fault tests. In the rotarod, the RH group presented smaller latencies to fall than both LH and sham groups. In the foot-fault test, while both the sham and the LH groups showed no differences between left and right hind limbs, the RH group showed significantly worse performance with the left hind limb than with the right one. The elevated body swing test revealed a similar impairment in the two hemispherectomized groups. Our data suggest a major role of the right hemisphere in controlling skilled limb movements in mice.
Collapse
Affiliation(s)
- Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Avenida Professor Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | | | | | | |
Collapse
|
17
|
The red nucleus and the rubrospinal projection in the mouse. Brain Struct Funct 2011; 217:221-32. [PMID: 21927901 DOI: 10.1007/s00429-011-0348-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022]
Abstract
We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.
Collapse
|
18
|
Davies SJA, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One 2011; 6:e17328. [PMID: 21407803 PMCID: PMC3047562 DOI: 10.1371/journal.pone.0017328] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system.
Collapse
Affiliation(s)
- Stephen J. A. Davies
- Department of Neurosurgery, University of
Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of
America
| | - Chung-Hsuan Shih
- Department of Biomedical Genetics, Institute
for Stem Cell and Regenerative Medicine, University of Rochester Medical Center,
Rochester, New York, United States of America
| | - Mark Noble
- Department of Biomedical Genetics, Institute
for Stem Cell and Regenerative Medicine, University of Rochester Medical Center,
Rochester, New York, United States of America
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, Institute
for Stem Cell and Regenerative Medicine, University of Rochester Medical Center,
Rochester, New York, United States of America
| | - Jeannette E. Davies
- Department of Neurosurgery, University of
Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of
America
| | - Christoph Proschel
- Department of Biomedical Genetics, Institute
for Stem Cell and Regenerative Medicine, University of Rochester Medical Center,
Rochester, New York, United States of America
| |
Collapse
|
19
|
Abstract
AbstractA CST-YFP transgenic mouse has been developed for the study of the corticospinal tract in which yellow fluorescent protein is expressed under the control of thy1 and emx1 promoters in order to restrict expression to forebrain neurones. We explored plasticity of the developing corticospinal tract of these mice following a unilateral lesion to the sensorimotor cortex at postnatal day 7. The extent of innervation of the cervical spinal cord at time points post-lesion was assessed by measuring density of immunoperoxidase reactivity for yellow fluorescent protein in the dorsal funiculi and a defined region of each dorsal horn, and by counting immunoreactive axonal varicosities in the ventral horns. Two/three days post-lesion, the density of immunoreactivity in the dorsal horn contralateral to the lesion was reduced proportional to the decrease in positive fibres in the dorsal funiculus, however density of immunoreactive varicosities in the ventral horn was more resistant to loss. Over a three week period, immunoreactive axonal processes in the grey matter increased on the contralateral side, particularly in the ventral horn, but without an increase in immunopositive fibres in the contralateral dorsal funiculus, demonstrating sprouting of surviving immunoreactive fibres to replace lesioned corticospinal axons. However, the origin of sprouting fibres could not be identified with confidence as parallel observations revealed strongly immunoreactive neuronal cell bodies in the spinal cord, medulla and red nucleus. We have demonstrated plasticity in response to a developmental lesion but discovered a drawback to using these mice if visualisation of individual axons is enhanced by immunohistochemistry.
Collapse
|
20
|
Martinez M, Delcour M, Russier M, Zennou-Azogui Y, Xerri C, Coq JO, Brezun JM. Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection. Exp Neurol 2009; 221:186-97. [PMID: 19896483 DOI: 10.1016/j.expneurol.2009.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas. This study was aimed at evaluating the effects of a cervical (C4-C5) spinal cord hemisection on sensorimotor performances and electrophysiological maps in primary somatosensory (S1) and motor (M1) cortices in adult rats. After SCI, an enduring loss of the affected forepaw tactile sensitivity was paralleled by the abolishment of somatosensory evoked responses in the deprived forepaw area within the S1 cortex. In contrast, severe motor deficits in unilateral forelimb were partially restored over the first postoperative month, despite remnant deficits in distal movement. The overall M1 map size was drastically reduced in SCI rats relative to intact rats. In the remaining M1 map, the shoulder and elbow movements were over-represented, consistent with the behavioral recovery of proximal joint movements in almost all rats. By contrast, residual wrist representations were observed in M1 maps of half of the rats that did not systematically correlate with a behavioral recovery of these joint movements. This study highlights the differential potential of ascending and descending pathways to reorganize after SCI.
Collapse
Affiliation(s)
- Marina Martinez
- Neurosciences Intégratives et Adaptatives, UMR 6149 Université de Provence / CNRS, Pôle 3C, case B, Marseille cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain 2009; 147:91-8. [PMID: 19793621 DOI: 10.1016/j.pain.2009.08.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/02/2009] [Accepted: 08/18/2009] [Indexed: 11/21/2022]
Abstract
Motor cortex stimulation (MCS) is useful to treat patients with neuropathic pain syndromes, unresponsive to medical treatment. Complex regional pain syndrome (CRPS) is a segmentary disease treated successfully by spinal cord stimulation (SCS). However, CRPS often affects large body segments difficult to cover by SCS. This study analyzed the MCS efficacy in patients with CRPS affecting them. Five patients with CRPS of different etiologies underwent a small craniotomy for unilateral 20-grid-contact implantation on MC, guided by craniometric landmarks. Neurophysiological and clinical tests were performed to identify the contacts position and the best analgesic responses to MCS. The grid was replaced by a definitive 4-contacts-electrode connected to an internalized system. Pain was evaluated by international scales. Changes in sympathetic symptoms, including temperature, perspiration, color and swelling were evaluated. Pre-operative and post-operative monthly evaluations were performed during one year. A double-blind maneuver was introduced assigning two groups. One had stimulators turned OFF from day 30-60 and the other from day 60-90. Four patients showed important decrease in pain, sensory and sympathetic changes during the therapeutic trial, while one patient did not have any improvement and was rejected for implantation. VAS and McGill pain scales diminished significantly (p<0.01) throughout the follow-up, accompanied by disappearance of the sensory (allodynea and hyperalgesia) and sympathetic signs. MCS is effective not only to treat pain, but also improve the sympathetic changes in CPRS. Mechanism of action is actually unclear, but seems to involve sensory input at the level of the spinal cord.
Collapse
|
22
|
Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Exp Neurol 2008; 216:193-206. [PMID: 19118552 DOI: 10.1016/j.expneurol.2008.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
Abstract
The purpose of this research was to investigate whether pathways in the dorsal part of the lateral spinal funiculus (DLF) can compensate for loss of corticospinal input (CST) to the spinal cord. The CST is known to control skilled limb movements in rats. The DLF contains several different pathways, including the rubrospinal tract (RST) which is also thought to influence limb movements. After lesions of either the corticospinal or the rubrospinal system, it is unclear how much of the remaining forelimb function is due to the presence of the alternate pathway. To begin to address this issue, the present study investigates the compensatory role of pathways in the DLF, including the rubrospinal tract, after bilateral lesions of the pyramidal tract (PT). We initially performed bilateral PT lesions in rats, which effectively removed the CST input to the spinal cord. We tested these rats during overground locomotion, skilled locomotion and skilled forelimb usage. After a 6 week recovery period, we then performed bilateral DLF lesions and compared the behavioural abilities of these rats to those of animals which underwent simultaneous PT and DLF lesions. If DLF pathways do compensate for PT lesions, then animals with PT lesions would rely more on DLF pathways than animals without PT lesions. Thus we hypothesized that animals with DLF lesions which were performed 6 weeks after PT lesions would exhibit more deficits on several behavioural tasks compared to animals which received PT and DLF lesions simultaneously. Our hypothesis was supported only for skilled pellet retrieval. Hence some DLF pathways, including the RST, were able to compensate for loss of CST input during skilled reaching but not during overground or skilled locomotion in PT-lesioned rats. These differential responses suggest that behavioural tasks vary in their reliance on specific pathways after injury, and, furthermore, that compensation for loss of specific connections can arise from numerous sources.
Collapse
|
23
|
Stecina K, Slawinska U, Jankowska E. Ipsilateral actions from the feline red nucleus on hindlimb motoneurones. J Physiol 2008; 586:5865-84. [PMID: 18936076 DOI: 10.1113/jphysiol.2008.163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main aim of the study was to investigate whether neurones in the ipsilateral red nucleus (NR) affect hindlimb motoneurones. Intracellular records from motoneurones revealed that both EPSPs and IPSPs were evoked in them via ipsilaterally located premotor interneurones by stimulation of the ipsilateral NR in deeply anaesthetized cats in which only ipsilaterally descending tract fibres were left intact. When only contralaterally descending tract fibres were left intact, EPSPs mediated by excitatory commissural interneurones were evoked by NR stimuli alone while IPSPs mediated by inhibitory commissural interneurones required joint stimulation of the ipsilateral NR and of the medial longitudinal fascicle (MLF, i.e. reticulospinal tract fibres). Control experiments led to the conclusion that if any inadvertently coactivated axons of neurones from the contralateral NR contributed to these PSPs, their effect was minor. Another aim of the study was to investigate whether ipsilateral actions of NR neurones, pyramidal tract (PT) neurones and reticulospinal tract neurones descending in the MLF on hindlimb motoneurones are evoked via common spinal relay neurones. Mutual facilitation of these synaptic actions as well as of synaptic actions from the contralateral NR and contralateral PT neurones showed that they are to a great extent mediated via the same spinal neurones. A more effective activation of these neurones by not only ipsilateral corticospinal and reticulospinal but also rubrospinal tract neurones may thus contribute to the recovery of motor functions after injuries of the contralateral corticospinal tract neurones. No evidence was found for mediation of early PT actions via NR neurones.
Collapse
Affiliation(s)
- K Stecina
- Department of Physiology, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
24
|
Scholtes F, Phan-Ba R, Theunissen E, Adriaensens P, Brook G, Franzen R, Bouhy D, Gelan J, Martin D, Schoenen J. Rapid, postmortem 9.4 T MRI of spinal cord injury: correlation with histology and survival times. J Neurosci Methods 2008; 174:157-67. [PMID: 18708093 DOI: 10.1016/j.jneumeth.2008.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
High field magnetic resonance imaging (MRI) has been increasingly used to assess experimental spinal cord injury (SCI). In the present investigation, after partial spinal cord injury and excision of the whole spine, pathological changes of the spinal cord were studied in spinal cord-spine blocks, from the acute to the chronic state (24 h to 5 months). Using proton density (PD) weighted imaging parameters at a magnetic field strength of 9.4 tesla (T), acquisition times ranging from <1 to 10 h per specimen were used. High in-plane pixel resolution (68 and 38 microm, respectively) was obtained, as well as high signal-to-noise ratio (SNR), which is important for optimal contrast settings. The quality of the resulting MR images was demonstrated by comparison with histology. The cord and the lesion were shown in their anatomical surroundings, detecting cord swelling in the acute phase (24 h to 1 week) and cord atrophy at the chronic stage. Haemorrhage was detected as hypo-intense signal. Oedema, necrosis and scarring were hyper-intense but could not be distinguished. Histology confirmed that the anatomical delimitation of the lesion extent by MRI was precise, both with high and moderate resolution. The present investigation thus demonstrates the precision of spinal cord MRI at different survival delays after compressive partial SCI and establishes efficient imaging parameters for postmortem PD MRI.
Collapse
Affiliation(s)
- Felix Scholtes
- Centre for Cellular and Molecular Neurobiology (CNCM), Department of Neuroanatomy, University of Liège, Sart Tilman B36, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kastner A, Gauthier P. Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system. Exp Neurol 2008; 213:249-56. [PMID: 18675802 DOI: 10.1016/j.expneurol.2008.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/11/2022]
Abstract
Because most studies of the effects of spinal cord injury (SCI) and resulting repair and treatments use rodent models, it is important to determine if these models are relevant to humans. In this review, we focus on alterations in respiratory function as a result of SCI. Several injury paradigms have been used in the rat to examine restoration of post-lesion respiratory function and potential benefits from repair strategies designed for humans. Unlike the corticospinal locomotor system, respiratory neural organization is well preserved between rodents and humans, and resembles the general organization of motor pathways in primates. These similarities justify the use of the rodent respiratory system as a model to analyze SCI and putative repair strategies.
Collapse
Affiliation(s)
- Anne Kastner
- Université Paul Cézanne Aix-Marseille III, UMR CNRS 6231 - CRN2M, Centre de Recherches en Neurobiologie et Neurophysiologie de Marseille, Equipe MP3-Respiration, Marseille Cedex 20, France
| | | |
Collapse
|
26
|
Ruigrok TJH, Pijpers A, Goedknegt-Sabel E, Coulon P. Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. Eur J Neurosci 2008; 28:181-200. [DOI: 10.1111/j.1460-9568.2008.06294.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Al-Izki S, Kirkwood PA, Lemon RN, Enríquez Denton M. Electrophysiological actions of the rubrospinal tract in the anaesthetised rat. Exp Neurol 2008; 212:118-31. [PMID: 18501352 DOI: 10.1016/j.expneurol.2008.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/06/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The rubrospinal tract (RST) of the rat is widely used in studies of regeneration and plasticity, but the electrophysiology of its spinal actions has not been described. In anaesthetised rats with neuromuscular blockade, a tungsten microelectrode was located in the region of the red nucleus (RN) by combining stereotaxis with recording of antidromic potentials evoked from the contralateral spinal cord. Single stimuli through this electrode typically elicited two descending volleys in the contralateral dorsolateral funiculus (DLF) separated by about 1 ms, and one volley recorded from the ipsilateral DLF. Latencies of the ipsilateral and the early contralateral volley were similar. The activation of these volleys depended on the location of the stimulation site in or near the RN. Evidence is adduced to show that: (a) the late contralateral volley is carried by fibres of RST neurones, synaptically activated; (b) the early contralateral volley is mostly carried by RST fibres stimulated directly; (c) the ipsilateral volley is sometimes carried by RST fibres from the RN on the side contralateral to the stimulus; (d) otherwise, either early volley may derive from fibres in other tracts. Synaptic potentials related to the volleys were recorded within the cervical enlargement and their distribution plotted on cross-sections of the spinal cord. These measurements suggest that the great majority of RST terminations are on interneurones in the intermediate region contralateral to the RN. Direct synaptic actions on motoneurones are likely to be weak. Stimulation parameters appropriate for specific activation of the RST in future studies are suggested.
Collapse
Affiliation(s)
- Sarah Al-Izki
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
28
|
Windhorst U. Muscle proprioceptive feedback and spinal networks. Brain Res Bull 2007; 73:155-202. [PMID: 17562384 DOI: 10.1016/j.brainresbull.2007.03.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 12/19/2022]
Abstract
This review revolves primarily around segmental feedback systems established by muscle spindle and Golgi tendon organ afferents, as well as spinal recurrent inhibition via Renshaw cells. These networks are considered as to their potential contributions to the following functions: (i) generation of anti-gravity thrust during quiet upright stance and the stance phase of locomotion; (ii) timing of locomotor phases; (iii) linearization and correction for muscle nonlinearities; (iv) compensation for muscle lever-arm variations; (v) stabilization of inherently unstable systems; (vi) compensation for muscle fatigue; (vii) synergy formation; (viii) selection of appropriate responses to perturbations; (ix) correction for intersegmental interaction forces; (x) sensory-motor transformations; (xi) plasticity and motor learning. The scope will at times extend beyond the narrow confines of spinal circuits in order to integrate them into wider contexts and concepts.
Collapse
Affiliation(s)
- U Windhorst
- Center for Physiology and Pathophysiology, University of Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany.
| |
Collapse
|
29
|
Xiao M, Klueber KM, Zhou J, Guo Z, Lu C, Wang H, Roisen FJ. Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis 2007; 26:363-74. [PMID: 17346980 DOI: 10.1016/j.nbd.2007.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 01/12/2007] [Accepted: 01/14/2007] [Indexed: 01/12/2023] Open
Abstract
We investigated the effects of engrafted human adult olfactory neuroepithelial neurosphere forming cells (NSFCs) on regeneration and reinnervation of rubrospinal tract (RST) axons and locomotor recovery following partial cervical hemisection that completely ablated the RST. Weekly behavioral testing showed greater functional recovery of forelimb use during the 12 weeks after NSFCs engraftment than in the control rats. Anterograde tracing with biotinylated dextran amine (BDA) confirmed the presence of RST axons within the white matter 4-8 segments caudal to the grafts. Both immunofluorescence and immunoelectron microscopy revealed the BDA-labeled RST axonal terminals reestablished synaptic connections with motoneurons in the ventral horn of the distal cervical spinal cord. Further study of forelimb functional recovery in NSFCs-engrafted subgroups considered the effects of a second dorsolateral funiculotomy, irreversibly destroying the recovery, and the injection of muscimol, blocking RST neuronal activity reversibly. These results highlight the unique potential of human olfactory neuroepithelial-derived progenitors as an autologous cell source for spinal cord repair.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Human Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 210029 China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Muir GD, Webb AA, Kanagal S, Taylor L. Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats. Eur J Neurosci 2007; 25:1501-10. [PMID: 17425576 DOI: 10.1111/j.1460-9568.2007.05411.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In experimental spinal injury studies, damage to the dorsal half of the spinal cord is common but the behavioural effects of damage to specific pathways in the dorsal cord have been less well investigated. We performed bilateral transection of the dorsolateral spinal funiculus (DLF) on 12 Long-Evans rats at the third cervical spinal segment. We quantified overground locomotion by measuring ground reaction forces, step timing and step distances as animals moved unrestrained. We also assessed skilled locomotion by measuring footslip errors made while the animals crossed horizontal ladders, and examined paw usage in a cylinder exploration task and during a skilled reaching task. Ground reaction forces revealed that rats with bilateral DLF lesions moved with a symmetrical gait, characterized mainly by altered forces exerted by the hindlimbs, delayed onset of hindlimb stance, and understepping of the hindlimbs relative to the forelimbs. These alterations in overground locomotion were subtle but were nevertheless consistent between animals and persisted throughout the 6-week recovery period. During ladder crossing, rats with DLF lesions made more footslip errors with the hindlimbs after surgery than before. Spontaneous forelimb usage during exploration was not affected by DLF axotomy but lesioned animals were less successful during skilled reaching. This is the first study which describes preferentially altered hindlimb use during overground locomotion after cervical DLF transections. We discuss these findings in relation to previous work and to the possible contributions of different ascending and descending pathways in the DLF to locomotion and skilled movements in rats.
Collapse
Affiliation(s)
- Gillian D Muir
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4.
| | | | | | | |
Collapse
|
31
|
Bartz JC, Kramer ML, Sheehan MH, Hutter JAL, Ayers JI, Bessen RA, Kincaid AE. Prion interference is due to a reduction in strain-specific PrPSc levels. J Virol 2006; 81:689-97. [PMID: 17079313 PMCID: PMC1797475 DOI: 10.1128/jvi.01751-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When two prion strains infect a single host, one strain can interfere with the ability of the other to cause disease but it is not known whether prion replication of the second strain is also diminished. To further investigate strain interference, we infected hamsters in the sciatic nerve with the long-incubation-period transmissible mink encephalopathy (TME) agent DY TME prior to superinfection of hamsters with the short-incubation-period HY TME agent. Increases in the interval between TME agent inoculations resulted in an extension of the incubation period of HY TME or a complete block of the ability of the HY TME agent to cause disease. The sciatic nerve route of inoculation gave the two TME strains access to the same population of neurons, allowing for the potential of prion interference in the lumbar spinal cord. The ability of the DY TME agent to extend the incubation period of HY TME corresponds with detection of DY TME PrP(Sc), the abnormal isoform of the prion protein, in the lumbar spinal cord. The increased incubation period of HY TME or the inability of the HY TME agent to cause disease in the coinfected animals corresponds with a reduction in the abundance of HY TME PrP(Sc) in the lumbar spinal cord. When the two strains were not directed to the same populations of neurons within the lumbar spinal cord, interference between HY TME and DY TME did not occur. This suggests that DY TME agent replication interferes with HY TME agent replication when the two strains infect a common population of neurons.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chiocchetti R, Bombardi C, Grandis A, Mazzuoli G, Gentile A, Pisoni L, Joechler M, Lucchi ML. Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle. Am J Vet Res 2006; 67:1662-9. [PMID: 17014313 DOI: 10.2460/ajvr.67.10.1662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the morphology, cytoarchitecture, and lumbosacral spinal cord projections of the red nucleus (RN) in cattle. ANIMALS 8 healthy Friesian male calves. PROCEDURES Anesthetized calves underwent a dorsal laminectomy at L5. Eight bilateral injections (lateral to the midline) of the neuronal retrograde fluorescent tracer fast blue (FB) were administered into the exposed lumbosacral portion of the spinal cord. A postsurgical calf survival time of 38 to 55 days was used. Following euthanasia, the midbrain and the L5-S2 spinal cord segments were removed. Nissl's method of staining was applied on paraffin-embedded and frozen sections of the midbrain. RESULTS The mean length of the RN from the caudal to cranial end ranged from 6,680 to 8,640 microm. The magnocellular and parvicellular components of the RN were intermixed throughout the nucleus, but the former predominate at the caudal portion of the nucleus and the latter at the cranial portion with a gradual transitional zone. The FB-labeled neurons were found along the entire craniocaudal extension of the nucleus, mainly in its ventrolateral part. The number of FB-labeled neurons was determined in 4 calves, ranging from 191 to 1,469 (mean, 465). The mean cross-sectional area of the FB-labeled neurons was approximately 1,680 microm2. CONCLUSIONS AND CLINICAL RELEVANCE In cattle, small, medium, and large RN neurons, located along the entire craniocaudal extension of the RN, contribute to the rubrospinal tract reaching the L6-S1 spinal cord segments. Thus, in cattle, as has been shown in cats, the RN parvicellular population also projects to the spinal cord.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Morphophysiology and Animal Productions, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hendriks WTJ, Eggers R, Ruitenberg MJ, Blits B, Hamers FPT, Verhaagen J, Boer GJ. Profound Differences in Spontaneous Long-Term Functional Recovery after Defined Spinal Tract Lesions in the Rat. J Neurotrauma 2006; 23:18-35. [PMID: 16430370 DOI: 10.1089/neu.2006.23.18] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or the complete dorsal half of the spinal cord (Hx) at thoracic level T8. Functional recovery was monitored for 31 weeks. We found no recovery of consistent inter limb coordination in any experimental group over time using the BBB locomotor rating scale. Quantitative CatWalk analysis revealed significant differences between experimental groups for inter limb coordination (RI). RSTx and Hx animals showed a significant decrease in the RI, and only in the RSTx group did the RI improve from 6 weeks post-lesion onward. Significant differences between experimental groups in step sequence patterns and base of support were also observed. In the rope test all experimental groups had significantly higher error percentages compared to control animals. Tracing of the CST revealed enhanced collateral formation rostral to the lesion in the CSTx group, not in other groups. The results presented here show that locomotor function in all, but CSTx groups gradually improved over time. This is important for studies that employ pharmacological, cell-, and/or gene therapy- based interventions to improve axonal regeneration and functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- William T J Hendriks
- Department of Neuroregeneration, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Deumens R, Koopmans GC, Joosten EAJ. Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 2005; 77:57-89. [PMID: 16271433 DOI: 10.1016/j.pneurobio.2005.10.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/23/2005] [Accepted: 10/05/2005] [Indexed: 02/03/2023]
Abstract
Axons within the adult mammalian central nervous system do not regenerate spontaneously after injury. Upon injury, the balance between growth promoting and growth inhibitory factors in the central nervous system dramatically changes resulting in the absence of regeneration. Axonal responses to injury vary considerably. In central nervous system regeneration studies, the spinal cord has received a lot of attention because of its relatively easy accessibility and its clinical relevance. The present review discusses the axon-tract-specific requirements for regeneration in the rat. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Ronald Deumens
- Department of Psychiatry and Neuropsychology, Division Neuroscience, European Graduate School of Neuroscience EURON, University of Maastricht, Maastricht, The Netherlands.
| | | | | |
Collapse
|
35
|
Anderson KD, Gunawan A, Steward O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: Relationship to the corticospinal tract. Exp Neurol 2005; 194:161-74. [PMID: 15899253 DOI: 10.1016/j.expneurol.2005.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 01/30/2005] [Accepted: 02/14/2005] [Indexed: 11/27/2022]
Abstract
Approximately 50% of human spinal cord injuries (SCI) are at the cervical level, resulting in impairments in motor function of the upper extremity. Even modest recovery of upper extremity function could have an enormous impact on quality of life for quadriplegics. Thus, there is a critical need to develop experimental models for cervical SCI and techniques to assess deficits and recovery of forelimb motor function. Here, we analyze forelimb and forepaw motor function in rats after a lateral hemisection at C5 and assessed the relationship between the functional impairments and the extent of damage to one descending motor system, the corticospinal tract (CST). Female Sprague-Dawley rats were trained on various behavioral tasks that require the forelimb, including a task that measures gripping ability by the hand (as measured by a grip strength meter, GSM), a food reaching task, and horizontal rope walking. After 8 weeks of post-injury testing, the distribution of the CST was evaluated by injecting BDA into the sensorimotor cortex either ipsi- or contralateral to the cervical lesion. Complete unilateral hemisection injuries eliminated the ability to grip and caused severe impairments in food retrieval by the forepaw ipsilateral to the lesion. There was no indication of recovery in either task. In cases in which hemisections spared white matter near the midline, there was some recovery of forelimb motor function over time. Assessment of rope climbing ability revealed permanent impairments in forelimb use and deficits in hindlimb use and trunk stability. Sensory testing using a dynamic plantar aesthesiometer revealed that there was no increase in touch sensitivity in the affected forelimb. For the cases in which both histological and behavioral data were available, spared forelimb motor function was greatest in rats in which there was sparing of the dorsal CST.
Collapse
Affiliation(s)
- Kim D Anderson
- Department of Anatomy and Neurobiology, Reeve-Irvine Research Center, University of California at Irvine College of Medicine, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, USA
| | | | | |
Collapse
|
36
|
Senapati AK, Huntington PJ, Peng YB. Spinal dorsal horn neuron response to mechanical stimuli is decreased by electrical stimulation of the primary motor cortex. Brain Res 2005; 1036:173-9. [PMID: 15725415 DOI: 10.1016/j.brainres.2004.12.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/13/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
Motor cortex stimulation (MCS) has been used clinically as a tool for the control for central post-stroke pain and neuropathic facial pain. The underlying mechanisms involved in the antinociceptive effect of MCS are not clearly understood. We hypothesize that the antinociceptive effect is through the modulation of the spinal dorsal horn neuron activity. Thirty-two wide dynamic range spinal dorsal horn neurons were recorded, in response to graded mechanical stimulation (brush, pressure, and pinch) at their respective receptive fields, while a stepwise electrical stimulation was applied simultaneously in the motor cortex. The responses to brush at control, 10 V, 20 V, and 30 V, and recovery were 11.5+/-1.6, 12.1+/-2.6, 11.1+/-2.2, 10.5+/-2.1, and 13.2+/-2.5 spikes/s, respectively. The responses to pressure at control, 10 V, 20 V, and 30 V, and recovery were 33.2+/-6.1, 22.9+/-5.3, 20.5+/-5.0, 17.3+/-3.8, and 27.0+/-4.0 spikes/s, respectively. The responses to pinch at control, 10 V, 20 V, and 30 V, and recovery were 37.2+/-6.4, 26.3+/-4.7, 25.9+/-4.7, 22.5+/-4.3, and 35.0+/-6.2 spikes/s, respectively. It is concluded that, in the rat, electrical stimulation of the motor cortex produces significant transient inhibition of the responses of spinal cord dorsal horn neurons to higher intensity mechanical stimuli without affecting their response to an innocuous stimulus.
Collapse
Affiliation(s)
- Arun K Senapati
- Department of Psychology, P.O. Box 19528, University of Texas at Arlington, 501 S. Nedderman Drive, Arlington, TX 76019-0528, USA
| | | | | |
Collapse
|
37
|
Petkó M, Veress G, Vereb G, Storm-Mathisen J, Antal M. Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. J Comp Neurol 2005; 480:364-77. [PMID: 15558798 DOI: 10.1002/cne.20356] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been established that there is a strong functional link between sensory neural circuits on the two sides of the spinal cord. In one of our recent studies we provided a morphological confirmation of this functional phenomenon, presenting evidence for the presence of a direct commissural connection between the lateral aspects of the dorsal horn on the two sides of the lumbar spinal cord. By using a combination of neural tracing and immunocytochemical detection of neural markers like vesicular glutamate transporters, glutamic acid decarboxylase, glycine transporter, and met-enkephalin (which are characteristic of various subsets of excitatory and inhibitory neurons), we investigated here the distribution, synaptic relations, and neurochemical characteristics of the commissural axon terminals. We found that the cells of origin of commissural fibers in the lateral aspect of the dorsal horn were confined to laminae III-IV and projected to the corresponding area of the contralateral gray matter. Most of the commissural axon terminals established synaptic contacts with dendrites. Axospinous or axosomatic synaptic contacts were found in limited numbers. We demonstrated that interactions among commissural neurons also exist. More than three-fourths of the labeled axon terminals were immunostained for glutamic acid decarboxylase and/or glycine transporter, but none of them showed positive immunoreaction for met-enkephalin and vesicular glutamate transporters. The results indicate that there is a substantial reciprocal commissural synaptic interaction between the lateral aspects of laminae III-IV on the two sides of the lumbar spinal cord and that this pathway may transmit both inhibitory and excitatory signals to their postsynaptic targets.
Collapse
Affiliation(s)
- Mihály Petkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
38
|
Webb AA, Muir GD. Course of motor recovery following ventrolateral spinal cord injury in the rat. Behav Brain Res 2004; 155:55-65. [PMID: 15325779 DOI: 10.1016/j.bbr.2004.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the importance of the pathways running in the ventrolateral spinal funiculus for overground locomotion in adult, freely behaving rats. Left-sided ventrolateral cervical spinal cord injury was performed in adult female Long-Evans rats. The behavioural abilities of these animals were analyzed at 2 days, and weekly for up to 5.5 weeks following spinal cord injury. Behavioural testing consisted of Von Frey filament testing, ladder walking, a paw usage task, and the assessment of ground reaction forces during unrestrained trotting. Animals with injury to the left ventrolateral cervical spinal cord did not develop enhanced sensitivity to pedal mechanical stimulation. At 2 days following injury, animals had impaired skilled locomotion as indicated by increased number of footslips during ladder walking. At 2 days, these animals also used both limbs together more often for support while rearing, while using the forelimb ipsilateral to the injury less than did uninjured animals. Ground reaction force determination revealed that animals tend to bear less weight on the forelimb and hindlimb ipsilateral to the spinal cord injury 2 days after injury. All animals recovered normal or near normal sensorimotor abilities although subtle asymmetries in ground reaction forces were detectable at 5.5 weeks following spinal cord injury. These results suggest that axons in the ventrolateral spinal funiculi contribute to limb movements during exploration and locomotion but their roles can be served by other pathways after ventrolateral spinal injury.
Collapse
Affiliation(s)
- Aubrey A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Sask., Canada S7N 5B4.
| | | |
Collapse
|
39
|
Ruitenberg MJ, Blits B, Dijkhuizen PA, te Beek ET, Bakker A, van Heerikhuize JJ, Pool CW, Hermens WTJ, Boer GJ, Verhaagen J. Adeno-associated viral vector-mediated gene transfer of brain-derived neurotrophic factor reverses atrophy of rubrospinal neurons following both acute and chronic spinal cord injury. Neurobiol Dis 2004; 15:394-406. [PMID: 15006710 DOI: 10.1016/j.nbd.2003.11.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 09/26/2003] [Accepted: 11/18/2003] [Indexed: 02/08/2023] Open
Abstract
Rubrospinal neurons (RSNs) undergo marked atrophy after cervical axotomy. This progressive atrophy may impair the regenerative capacity of RSNs in response to repair strategies that are targeted to promote rubrospinal tract regeneration. Here, we investigated whether we could achieve long-term rescue of RSNs from lesion-induced atrophy by adeno-associated viral (AAV) vector-mediated gene transfer of brain-derived neurotrophic factor (BDNF). We show for the first time that AAV vectors can be used for the persistent transduction of highly atrophic neurons in the red nucleus (RN) for up to 18 months after injury. Furthermore, BDNF gene transfer into the RN following spinal axotomy resulted in counteraction of atrophy in both the acute and chronic stage after injury. These novel findings demonstrate that a gene therapeutic approach can be used to reverse atrophy of lesioned CNS neurons for an extended period of time.
Collapse
Affiliation(s)
- Marc J Ruitenberg
- Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam ZO, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pikov V, McCreery DB. Mapping of spinal cord circuits controlling the bladder and external urethral sphincter functions in the rabbit. Neurourol Urodyn 2004; 23:172-9. [PMID: 14983431 DOI: 10.1002/nau.20008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS A primary purpose of this study was to evaluate the rabbit as a model for studying the spinal circuitry controlling the bladder emptying. We aimed to map the locations of the neuronal circuitry controlling the external urethral sphincter (EUS) and the detrusor by stimulating at different spinal cord locations with a microelectrode, while recording the responses from these muscles. METHODS Spinal cord microstimulation was performed in the intermediate zone of the gray matter at the L7-S4 spinal cord levels in eight rabbits with empty and full bladders. Bladder activity was measured as intravesical pressure (IVP) changes and EUS activity was measured via electromyographic (EMG) electrodes positioned within the urethra. RESULTS Under both bladder conditions, EUS activation was produced from similar locations in the spinal cord comprising a continuous area in the intermediate zone of the S2-S3 spinal cord. This region extended 25 mm in the rostrocaudal dimension, at least 1 mm lateral to the midline, and 0.5-1 mm in the dorsoventral dimension at a depth of 2-3 mm beneath the dorsal surface. No locations in the intermediate zone produced EUS inhibition. The S2-S3 spinal region, stimulation of which produced the strongest EUS activation, also produced modest bladder contractions. CONCLUSIONS Overall, the results indicate that spinal cord networks controlling bladder and EUS activation in the rabbit are overlapping and clustered into columns extending rostrocaudally. The lack of spinal locations producing EUS inhibition and large bladder contractions make the rabbit an unattractive model for studies of neuroprosthetic spinal control of micturition.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, Fairmount Avenue, Pasadena, California 91105, USA.
| | | |
Collapse
|
41
|
Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci 2003. [PMID: 12904465 DOI: 10.1523/jneurosci.23-18-07045.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The present study uniquely combines olfactory ensheathing glia (OEG) implantation with ex vivo adenoviral (AdV) vector-based neurotrophin gene therapy in an attempt to enhance regeneration after cervical spinal cord injury. Primary OEG were transduced with AdV vectors encoding rat brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or bacterial marker protein beta-galactosidase (LacZ) and subsequently implanted into adult Fischer rats directly after unilateral transection of the dorsolateral funiculus. Implanted animals received a total of 2 x 105 OEG that were subjected to transduction with neurotrophin-encoding AdV vector, AdV-LacZ, or no vector, respectively. At 4 months after injury, lesion volumes were smaller in all OEG implanted rats and significantly reduced in size after implantation of neurotrophin-encoding AdV vector-transduced OEG. All OEG grafts were filled with neurofilament-positive axons, and AdV vector-mediated expression of BDNF by implanted cells significantly enhanced regenerative sprouting of the rubrospinal tract. Behavioral analysis revealed that OEG-implanted rats displayed better locomotion during horizontal rope walking than unimplanted lesioned controls. Recovery of hind limb function was also improved after implantation of OEG that were transduced with a BDNF- or NT-3-encoding AdV vector. Hind limb performance during horizontal rope locomotion did directly correlate with lesion size, suggesting that neuroprotective effects of OEG implants contributed to the level of functional recovery. Thus, our results demonstrate that genetic engineering of OEG not only resulted in a cell that was more effective in promoting axonal outgrowth but could also lead to enhanced recovery after injury, possibly by sparing of spinal tissue.
Collapse
|
42
|
Abstract
Distal swelling and eventual degeneration of axons in the CNS and PNS have been considered to be the characteristic neuropathological features of acrylamide (ACR) neuropathy. These axonopathic changes have been the basis for classifying ACR neuropathy as a central-peripheral distal axonopathy and, accordingly, research over the past 30 years has focused on the primacy of axon damage and on deciphering underlying mechanisms. However, based on accumulating evidence, we have hypothesized that nerve terminals, and not axons, are the primary site of ACR action and that compromise of corresponding function is responsible for the autonomic, sensory, and motor defects that accompany ACR intoxication (NeuroToxicology 23 (2002) 43). In this paper, we provide a review of data from a recently completed comprehensive, longitudinal silver stain study of brain and spinal cord from rats intoxicated with ACR at two different daily dosing rates, i.e., 50 mg/kg/day, ip or 21 mg/kg/day, po. Results show that, regardless of dose-rate, ACR intoxication was associated with early, progressive nerve terminal degeneration in all CNS regions and with Purkinje cell injury in cerebellum. At the lower dose-rate, initial nerve terminal argyrophilia was followed by abundant retrograde axon degeneration in white matter tracts of spinal cord, brain stem, and cerebellum. The results support and extend our nerve terminal hypothesis and suggest that Purkinje cell damage also plays a role in ACR neurotoxicity. Substantial evidence now indicates that axon degeneration is a secondary effect and is, therefore, not pathophysiologically significant. These findings have important implications for future mechanistic research, classification schemes, and assessment of neurotoxicity risk.
Collapse
Affiliation(s)
- R M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 E. 210th St., Bronx, NY 10467, USA.
| | | | | |
Collapse
|
43
|
Lehning EJ, Balaban CD, Ross JF, LoPachin RM. Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord. Neurotoxicology 2003; 24:109-23. [PMID: 12564387 DOI: 10.1016/s0161-813x(02)00192-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. 151 (1998) 211] and cerebellum [NeuroToxicology 23 (2002) 397] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To continue morphological examination of ACR neurotoxicity in CNS, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal degeneration in brainstem and spinal cord. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.), and at selected times brains and spinal cord were removed and processed for silver staining. Results show that intoxication at the higher ACR dose-rate produced a nearly pure terminalopathy in brainstem and spinal cord regions, i.e. widespread nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the lower ACR dose-rate caused initial nerve terminal argyrophilia in selected brainstem and spinal cord regions. As intoxication continued, axon degeneration developed in white matter of these CNS areas. At both dose-rates, argyrophilic changes in brainstem nerve terminals developed prior to the onset of significant gait abnormalities. In contrast, during exposure to the lower ACR dose-rate the appearance of axon degeneration in either brainstem or spinal cord was relatively delayed with respect to changes in gait. Thus, regardless of dose-rate, ACR intoxication produced early, progressive nerve terminal degeneration. Axon degeneration occurred primarily during exposure to the lower ACR dose-rate and developed after the appearance of terminal degeneration and neurotoxicity. Spatiotemporal analysis suggested that degeneration began at the nerve terminal and then moved as a function of time in a somal direction along the corresponding axon. These data suggest that nerve terminals are a primary site of ACR action and that expression of axonopathy is restricted to subchronic dosing-rates.
Collapse
Affiliation(s)
- E J Lehning
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Anesthesia Research-Moses 7, 111 E. 210th Street, Bronx, NY 10467, USA
| | | | | | | |
Collapse
|
44
|
Raineteau O, Fouad K, Bareyre FM, Schwab ME. Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 2002; 16:1761-71. [PMID: 12431229 DOI: 10.1046/j.1460-9568.2002.02243.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following lesion of the central nervous system (CNS), reinnervation of denervated areas may occur via two distinct processes: regeneration of the lesioned fibres or/and sprouting from adjacent intact fibres into the deafferented zone. Both regeneration and axonal sprouting are very limited in the fully mature CNS of higher vertebrates, but can be enhanced by neutralizing the neurite outgrowth inhibitory protein Nogo-A. This study takes advantage of the distinct spinal projection pattern of two descending tracts, the corticospinal tract (CST) and the rubrospinal tract (RST), to investigate if re-innervation of denervated targets can occur by sprouting of anatomically separate, undamaged tracts in the adult rat spinal cord. The CST was transected bilaterally at its entry into the pyramidal decussation. Anatomical studies of the RST in IN-1 antibody-treated rats showed a reorganization of the RST projection pattern after neutralization of the myelin associated neurite growth inhibitor Nogo-A. The terminal arborizations of the rubrospinal fibres, which are normally restricted to the intermediate layers of the spinal cord, invaded the ventral horn but not the dorsal horn of the cervical spinal cord. Moreover, new close appositions were observed, in the ventral horn, onto motoneurons normally receiving CST projections. Red nucleus microstimulation experiments confirmed the reorganization of the RST system. These observations indicate that mature descending motor tracts are capable of significant intraspinal reorganization following lesion and suggests the expression of cues guiding and/or stabilizing newly formed sprouts in the adult, denervated spinal cord.
Collapse
Affiliation(s)
- Olivier Raineteau
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
45
|
Novikova LN, Novikov LN, Kellerth JO. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 2002; 452:255-63. [PMID: 12353221 DOI: 10.1002/cne.10381] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) induces retrograde cell death in descending pathways, which can be prevented by long-term intrathecal infusion of neurotrophins (Novikova et al. [2000] Eur J Neurosci 12:776-780). The present study investigates whether the same treatment also leads to improved regeneration of the injured tracts. After cervical SCI in adult rats, a peripheral nerve graft was attached to the rostral wall of the lesion cavity. The animals were treated by local application into the cavity of Gelfoam soaked in (1) phosphate buffered saline (untreated controls) or (2) a mixture of the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (local treatment), or by intrathecal infusion of BDNF + NT-3 for (3) 2 weeks (short-term treatment) or (4) 5-8 weeks (long-term treatment). Despite a very strong survival effect, long-term treatment failed to stimulate ingrowth of descending tracts into the nerve graft. In comparison with untreated controls, the latter treatment also caused 35% reduction in axonal sprouting of descending pathways rostral to the lesion site and 72% reduction in the number of spinal cord neurons extending axons into the nerve graft. Local and short-term treatments neither prevented retrograde cell death nor enhanced regeneration of descending tracts, but induced robust regeneration of spinal cord neurons into the nerve graft. These results indicate that the signal pathways promoting neuronal survival and axonal regeneration, respectively, in descending tracts after SCI respond differently to neurotrophic stimuli and that efficient rescue of axotomized tract neurons is not a sufficient prerequisite for regeneration.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
46
|
Lehning EJ, Balaban CD, Ross JF, LoPachi RM. Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord. Neurotoxicology 2002; 23:415-29. [PMID: 12387367 DOI: 10.1016/s0161-813x(02)00080-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. 151 (1998) 211] and cerebellum [Neurotoxicology, 2002a] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To continue morphological examination of ACR neurotoxicity in CNS, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal degeneration in brainstem and spinal cord. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.), and at selected times brains and spinal cord were removed and processed for silver staining. Results show that intoxication at the higher ACR dose-rate produced a nearly pure terminalopathy in brainstem and spinal cord regions, ie. widespread nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the lower ACR dose-rate caused initial nerve terminal argyrophilia in selected brainstem and spinal cord regions. As intoxication continued, axon degeneration developed in white matter of these CNS areas. At both dose-rates, argyrophilic changes in brainstem nerve terminals developed prior to the onset of significant gait abnormalities. In contrast, during exposure to the lower ACR dose-rate the appearance of axon degeneration in either brainstem or spinal cord was relatively delayed with respect to changes in gait. Thus, regardless of dose-rate, ACR intoxication produced early, progressive nerve terminal degeneration. Axon degeneration occurred primarily during exposure to the lower ACR dose-rate and developed after the appearance of terminal degeneration and neurotoxicity. Spatiotemporal analysis suggested that degeneration began at the nerve terminal and then moved as a function of time in a somal direction along the corresponding axon. These data suggest that nerve terminals are a primary site of ACR action and that expression of axonopathy is restricted to subchronic dosing-rates.
Collapse
Affiliation(s)
- E J Lehning
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | | | |
Collapse
|
47
|
Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 2002; 23:3369-76. [PMID: 12099279 DOI: 10.1016/s0142-9612(02)00037-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After spinal cord injury, the severed neuronal pathways fail to regenerate spontaneously. This study describes a biodegradable implant using poly-beta-hydroxybutyrate (PHB) fibers as carrier scaffold for matrix components and cell lines supporting neuronal survival and regeneration after spinal cord injury. After cervical spinal cord injury in adult rats, a graft consisting of PHB fibers coated with alginate hydrogel + fibronectin was implanted in the lesion cavity. In control groups, PHB was omitted and only alginate hydrogel or fibronectin, or their combination, were used for grafting. In addition, comparisons were made with animals treated intrathecally after spinal cord injury with the neurotrophic factors BDNF or NT-3. The neurons of the rubrospinal tract served as experimental model. In untreated animals, 45% of the injured rubrospinal neurons were lost at 8 weeks postoperatively. Implantation of the PHB graft reduced this cell loss by 50%, a rescuing effect similar to that obtained after treatment with BDNF or NT-3. In the absence of PHB support, implants of only alginate hydrogel or fibronectin, or their combination, had no effect on neuronal survival. After addition of neonatal Schwann cells to the PHB graft, regenerating axons were seen to enter the graft from both ends and to extend along its entire length. These results show that implants using PHB as carrier scaffold and containing alginate hydrogel, fibronectin and Schwann cells can support neuronal survival and regeneration after spinal cord injury
Collapse
Affiliation(s)
- Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O. Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 2002; 448:349-59. [PMID: 12115698 DOI: 10.1002/cne.10259] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite being one of the more extensively investigated descending pathways of the rat spinal cord, the termination pattern and postsynaptic targets of the rubrospinal tract (RST) still present some unresolved issues. In addition to locomotor functions, the RST is implicated in the control of limb movements such as reaching and grasping. Although a strong RST projection onto interneurons of intermediate Rexed's laminae V and VI have been described through the entire length of the rat spinal cord, the existence of direct rubro-motoneuronal connections have not been demonstrated. In the present study, anterograde tracing of the rat RST with biotinylated dextran amine (BDA) was combined with injections of cholera toxin beta-subunit (CTbeta) into selected groups of forelimb muscles to analyze in detail the rubral projections to the forelimb areas of the cervical spinal cord. The double-staining procedure suggested a direct projection from the RST to specific populations of motoneurons. Three populations of forelimb muscles were distinguished, i.e., paw, "distal" muscles; forearm, "intermediate" muscles; and upper arm, "proximal" muscles. A somatotopic distribution of the corresponding motor neuron pools was present in the spinal cord segments C4-Th1. Rubrospinal axons were seen in close apposition to the distal and intermediate muscle motoneurons, but were consistently absent in the most ventrally situated motor column projecting to proximal muscles. Microstimulation of the red nucleus resulted in electromyographic responses with shorter latency in the distal forelimb muscles than in proximal muscles. These experiments support a specific, preferential role of the RST in distal forelimb muscle control.
Collapse
Affiliation(s)
- Martin Küchler
- Brain Research Institute, University and ETH Zurich, Zurich 8057, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Bartz JC, Kincaid AE, Bessen RA. Retrograde transport of transmissible mink encephalopathy within descending motor tracts. J Virol 2002; 76:5759-68. [PMID: 11992004 PMCID: PMC137050 DOI: 10.1128/jvi.76.11.5759-5768.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of the abnormal conformation of the prion protein, PrP(Sc), within the spinal cord is central to the pathogenesis of transmissible prion diseases, but the mechanism of transport has not been determined. For this report, the route of transport of the HY strain of transmissible mink encephalopathy (TME), a prion disease of mink, in the central nervous system following unilateral inoculation into the sciatic nerves of Syrian hamsters was investigated. PrP(Sc) was detected at 3 weeks postinfection in the lumbar spinal cord and ascended to the brain at a rate of approximately 3.3 mm per day. At 6 weeks postinfection, PrP(Sc) was detected in the lateral vestibular nucleus and the interposed nucleus of the cerebellum ipsilateral to the site of sciatic nerve inoculation and in the red nucleus contralateral to HY TME inoculation. At 9 weeks postinfection, PrP(Sc) was detected in the contralateral hind limb motor cortex and reticular thalamic nucleus. These patterns of PrP(Sc) brain deposition at various times postinfection were consistent with that of HY TME spread from the sciatic nerve to the lumbar spinal cord followed by transsynaptic spread and retrograde transport to the brain and brain stem along descending spinal tracts (i.e., lateral vestibulospinal, rubrospinal, and corticospinal). The absence of PrP(Sc) from the spleen suggested that the lymphoreticular system does not play a role in neuroinvasion following sciatic nerve infection. The rapid disease onset following sciatic nerve infection demonstrated that HY TME can spread by retrograde transport along specific descending motor pathways of the spinal cord and, as a result, can initially target brain regions that control vestibular and motor functions. The early clinical symptoms of HY TME infection such as head tremor and ataxia were consistent with neuronal damage to these brain areas.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|
50
|
Yasui Y, Yokota S, Ono K, Tsumori T. Projections from the red nucleus to the parvicellular reticular formation and the cervical spinal cord in the rat, with special reference to innervation by branching axons. Brain Res 2001; 923:187-92. [PMID: 11743987 DOI: 10.1016/s0006-8993(01)03196-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After biotinylated dextranamine injection into the dorsal part of the red nucleus (RN) in the rat, labeled axons were distributed contralaterally in the lateral tegmental field including the parvicellular reticular formation (RFp), and ipsilaterally in the medial reticular formation. In the cervical spinal cord, labeled axons were present bilaterally with a contralateral dominance mainly in laminae V-VI and the dorsal part of laminae VII. After ipsilateral injections of rhodamine dextranamine, Fluoro-ruby (FR) into the RFp and Fluoro-gold (FG) into the upper cervical spinal cord, a population of FR-labeled neurons was found in the dorsal part of the contralateral RN, whereas the majority of FG-labeled neurons were located more ventrally. However, some of them were intermingled with FR-labeled neurons, and as many as one-third of FR-labeled neurons were labeled with FG. After combined injections of FR into the RFp and FG into the lower cervical spinal cord, RN neurons labeled with FG existed more ventrally than those retrogradely labeled from the upper cervical spinal cord, and less than 10% of FR-labeled neurons were labeled with FG. The present data suggest that axon collateral innervation of the RFp and the upper cervical spinal cord by single RN neurons may be responsible for coordinating head and orofacial movements.
Collapse
Affiliation(s)
- Y Yasui
- Department of Anatomy (2nd Division), Shimane Medical University, Izumo 693-8501, Japan.
| | | | | | | |
Collapse
|