1
|
Agahari FA, Stricker C. Modulation by serotonin reveals preferred recurrent excitatory connectivity in layer II of rat neocortex. Cereb Cortex 2025; 35:bhaf008. [PMID: 39937460 DOI: 10.1093/cercor/bhaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
We reported that in layer II pyramidal cells of rat somatosensory cortex, 10 μM serotonin (5-HT) alters miniature excitatory postsynaptic current frequency in a subset of cells (47%, "responders", RC; "non-responders", NC otherwise) via 5-HT2 receptors (5-HT2R) but in all pairs reduced evoked excitatory postsynaptic current amplitude by ~50% (Agahari FA, Stricker C. 2021. Serotonergic modulation of spontaneous and evoked transmitter release in layer II pyramidal cells of rat somatosensory cortex. Cereb Cortex. 31:1182-1200. https://doi.org/10.1093/cercor/bhaa285.) suggestive of preferential connectivity. We provide different lines of evidence that distinguish these subsets. First, after 5-HT exposure, changes in miniature excitatory postsynaptic current, spontaneous EPSC frequency, or whole-cell noise (σw) were restricted to postsynaptic cells in pairs (PO) and RC but absent in presynaptic (PR) and NC. Second, exposure caused a large change in holding current with a small variability in NC, but a small one with a large variability in PO/RC. In addition, ΔRin in PO/RC was larger than in PR/NC, with a negative correlation between ΔIhold and ΔRin in NC, a positive in PO, but none in RC. Third, an unbiased classifier identified most PO as RC and all PR as NC. Our data establish two distinct sets of pyramidal cells having a preferred connectivity from NC → RC. 5-HT2R-mediated modulation of transmitter release may likely reduce the signal-to-noise ratio in the ipsilateral but leave the output to the contralateral side unaffected.
Collapse
Affiliation(s)
- Fransiscus Adrian Agahari
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Ward Rd, Acton, ACT 2601, Australia
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida-Shi, Tokyo 194-8610, Japan
| | - Christian Stricker
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Ward Rd, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Franciosa F, Acuña MA, Nevian NE, Nevian T. A cellular mechanism contributing to pain-induced analgesia. Pain 2024; 165:2517-2529. [PMID: 38968393 PMCID: PMC11474934 DOI: 10.1097/j.pain.0000000000003315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) plays a crucial role in the perception of pain. It is consistently activated by noxious stimuli and its hyperactivity in chronic pain indicates plasticity in the local neuronal network. However, the way persistent pain effects and modifies different neuronal cell types in the ACC and how this contributes to sensory sensitization is not completely understood. This study confirms the existence of 2 primary subtypes of pyramidal neurons in layer 5 of the rostral, agranular ACC, which we could classify as intratelencephalic (IT) and cortico-subcortical (SC) projecting neurons, similar to other cortical brain areas. Through retrograde labeling, whole-cell patch-clamp recording, and morphological analysis, we thoroughly characterized their different electrophysiological and morphological properties. When examining the effects of peripheral inflammatory pain on these neuronal subtypes, we observed time-dependent plastic changes in excitability. During the acute phase, both subtypes exhibited reduced excitability, which normalized to pre-inflammatory levels after day 7. Daily conditioning with nociceptive stimuli during this period induced an increase in excitability specifically in SC neurons, which was correlated with a decrease in mechanical sensitization. Subsequent inhibition of the activity of SC neurons projecting to the periaqueductal gray with in vivo chemogenetics, resulted in reinstatement of the hypersensitivity. Accordingly, it was sufficient to enhance the excitability of these neurons chemogenetically in the inflammatory pain condition to induce hypoalgesia. These findings suggest a cell type-specific effect on the descending control of nociception and a cellular mechanism for pain-induced analgesia. Furthermore, increased excitability in this neuronal population is hypoalgesic rather than hyperalgesic.
Collapse
Affiliation(s)
| | - Mario A. Acuña
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Zheng T, Sugino M, Jimbo Y, Ermentrout GB, Kotani K. Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach. Front Comput Neurosci 2024; 18:1439632. [PMID: 39376575 PMCID: PMC11456483 DOI: 10.3389/fncom.2024.1439632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Sugino
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kiyoshi Kotani
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba, Japan
| |
Collapse
|
4
|
Rao RPN. A sensory-motor theory of the neocortex. Nat Neurosci 2024; 27:1221-1235. [PMID: 38937581 DOI: 10.1038/s41593-024-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024]
Abstract
Recent neurophysiological and neuroanatomical studies suggest a close interaction between sensory and motor processes across the neocortex. Here, I propose that the neocortex implements active predictive coding (APC): each cortical area estimates both latent sensory states and actions (including potentially abstract actions internal to the cortex), and the cortex as a whole predicts the consequences of actions at multiple hierarchical levels. Feedback from higher areas modulates the dynamics of state and action networks in lower areas. I show how the same APC architecture can explain (1) how we recognize an object and its parts using eye movements, (2) why perception seems stable despite eye movements, (3) how we learn compositional representations, for example, part-whole hierarchies, (4) how complex actions can be planned using simpler actions, and (5) how we form episodic memories of sensory-motor experiences and learn abstract concepts such as a family tree. I postulate a mapping of the APC model to the laminar architecture of the cortex and suggest possible roles for cortico-cortical and cortico-subcortical pathways.
Collapse
Affiliation(s)
- Rajesh P N Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Kim HH, Bonekamp KE, Gillie GR, Autio DM, Keller T, Crandall SR. Functional Dynamics and Selectivity of Two Parallel Corticocortical Pathways from Motor Cortex to Layer 5 Circuits in Somatosensory Cortex. eNeuro 2024; 11:ENEURO.0154-24.2024. [PMID: 38834298 PMCID: PMC11209671 DOI: 10.1523/eneuro.0154-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
In the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes). We found that M1 synapses onto IT cells displayed modest short-term depression, whereas synapses onto PT neurons showed robust short-term facilitation. Despite M1 inputs to IT cells depressing, their slower kinetics resulted in summation and a response that increased during short trains. In contrast, summation was minimal in PT neurons due to the fast time course of their M1 responses. The functional consequences of this reduced summation, however, were outweighed by the strong facilitation at these M1 synapses, resulting in larger response amplitudes in PT neurons than IT cells during repetitive stimulation. To understand the impact of facilitating M1 inputs on PT output, we paired trains of inputs with single backpropagating action potentials, finding that repetitive M1 activation increased the probability of bursts in PT cells without impacting the time dependence of this coupling. Thus, there are two parallel but dynamically distinct systems of M1 synaptic excitation in L5 of S1, each defined by the short-term dynamics of its synapses, the class of postsynaptic neurons, and how the neurons respond to those inputs.
Collapse
Affiliation(s)
- Hye-Hyun Kim
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Kelly E Bonekamp
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
- Molecular, Cellular, and Integrative Physiology Program, Michigan State University, East Lansing, Michigan 48824
| | - Grant R Gillie
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
- Molecular, Cellular, and Integrative Physiology Program, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Tryton Keller
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
- Molecular, Cellular, and Integrative Physiology Program, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
6
|
Lee HR, Choi SH, Lee SH. Differential involvement of mitochondria in post-tetanic potentiation at intracortical excitatory synapses of the medial prefrontal cortex. Cereb Cortex 2024; 34:bhad476. [PMID: 38061690 DOI: 10.1093/cercor/bhad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2022] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyoung-Ro Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Choi
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Issa LK, Sekaran NVC, Llano DA. Highly branched and complementary distributions of layer 5 and layer 6 auditory corticofugal axons in mouse. Cereb Cortex 2023; 33:9566-9582. [PMID: 37386697 PMCID: PMC10431747 DOI: 10.1093/cercor/bhad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
The auditory cortex exerts a powerful, yet heterogeneous, effect on subcortical targets. Auditory corticofugal projections emanate from layers 5 and 6 and have complementary physiological properties. While several studies suggested that layer 5 corticofugal projections branch widely, others suggested that multiple independent projections exist. Less is known about layer 6; no studies have examined whether the various layer 6 corticofugal projections are independent. Therefore, we examined branching patterns of layers 5 and 6 auditory corticofugal neurons, using the corticocollicular system as an index, using traditional and novel approaches. We confirmed that dual retrograde injections into the mouse inferior colliculus and auditory thalamus co-labeled subpopulations of layers 5 and 6 auditory cortex neurons. We then used an intersectional approach to relabel layer 5 or 6 corticocollicular somata and found that both layers sent extensive branches to multiple subcortical structures. Using a novel approach to separately label layers 5 and 6 axons in individual mice, we found that layers 5 and 6 terminal distributions partially spatially overlapped and that giant terminals were only found in layer 5-derived axons. Overall, the high degree of branching and complementarity in layers 5 and 6 axonal distributions suggest that corticofugal projections should be considered as 2 widespread systems, rather than collections of individual projections.
Collapse
Affiliation(s)
- Lina K Issa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Nathiya V C Sekaran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, United States
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
8
|
Swindale NV, Spacek MA, Krause M, Mitelut C. Spontaneous activity in cortical neurons is stereotyped and non-Poisson. Cereb Cortex 2023; 33:6508-6525. [PMID: 36708015 PMCID: PMC10233306 DOI: 10.1093/cercor/bhac521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 01/29/2023] Open
Abstract
Neurons fire even in the absence of sensory stimulation or task demands. Numerous theoretical studies have modeled this spontaneous activity as a Poisson process with uncorrelated intervals between successive spikes and a variance in firing rate equal to the mean. Experimental tests of this hypothesis have yielded variable results, though most have concluded that firing is not Poisson. However, these tests say little about the ways firing might deviate from randomness. Nor are they definitive because many different distributions can have equal means and variances. Here, we characterized spontaneous spiking patterns in extracellular recordings from monkey, cat, and mouse cerebral cortex neurons using rate-normalized spike train autocorrelation functions (ACFs) and a logarithmic timescale. If activity was Poisson, this function should be flat. This was almost never the case. Instead, ACFs had diverse shapes, often with characteristic peaks in the 1-700 ms range. Shapes were stable over time, up to the longest recording periods used (51 min). They did not fall into obvious clusters. ACFs were often unaffected by visual stimulation, though some abruptly changed during brain state shifts. These behaviors may have their origin in the intrinsic biophysics and dendritic anatomy of the cells or in the inputs they receive.
Collapse
Affiliation(s)
- Nicholas V Swindale
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow St., Vancouver, BC V5Z 3N9, Canada
| | - Martin A Spacek
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthew Krause
- Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC H3A 2B4, Canada
| | - Catalin Mitelut
- Institute of Molecular and Clinical Ophthalmology, University of Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland
| |
Collapse
|
9
|
Rindner DJ, Proddutur A, Lur G. Cell-type-specific integration of feedforward and feedback synaptic inputs in the posterior parietal cortex. Neuron 2022; 110:3760-3773.e5. [PMID: 36087582 PMCID: PMC9671855 DOI: 10.1016/j.neuron.2022.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
The integration of feedforward (sensory) and feedback (top-down) neuronal signals is a principal function of the neocortex. Yet, we have limited insight into how these information streams are combined by individual neurons. Using a two-color optogenetic strategy, we found that layer 5 pyramidal neurons in the posterior parietal cortex receive monosynaptic dual innervation, combining sensory inputs with top-down signals. Subclasses of layer 5 pyramidal neurons integrated these synapses with distinct temporal dynamics. Specifically, regular spiking cells exhibited supralinear enhancement of delayed-but not coincident-inputs, while intrinsic burst-firing neurons selectively boosted coincident synaptic events. These subthreshold integration characteristics translated to a nonlinear summation of action potential firing. Complementing electrophysiology with computational modeling, we found that distinct integration profiles arose from a cell-type-specific interaction of ionic mechanisms and feedforward inhibition. These data provide insight into the cellular properties that guide the nonlinear interaction of distinct long-range afferents in the neocortex.
Collapse
Affiliation(s)
- Daniel J Rindner
- Department of Neurobiology and Behavior, University of California, Irvine, 1215 McGaugh Hall, Irvine, CA 92697, USA
| | - Archana Proddutur
- Department of Neurobiology and Behavior, University of California, Irvine, 1215 McGaugh Hall, Irvine, CA 92697, USA
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, Irvine, 1215 McGaugh Hall, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Moberg S, Takahashi N. Neocortical layer 5 subclasses: From cellular properties to roles in behavior. Front Synaptic Neurosci 2022; 14:1006773. [PMID: 36387773 PMCID: PMC9650089 DOI: 10.3389/fnsyn.2022.1006773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.
Collapse
Affiliation(s)
- Sara Moberg
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
11
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
12
|
Shao Y, Ge Q, Yang J, Wang M, Zhou Y, Guo JX, Zhu M, Shi J, Hu Y, Shen L, Chen Z, Li XM, Zhu JM, Zhang J, Duan S, Chen J. Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia. Neurosci Bull 2022; 38:1007-1024. [PMID: 35235180 PMCID: PMC9468210 DOI: 10.1007/s12264-022-00828-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. Dysmorphic neurons are the major histopathological feature of type II FCD, but their role in seizure genesis in FCD is unclear. Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients. Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in type II FCD, including an enlarged soma, aberrant dendritic arbors, increased current injection for rheobase action potential firing, and reduced action potential firing frequency. Intriguingly, the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na+-K+-Cl- cotransporter. In addition, we found a depolarizing shift of the GABA reversal potential in the CamKII-cre::PTENflox/flox mouse model of drug-resistant epilepsy, suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons. Thus, imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in type II FCD.
Collapse
Affiliation(s)
- Yijie Shao
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qianqian Ge
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachao Yang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mi Wang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Zhou
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jin-Xin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengyue Zhu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachen Shi
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqi Hu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedic Surgery, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Joint Institute for Genetics and Genome Medicine between, Guangdong Hong Kong Macao Greater Bay Area, Zhejiang University and the University of Toronto, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shumin Duan
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jiadong Chen
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Pandey A, Hardingham N, Fox K. Differentiation of Hebbian and homeostatic plasticity mechanisms within layer 5 visual cortex neurons. Cell Rep 2022; 39:110892. [PMID: 35649371 PMCID: PMC9637998 DOI: 10.1016/j.celrep.2022.110892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Cortical layer 5 contains two major types of projection neuron known as IB (intrinsic bursting) cells that project sub-cortically and RS (regular spiking) cells that project between cortical areas. This study describes the plasticity properties of RS and IB cells in the mouse visual cortex during the critical period for ocular dominance plasticity. We find that RS neurons exhibit synaptic depression in response to both dark exposure (DE) and monocular deprivation (MD), and their homeostatic recovery from depression is dependent on TNF-α. In contrast, IB cells demonstrate opposite responses to DE and MD, potentiating to DE and depressing to MD. IB cells' potentiation depends on CaMKII-autophosphorylation and not TNF-α. IB cells show mature synaptic properties at the start of the critical period while RS cells mature during the critical period. Together with observations in somatosensory cortex, these results suggest that differences in RS and IB plasticity mechanisms are a general cortical property.
Collapse
Affiliation(s)
- Anurag Pandey
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK
| | - Neil Hardingham
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
14
|
Medalla M, Chang W, Ibañez S, Guillamon-Vivancos T, Nittmann M, Kapitonava A, Busch SE, Moore TL, Rosene DL, Luebke JI. Layer-specific pyramidal neuron properties underlie diverse anterior cingulate cortical motor and limbic networks. Cereb Cortex 2022; 32:2170-2196. [PMID: 34613380 PMCID: PMC9113240 DOI: 10.1093/cercor/bhab347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Teresa Guillamon-Vivancos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Mathias Nittmann
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Anastasia Kapitonava
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Silas E Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
15
|
Schürmann F, Courcol JD, Ramaswamy S. Computational Concepts for Reconstructing and Simulating Brain Tissue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:237-259. [PMID: 35471542 DOI: 10.1007/978-3-030-89439-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has previously been shown that it is possible to derive a new class of biophysically detailed brain tissue models when one computationally analyzes and exploits the interdependencies or the multi-modal and multi-scale organization of the brain. These reconstructions, sometimes referred to as digital twins, enable a spectrum of scientific investigations. Building such models has become possible because of increase in quantitative data but also advances in computational capabilities, algorithmic and methodological innovations. This chapter presents the computational science concepts that provide the foundation to the data-driven approach to reconstructing and simulating brain tissue as developed by the EPFL Blue Brain Project, which was originally applied to neocortical microcircuitry and extended to other brain regions. Accordingly, the chapter covers aspects such as a knowledge graph-based data organization and the importance of the concept of a dataset release. We illustrate algorithmic advances in finding suitable parameters for electrical models of neurons or how spatial constraints can be exploited for predicting synaptic connections. Furthermore, we explain how in silico experimentation with such models necessitates specific addressing schemes or requires strategies for an efficient simulation. The entire data-driven approach relies on the systematic validation of the model. We conclude by discussing complementary strategies that not only enable judging the fidelity of the model but also form the basis for its systematic refinements.
Collapse
Affiliation(s)
- Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland.
| | - Jean-Denis Courcol
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
16
|
Catale C, Lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB, Viscomi MT, Palacios D, Carola V. Early Life Social Stress Causes Sex- and Region-Dependent Dopaminergic Changes that Are Prevented by Minocycline. Mol Neurobiol 2022; 59:3913-3932. [PMID: 35435618 PMCID: PMC9148283 DOI: 10.1007/s12035-022-02830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 02/03/2023]
Abstract
Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Constantin Heil
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Motor Science and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola Biagio Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Università Degli Studi Di Roma Tor Vergata, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, Università Cattolica Del S. Cuore, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniela Palacios
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Life Science and Public Health, Section of Biology, Università Cattolica Del S. Cuore, Rome, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy.
| |
Collapse
|
17
|
Perez-García P, Pardillo-Díaz R, Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Castro C, Nunez-Abades P, Carrascal L. Refinement of Active and Passive Membrane Properties of Layer V Pyramidal Neurons in Rat Primary Motor Cortex During Postnatal Development. Front Mol Neurosci 2021; 14:754393. [PMID: 34924951 PMCID: PMC8671142 DOI: 10.3389/fnmol.2021.754393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones. Thus, using whole cell patch clamp recordings, we have studied the changes in the electrophysiological properties of layer V pyramidal neurons of the rat primary motor cortex during postnatal development. Among all the parameters studied, only the voltage threshold was established at birth and, although some of the changes occurred mainly during the second postnatal week, other properties such as membrane potential, capacitance, duration of the post-hyperpolarization phase or the maximum firing rate were not defined until the beginning of adulthood. Those modifications lead to a decrease in neuronal excitability and to an increase in the working range in young adult neurons, allowing more sensitive and accurate responses. This maturation process, that involves an increase in neuronal size and changes in ionic conductances, seems to be influenced by the neuronal type and by the task that neurons perform as inferred from the comparison with other pyramidal and motor neuron populations.
Collapse
Affiliation(s)
- Patricia Perez-García
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain.,Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Carmen Castro
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Livia Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
18
|
Bae JW, Jeong H, Yoon YJ, Bae CM, Lee H, Paik SB, Jung MW. Parallel processing of working memory and temporal information by distinct types of cortical projection neurons. Nat Commun 2021; 12:4352. [PMID: 34272368 PMCID: PMC8285375 DOI: 10.1038/s41467-021-24565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons-two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively-in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.
Collapse
Affiliation(s)
- Jung Won Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Huijeong Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Young Ju Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chan Mee Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Hyeonsu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
19
|
Bragg-Gonzalo L, De León Reyes NS, Nieto M. Genetic and activity dependent-mechanisms wiring the cortex: Two sides of the same coin. Semin Cell Dev Biol 2021; 118:24-34. [PMID: 34030948 DOI: 10.1016/j.semcdb.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 01/17/2023]
Abstract
The cerebral cortex is responsible for the higher-order functions of the brain such as planning, cognition, or social behaviour. It provides us with the capacity to interact with and transform our world. The substrates of cortical functions are complex neural circuits that arise during development from the dynamic remodelling and progressive specialization of immature undefined networks. Here, we review the genetic and activity-dependent mechanisms of cortical wiring focussing on the importance of their interaction. Cortical circuits emerge from an initial set of neuronal types that engage in sequential forms of embryonic and postnatal activity. Such activities further complement the cells' genetic programs, increasing neuronal diversity and modifying the electrical properties while promoting selective connectivity. After a temporal window of enhanced plasticity, the main features of mature circuits are established. Failures in these processes can lead to neurodevelopmental disorders whose treatment remains elusive. However, a deeper dissection of cortical wiring will pave the way for innovative therapies.
Collapse
Affiliation(s)
- L Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - N S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain; Instituto de Neurociencias de Alicante, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - M Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
21
|
Jin M, Glickfeld LL. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors. Curr Biol 2020; 30:4682-4692.e7. [PMID: 33035487 PMCID: PMC7725996 DOI: 10.1016/j.cub.2020.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Cortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of the primary visual cortex (V1) and three key higher visual areas (lateromedial [LM], anterolateral [AL], and posteromedial [PM]) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM, or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm (FA) rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically specific, suggesting that suppression of PM altered sensory integration or the decision-making process rather than processing of local visual features. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Minimizing shrinkage of acute brain slices using metal spacers during histological embedding. Brain Struct Funct 2020; 225:2577-2589. [PMID: 32918613 PMCID: PMC7544706 DOI: 10.1007/s00429-020-02141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
The morphological structure of neurons provides the basis for their functions and is a major focus of contemporary neuroscience studies. Intracellular staining of single cells in acute slices is a well-established approach, offering high-resolution information on neuronal morphology, complementing their physiology. Despite major technical advances, however, a common histological artifact often precludes precise morphological analysis: shrinkage of the sampled tissue after embedding for microscopy. Here, we describe a new approach using a metal spacer, sandwiched between two coverslips to reduce shrinkage of whole-mount slice preparations during embedding with aqueous mounting medium under a coverslip. This approach additionally allows imaging the slices from both sides to obtain better quality images of deeper structures. We demonstrate that the use of this spacer system can efficiently and stably reduce the shrinkage of slices, whereas conventional embedding methods without spacer or with agar spacer cause severe, progressive shrinkage after embedding. We further show that the shrinkage of slices is not uniform and artifacts in morphology and anatomical parameters produced cannot be compensated using linear correction algorithms. Our study, thus, emphasizes the importance of preventing the deformation of slice preparations and offers an effective means for reducing shrinkage and associated artifacts during embedding.
Collapse
|
23
|
Kanari L, Ramaswamy S, Shi Y, Morand S, Meystre J, Perin R, Abdellah M, Wang Y, Hess K, Markram H. Objective Morphological Classification of Neocortical Pyramidal Cells. Cereb Cortex 2020; 29:1719-1735. [PMID: 30715238 PMCID: PMC6418396 DOI: 10.1093/cercor/bhy339] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
A consensus on the number of morphologically different types of pyramidal cells (PCs) in the neocortex has not yet been reached, despite over a century of anatomical studies, due to the lack of agreement on the subjective classifications of neuron types, which is based on expert analyses of neuronal morphologies. Even for neurons that are visually distinguishable, there is no common ground to consistently define morphological types. The objective classification of PCs can be achieved with methods from algebraic topology, and the dendritic arborization is sufficient for the reliable identification of distinct types of cortical PCs. Therefore, we objectively identify 17 types of PCs in the rat somatosensory cortex. In addition, we provide a solution to the challenging problem of whether 2 similar neurons belong to different types or to a continuum of the same type. Our topological classification does not require expert input, is stable, and helps settle the long-standing debate on whether cell-types are discrete or continuous morphological variations of each other.
Collapse
Affiliation(s)
- Lida Kanari
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Sebastien Morand
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Julie Meystre
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Yun Wang
- School of Optometry and Ophthalmology, Wenzhou Medical College, Wenzhou, Zhejiang, PR China.,Allen Institute for Brain Science, Seattle, WA, USA
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| |
Collapse
|
24
|
Kissinger ST, Wu Q, Quinn CJ, Anderson AK, Pak A, Chubykin AA. Visual Experience-Dependent Oscillations and Underlying Circuit Connectivity Changes Are Impaired in Fmr1 KO Mice. Cell Rep 2020; 31:107486. [PMID: 32268079 PMCID: PMC7201849 DOI: 10.1016/j.celrep.2020.03.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022] Open
Abstract
Fragile X syndrome (FX), the most common inherited form of autism and intellectual disability, is a condition associated with visual perceptual learning deficits. We recently discovered that perceptual experience can encode visual familiarity via persistent low-frequency oscillations in the mouse primary visual cortex (V1). Here, we combine this paradigm with a multifaceted experimental approach to identify neurophysiological impairments of these oscillations in FX mice. Extracellular recordings reveal shorter durations, lower power, and lower frequencies of peak oscillatory activity in FX mice. Directed information analysis of extracellularly recorded spikes reveals differences in functional connectivity from multiple layers in FX mice after the perceptual experience. Channelrhodopsin-2 assisted circuit mapping (CRACM) reveals increased synaptic strength from L5 pyramidal onto L4 fast-spiking cells after experience in wild-type (WT), but not FX, mice. These results suggest differential encoding of visual stimulus familiarity in FX via persistent oscillations and identify circuit connections that may underlie these changes.
Collapse
Affiliation(s)
- Samuel T Kissinger
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Qiuyu Wu
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Quinn
- Department of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Adam K Anderson
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Veeraval L, O'Leary CJ, Cooper HM. Adherens Junctions: Guardians of Cortical Development. Front Cell Dev Biol 2020; 8:6. [PMID: 32117958 PMCID: PMC7025593 DOI: 10.3389/fcell.2020.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022] Open
Abstract
Apical radial glia comprise the pseudostratified neuroepithelium lining the embryonic lateral ventricles and give rise to the extensive repertoire of pyramidal neuronal subtypes of the neocortex. The establishment of a highly apicobasally polarized radial glial morphology is a mandatory prerequisite for cortical development as it governs neurogenesis, neural migration and the integrity of the ventricular wall. As in all epithelia, cadherin-based adherens junctions (AJs) play an obligate role in the maintenance of radial glial apicobasal polarity and neuroepithelial cohesion. In addition, the assembly of resilient AJs is critical to the integrity of the neuroepithelium which must resist the tensile forces arising from increasing CSF volume and other mechanical stresses associated with the expansion of the ventricles in the embryo and neonate. Junctional instability leads to the collapse of radial glial morphology, disruption of the ventricular surface and cortical lamination defects due to failed neuronal migration. The fidelity of cortical development is therefore dependent on AJ assembly and stability. Mutations in genes known to control radial glial junction formation are causative for a subset of inherited cortical malformations (neuronal heterotopias) as well as perinatal hydrocephalus, reinforcing the concept that radial glial junctions are pivotal determinants of successful corticogenesis. In this review we explore the key animal studies that have revealed important insights into the role of AJs in maintaining apical radial glial morphology and function, and as such, have provided a deeper understanding of the aberrant molecular and cellular processes contributing to debilitating cortical malformations. We highlight the reciprocal interactions between AJs and the epithelial polarity complexes that impose radial glial apicobasal polarity. We also discuss the critical molecular networks promoting AJ assembly in apical radial glia and emphasize the role of the actin cytoskeleton in the stabilization of cadherin adhesion – a crucial factor in buffering the mechanical forces exerted as a consequence of cortical expansion.
Collapse
Affiliation(s)
- Lenin Veeraval
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Conor J O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Tang L, Higley MJ. Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior. Neuron 2020; 105:346-354.e5. [PMID: 31757603 PMCID: PMC6981039 DOI: 10.1016/j.neuron.2019.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Neocortical sensory areas are thought to act as distribution hubs, transmitting information about the external environment to downstream areas. Within primary visual cortex, various populations of pyramidal neurons (PNs) send axonal projections to distinct targets, suggesting multiple cellular networks may be independently engaged during behavior. We investigated whether PN subpopulations differentially support visual detection by training mice on a novel eyeblink conditioning task. Applying 2-photon calcium imaging and optogenetic manipulation of anatomically defined PNs, we show that layer 5 corticopontine neurons strongly encode sensory and motor task information and are selectively necessary for performance. Our findings support a model in which target-specific cortical subnetworks form the basis for adaptive behavior by directing relevant information to distinct brain areas. Overall, this work highlights the potential for neurons to form physically interspersed but functionally segregated networks capable of parallel, independent control of perception and behavior.
Collapse
Affiliation(s)
- Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
27
|
Saniotis A, Grantham JP, Kumaratilake J, Henneberg M. Neuro-hormonal Regulation Is a Better Indicator of Human Cognitive Abilities Than Brain Anatomy: The Need for a New Paradigm. Front Neuroanat 2020; 13:101. [PMID: 31998082 PMCID: PMC6962128 DOI: 10.3389/fnana.2019.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arthur Saniotis
- Department of Medical Laboratory Science, Knowledge University, Erbil, Iraq
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Arthur Saniotis
| | - James P. Grantham
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
Holst GL, Stoy W, Yang B, Kolb I, Kodandaramaiah SB, Li L, Knoblich U, Zeng H, Haider B, Boyden ES, Forest CR. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex. J Neurophysiol 2019; 121:2341-2357. [PMID: 30969898 DOI: 10.1152/jn.00738.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patch clamping is the gold standard measurement technique for cell-type characterization in vivo, but it has low throughput, is difficult to scale, and requires highly skilled operation. We developed an autonomous robot that can acquire multiple consecutive patch-clamp recordings in vivo. In practice, 40 pipettes loaded into a carousel are sequentially filled and inserted into the brain, localized to a cell, used for patch clamping, and disposed. Automated visual stimulation and electrophysiology software enables functional cell-type classification of whole cell-patched cells, as we show for 37 cells in the anesthetized mouse in visual cortex (V1) layer 5. We achieved 9% yield, with 5.3 min per attempt over hundreds of trials. The highly variable and low-yield nature of in vivo patch-clamp recordings will benefit from such a standardized, automated, quantitative approach, allowing development of optimal algorithms and enabling scaling required for large-scale studies and integration with complementary techniques. NEW & NOTEWORTHY In vivo patch-clamp is the gold standard for intracellular recordings, but it is a very manual and highly skilled technique. The robot in this work demonstrates the most automated in vivo patch-clamp experiment to date, by enabling production of multiple, serial intracellular recordings without human intervention. The robot automates pipette filling, wire threading, pipette positioning, neuron hunting, break-in, delivering sensory stimulus, and recording quality control, enabling in vivo cell-type characterization.
Collapse
Affiliation(s)
- Gregory L Holst
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - William Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Ilya Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | | | - Lu Li
- Allen Institute for Brain Science , Seattle, Washington
| | - Ulf Knoblich
- Allen Institute for Brain Science , Seattle, Washington
| | - Hongkui Zeng
- Allen Institute for Brain Science , Seattle, Washington
| | - Bilal Haider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Edward S Boyden
- Media Arts and Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts.,McGovern Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
30
|
Wang Y, Ye M, Kuang X, Li Y, Hu S. A simplified morphological classification scheme for pyramidal cells in six layers of primary somatosensory cortex of juvenile rats. IBRO Rep 2018; 5:74-90. [PMID: 30450442 PMCID: PMC6222978 DOI: 10.1016/j.ibror.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
The majority of neurons in the neocortex are excitatory pyramidal cells (PCs). Many systematic classification schemes have been proposed based the neuronal morphology, the chemical composition, and the synaptic connectivity, etc. Recently, a cortical column of primary somatosensory cortex (SSC) has been reconstruction and functionally simulated (Markram et al., 2015). Putting forward from this study, here we proposed a simplified classification scheme for PCs in all layers of the SSC by mainly identifying apical dendritic morphology based on a large data set of 3D neuron reconstructions. We used this scheme to classify three types in layer 2, two in layer 3, three in layer 4, four in layer 5, and six types in layer 6. These PC types were visually distinguished and confirmed by quantitative differences in their morphometric properties. The classes yielded using this scheme largely corresponded with PC classes that were defined previously based on other neuronal and synaptic properties such as long-range projects and synaptic innervations, further validating its applicability. Therefore, the morphology information of apical dendrites is sufficient for a simple scheme to classify a spectrum of anatomical types of PCs in the SSC.
Collapse
Affiliation(s)
- Yun Wang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Min Ye
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xiuli Kuang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yaoyao Li
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Shisi Hu
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
31
|
Parr T, Friston KJ. The Discrete and Continuous Brain: From Decisions to Movement-And Back Again. Neural Comput 2018. [PMID: 29894658 DOI: 10.1162/neco˙a˙01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To act upon the world, creatures must change continuous variables such as muscle length or chemical concentration. In contrast, decision making is an inherently discrete process, involving the selection among alternative courses of action. In this article, we consider the interface between the discrete and continuous processes that translate our decisions into movement in a Newtonian world-and how movement informs our decisions. We do so by appealing to active inference, with a special focus on the oculomotor system. Within this exemplar system, we argue that the superior colliculus is well placed to act as a discrete-continuous interface. Interestingly, when the neuronal computations within the superior colliculus are formulated in terms of active inference, we find that many aspects of its neuroanatomy emerge from the computations it must perform in this role.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, U.K.
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, U.K.
| |
Collapse
|
32
|
Parr T, Friston KJ. The Discrete and Continuous Brain: From Decisions to Movement-And Back Again. Neural Comput 2018; 30:2319-2347. [PMID: 29894658 PMCID: PMC6115199 DOI: 10.1162/neco_a_01102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To act upon the world, creatures must change continuous variables such as muscle length or chemical concentration. In contrast, decision making is an inherently discrete process, involving the selection among alternative courses of action. In this article, we consider the interface between the discrete and continuous processes that translate our decisions into movement in a Newtonian world—and how movement informs our decisions. We do so by appealing to active inference, with a special focus on the oculomotor system. Within this exemplar system, we argue that the superior colliculus is well placed to act as a discrete-continuous interface. Interestingly, when the neuronal computations within the superior colliculus are formulated in terms of active inference, we find that many aspects of its neuroanatomy emerge from the computations it must perform in this role.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, U.K.
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, U.K.
| |
Collapse
|
33
|
Guan D, Pathak D, Foehring RC. Functional roles of Kv1-mediated currents in genetically identified subtypes of pyramidal neurons in layer 5 of mouse somatosensory cortex. J Neurophysiol 2018; 120:394-408. [PMID: 29641306 DOI: 10.1152/jn.00691.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used voltage-clamp recordings from somatic outside-out macropatches to determine the amplitude and biophysical properties of putative Kv1-mediated currents in layer 5 pyramidal neurons (PNs) from mice expressing EGFP under the control of promoters for etv1 or glt. We then used whole cell current-clamp recordings and Kv1-specific peptide blockers to test the hypothesis that Kv1 channels differentially regulate action potential (AP) voltage threshold, repolarization rate, and width as well as rheobase and repetitive firing in these two PN types. We found that Kv1-mediated currents make up a similar percentage of whole cell K+ current in both cell types, and only minor biophysical differences were observed between PN types or between currents sensitive to different Kv1 blockers. Putative Kv1 currents contributed to AP voltage threshold in both PN types, but AP width and rate of repolarization were only affected in etv1 PNs. Kv1 currents regulate rheobase, delay to the first AP, and firing rate similarly in both cell types, but the frequency-current slope was much more sensitive to Kv1 block in etv1 PNs. In both cell types, Kv1 block shifted the current required to elicit an onset doublet of action potentials to lower currents. Spike frequency adaptation was also affected differently by Kv1 block in the two PN types. Thus, despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate APs and repetitive firing in etv1 and glt PNs. This may reflect differences in subcellular localization of channel subtypes or differences in the other K+ channels expressed. NEW & NOTEWORTHY In two types of genetically identified layer 5 pyramidal neurons, α-dendrotoxin blocked approximately all of the putative Kv1 current (on average). We used outside-out macropatches and whole cell recordings at 33°C to show that despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate action potentials and repetitive firing in etv1 and glt pyramidal neurons. This may reflect differences in subcellular localization of channel subtypes or differences in the other K+ channels expressed.
Collapse
Affiliation(s)
- Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Dhruba Pathak
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
34
|
Narayanan RT, Udvary D, Oberlaender M. Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex. Front Neuroanat 2017; 11:91. [PMID: 29081739 PMCID: PMC5645532 DOI: 10.3389/fnana.2017.00091] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
The cytoarchitectonic subdivision of the neocortex into six layers is often used to describe the organization of the cortical circuitry, sensory-evoked signal flow or cortical functions. However, each layer comprises neuronal cell types that have different genetic, functional and/or structural properties. Here, we reanalyze structural data from some of our recent work in the posterior-medial barrel-subfield of the vibrissal part of rat primary somatosensory cortex (vS1). We quantify the degree to which somata, dendrites and axons of the 10 major excitatory cell types of the cortex are distributed with respect to the cytoarchitectonic organization of vS1. We show that within each layer, somata of multiple cell types intermingle, but that each cell type displays dendrite and axon distributions that are aligned to specific cytoarchitectonic landmarks. The resultant quantification of the structural composition of each layer in terms of the cell type-specific number of somata, dendritic and axonal path lengths will aid future studies to bridge between layer- and cell type-specific analyses.
Collapse
Affiliation(s)
- Rajeevan T Narayanan
- Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and Research, Bonn, Germany
| | - Daniel Udvary
- Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and Research, Bonn, Germany
| | - Marcel Oberlaender
- Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
35
|
Rojas-Piloni G, Guest JM, Egger R, Johnson AS, Sakmann B, Oberlaender M. Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons. Nat Commun 2017; 8:870. [PMID: 29021587 PMCID: PMC5636900 DOI: 10.1038/s41467-017-00971-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.
Collapse
Affiliation(s)
- Gerardo Rojas-Piloni
- Digital Neuroanatomy, Max Planck Florida Institute of Neuroscience, 1 Max-Planck-Way, Jupiter, FL, 33458, USA.,Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Campus UNAM-Juriquilla, Querétaro, 76230, Mexico
| | - Jason M Guest
- Digital Neuroanatomy, Max Planck Florida Institute of Neuroscience, 1 Max-Planck-Way, Jupiter, FL, 33458, USA.,Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, 53175, Germany.,Bernstein Group: Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Spemannstr. 38-44, Tübingen, 72076, Germany
| | - Robert Egger
- Bernstein Group: Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Spemannstr. 38-44, Tübingen, 72076, Germany
| | - Andrew S Johnson
- Digital Neuroanatomy, Max Planck Florida Institute of Neuroscience, 1 Max-Planck-Way, Jupiter, FL, 33458, USA
| | - Bert Sakmann
- Digital Neuroanatomy, Max Planck Florida Institute of Neuroscience, 1 Max-Planck-Way, Jupiter, FL, 33458, USA
| | - Marcel Oberlaender
- Digital Neuroanatomy, Max Planck Florida Institute of Neuroscience, 1 Max-Planck-Way, Jupiter, FL, 33458, USA. .,Max Planck Group: In Silico Brain Sciences, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, 53175, Germany. .,Bernstein Group: Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Spemannstr. 38-44, Tübingen, 72076, Germany.
| |
Collapse
|
36
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
37
|
Anderson RM, Glanz RM, Johnson SB, Miller MM, Romig-Martin SA, Radley JJ. Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex. J Comp Neurol 2016; 524:3729-3746. [PMID: 27113541 PMCID: PMC5063662 DOI: 10.1002/cne.24027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
The stress-responsive hypothalamo-pituitary-adrenal (HPA) axis plays a central role in promoting adaptations acutely, whereas adverse effects on physiology and behavior following chronic challenges may result from overactivity of this system. Elevations in glucocorticoids, the end-products of HPA activation, play roles in adaptive and maladaptive processes by targeting cognate receptors throughout neurons in limbic cortical networks to alter synaptic functioning. Because previous work has shown that chronic stress leads to functionally relevant regressive alterations in dendritic spine shape and number in pyramidal neurons in the medial prefrontal cortex (mPFC), this study examines the capacity of sustained increases in circulating corticosterone (B) alone to alter dendritic spine morphology and density in this region. Subcutaneous B pellets were implanted in rats to provide continuous exposure to levels approximating the circadian mean or peak of the steroid for 1, 2, or 3 weeks. Pyramidal neurons in the prelimbic area of the mPFC were selected for intracellular fluorescent dye filling, followed by high-resolution three-dimensional imaging and analysis of dendritic arborization and spine morphometry. Two or more weeks of B exposure decreased dendritic spine volume in the mPFC, whereas higher dose exposure of the steroid resulted in apical dendritic retraction and spine loss in the same cell population, with thin spine subtypes showing the greatest degree of attrition. Finally, these structural alterations were noted to persist following a 3-week washout period and corresponding restoration of circadian HPA rhythmicity. These studies suggest that prolonged disruptions in adrenocortical functioning may be sufficient to induce enduring regressive structural and functional alterations in the mPFC. J. Comp. Neurol. 524:3729-3746, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Ryan M Glanz
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Shane B Johnson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Mary M Miller
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Jason J Radley
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242.
| |
Collapse
|
38
|
Staiger JF, Loucif AJC, Schubert D, Möck M. Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex. PLoS One 2016; 11:e0164004. [PMID: 27706253 PMCID: PMC5051735 DOI: 10.1371/journal.pone.0164004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/19/2016] [Indexed: 01/16/2023] Open
Abstract
Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar microcircuitry. It is, however, not known how exactly the two types of pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocytin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic electrophysiology with special emphasis on their action potential firing pattern. Since we stained the same slices for cytochrome oxidase, we could also perform layer- and column-related analyses. Our results suggest that in layer Vb the unambiguous action potential firing patterns "regular spiking (RS)" and "repetitive burst spiking (RB)" (previously called intrinsically burst spiking) correlate well with a distinct morphology. RS pyramidal cells are somatodendritically of the slender-tufted type and possess numerous local intralaminar and intracolumnar axonal collaterals, mostly reaching layer I. By contrast, their transcolumnar projections are less well developed. The RB pyramidal cells are somatodendritically of the thick-tufted type and show only relatively sparse local axonal collaterals, which are preferentially emitted as long horizontal or oblique infragranular collaterals. However, contrary to many previous slice studies, a substantial number of these neurons also showed axonal collaterals reaching layer I. Thus, electrophysiologically defined pyramidal cells of layer Vb show an input and output pattern which suggests RS cells to be more "locally segregating" signal processors whereas RB cells seem to act more on a "global integrative" scale.
Collapse
Affiliation(s)
- Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
- * E-mail:
| | | | - Dirk Schubert
- Donders Institute for Brain, Cognition & Behavior, Centre for Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Martin Möck
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
| |
Collapse
|
39
|
Karube F, Sári K, Kisvárday ZF. Axon topography of layer 6 spiny cells to orientation map in the primary visual cortex of the cat (area 18). Brain Struct Funct 2016; 222:1401-1426. [PMID: 27539451 PMCID: PMC5368233 DOI: 10.1007/s00429-016-1284-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
Abstract
To uncover the functional topography of layer 6 neurons, optical imaging was combined with three-dimensional neuronal reconstruction. Apical dendrite morphology of 23 neurons revealed three distinct types. Type Aa possessed a short apical dendrite with many oblique branches, Type Ab was characterized by a short and less branched apical dendrite, whereas Type B had a long apical dendrite with tufts in layer 2. Each type had a similar number of boutons, yet their spatial distribution differed from each other in both radial and horizontal extent. Boutons of Type Aa and Ab were almost restricted to the column of the parent soma with a laminar preference to layer 4 and 5/6, respectively. Only Type B contributed to long horizontal connections (up to 1.5 mm) mostly in deep layers. For all types, bouton distribution on orientation map showed an almost equal occurrence at iso- (52.6 ± 18.8 %) and non-iso-orientation (oblique, 27.7 ± 14.9 % and cross-orientation 19.7 ± 10.9 %) sites. Spatial convergence of axons of nearby layer 6 spiny neurons depended on soma separation of the parent cells, but only weakly on orientation preference, contrary to orientation dependence of converging axons of layer 4 spiny cells. The results show that layer 6 connections have only a weak dependence on orientation preference compared with those of layers 2/3 (Buzás et al., J Comp Neurol 499:861–881, 2006) and 4 (Karube and Kisvárday, Cereb Cortex 21:1443–1458, 2011).
Collapse
Affiliation(s)
- Fuyuki Karube
- Laboratory for Cortical Systems Neuroscience, Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, 4032, Hungary
- Graduate School of Brain Science, Doshisha University, Tataramiyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan
| | - Katalin Sári
- Laboratory for Cortical Systems Neuroscience, Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, 4032, Hungary
- Department of Neurosciences Fondamentales, Centre Médical Universitaire, Rue Michel-Servet 1, 4, 1211, Geneva, Switzerland
| | - Zoltán F Kisvárday
- Laboratory for Cortical Systems Neuroscience, Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
40
|
Lur G, Vinck MA, Tang L, Cardin JA, Higley MJ. Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Rep 2016; 14:2538-45. [PMID: 26972011 DOI: 10.1016/j.celrep.2016.02.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 02/07/2016] [Indexed: 12/24/2022] Open
Abstract
Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives a distinct version of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. Although there is overlap across the groups, on average, corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, whereas corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets.
Collapse
Affiliation(s)
- Gyorgy Lur
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Martin A Vinck
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Kim EJ, Juavinett AL, Kyubwa EM, Jacobs MW, Callaway EM. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function. Neuron 2015; 88:1253-1267. [PMID: 26671462 DOI: 10.1016/j.neuron.2015.11.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception.
Collapse
Affiliation(s)
- Euiseok J Kim
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashley L Juavinett
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Espoir M Kyubwa
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew W Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Ghosh A, Purchase NC, Chen X, Yuan Q. Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors. Front Cell Neurosci 2015; 9:450. [PMID: 26635530 PMCID: PMC4652601 DOI: 10.3389/fncel.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10–12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice – odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8–11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8–11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Nicole C Purchase
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Xihua Chen
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Qi Yuan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| |
Collapse
|
43
|
Hahn JD, Swanson LW. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Front Syst Neurosci 2015; 9:66. [PMID: 26074786 PMCID: PMC4445319 DOI: 10.3389/fnsys.2015.00066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023] Open
Abstract
Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Larry W Swanson
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
44
|
Ferreira AN, Yousuf H, Dalton S, Sheets PL. Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala. Front Cell Neurosci 2015; 9:161. [PMID: 25972785 PMCID: PMC4412064 DOI: 10.3389/fncel.2015.00161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/11/2015] [Indexed: 01/24/2023] Open
Abstract
The infralimbic (IL) cortex is a key node in an inter-connected network involved in fear and emotion processing. The cellular and circuit-level mechanisms whereby IL neurons receive, filter, and modulate incoming signals they project onward to diverse downstream nodes in this complex network remain poorly understood. Using the mouse as our model, we applied anatomical labeling strategies, brain slice electrophysiology, and focal activation of caged glutamate via laser scanning photostimulation (glu-LSPS) for quantitative neurophysiological analysis of projectionally defined neurons in IL. Injection of retrograde tracers into the periaqueductal gray (PAG) and basolateral amygdala (BLA) was used to identify cortico-PAG (CP) and cortico-BLA (CA) neurons in IL. CP neurons were found exclusively in layer 5 (L5) of IL whereas CA neurons were detected throughout layer 2, 3, and 5 of IL. We also identified a small percentage of IL neurons that project to both the PAG and the BLA. We found that L5 CP neurons have a more extensive dendritic structure compared to L5 CA neurons. Neurophysiological recordings performed on retrogradely labeled neurons in acute brain slice showed that CP and CA neurons in IL could be broadly classified in two groups: neuronal resonators and non-resonators. Layer 2 CA neurons were the only class that was exclusively non-resonating. CP, CA, and CP/CA neurons in layers 3 and 5 of IL consisted of heterogeneous populations of resonators and non-resonators showing that projection target is not an exclusive predictor of intrinsic physiology. Circuit mapping using glu-LSPS revealed that the strength and organization of local excitatory and inhibitory inputs were stronger to CP compared to CA neurons in IL. Together, our results establish an organizational scheme linking cellular neurophysiology with microcircuit parameters of defined neuronal subclasses in IL that send descending commands to subcortical structures involved in fear behavior.
Collapse
Affiliation(s)
- Ashley N Ferreira
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Hanna Yousuf
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-South Bend South Bend, IN, USA
| | - Sarah Dalton
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Patrick L Sheets
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA ; Department of Pharmacology and Toxicology, Indiana University School of Medicine-South Bend South Bend, IN, USA
| |
Collapse
|
45
|
Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex. J Neurosci 2015; 35:1089-105. [PMID: 25609625 DOI: 10.1523/jneurosci.2279-14.2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic connections with the local network, suggesting that different interneurons might play different roles in activated network states. We have studied the firing, subthreshold behavior, and synaptic conductances of identified cell types during Up and Down states in layers 5 and 2/3 in mouse barrel cortex in vitro. We recorded from pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SOM), vasoactive intestinal peptide (VIP), or neuropeptide Y. PV cells were the most active interneuron subtype during the Up state, yet the other subtypes also received substantial synaptic conductances and often generated spikes. In all cell types except PV cells, the beginning of the Up state was dominated by synaptic inhibition, which decreased thereafter; excitation was more persistent, suggesting that inhibition is not the dominant force in terminating Up states. Compared with barrel cortex, SOM and VIP cells were much less active in entorhinal cortex during Up states. Our results provide a measure of functional connectivity of various neuron types in barrel cortex and suggest differential roles for interneuron types in the generation and control of persistent network activity.
Collapse
|
46
|
Böhm MRR, Melkonyan H, Thanos S. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Front Neuroanat 2015; 9:16. [PMID: 25788877 PMCID: PMC4349188 DOI: 10.3389/fnana.2015.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany ; Department of Ophthalmology, St. Franziskus Hospital Münster Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| |
Collapse
|
47
|
Gao Y, Liu L, Li Q, Wang Y. Differential alterations in the morphology and electrophysiology of layer II pyramidal cells in the primary visual cortex of a mouse model prenatally exposed to LPS. Neurosci Lett 2015; 591:138-143. [DOI: 10.1016/j.neulet.2015.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
48
|
Guan D, Armstrong WE, Foehring RC. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca²⁺ dependence and differential modulation by norepinephrine. J Neurophysiol 2015; 113:2014-32. [PMID: 25568159 DOI: 10.1152/jn.00524.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/05/2015] [Indexed: 01/17/2023] Open
Abstract
We studied neocortical pyramidal neurons from two lines of bacterial artificial chromosome mice (etv1 and glt; Gene Expression Nervous System Atlas: GENSAT project), each of which expresses enhanced green fluorescent protein (EGFP) in a different subpopulation of layer 5 pyramidal neurons. In barrel cortex, etv1 and glt pyramidal cells were previously reported to differ in terms of their laminar distribution, morphology, thalamic inputs, cellular targets, and receptive field size. In this study, we measured the laminar distribution of etv1 and glt cells. On average, glt cells were located more deeply; however, the distributions of etv1 and glt cells extensively overlap in layer 5. To test whether these two cell types differed in electrophysiological properties that influence firing behavior, we prepared acute brain slices from 2-4-wk-old mice, where EGFP-positive cells in somatosensory cortex were identified under epifluorescence and then studied using whole cell current- or voltage-clamp recordings. We studied the details of action potential parameters and repetitive firing, characterized by the larger slow afterhyperpolarizations (AHPs) in etv1 neurons and larger medium AHPs (mAHPS) in glt cells, and compared currents underlying the mAHP and slow AHP (sAHP) in etv1 and glt neurons. Etv1 cells exhibited lower dV/dt for spike polarization and repolarization and reduced direct current (DC) gain (lower f-I slope) for repetitive firing than glt cells. Most importantly, we found that 1) differences in the expression of Ca(2+)-dependent K(+) conductances (small-conductance calcium-activated potassium channels and sAHP channels) determine major functional differences between etv1 and glt cells, and 2) there is differential modulation of etv1 and glt neurons by norepinephrine.
Collapse
Affiliation(s)
- Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
49
|
Zarrinpar A, Callaway EM. Functional Local Input to Layer 5 Pyramidal Neurons in the Rat Visual Cortex. Cereb Cortex 2014; 26:991-1003. [PMID: 25405939 DOI: 10.1093/cercor/bhu268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pyramidal neurons in layer 5 of the neocortex can be differentiated into 3 cell subtypes: 1) short regular spiking (SH), 2) tall regular spiking (TR), and 3) tall burst spiking (TB), based on their morphological and electrophysiological properties. We characterized the functional excitatory local input to these 3 cell subtypes in rat primary visual cortex using laser-scanning photostimulation. Although all cell types received significant input from all cortical layers, SH neurons received stronger input from layer 4 and weaker input from layer 5 than did tall pyramidal cells. However, the laminar input to the 2 populations of tall pyramidal cells was indistinguishable. Simultaneous paired recording were then used to calculate a correlation probability (CP) to infer the proportion of shared input based on the occurrence of simultaneous synaptic potentials. Tall pairs of matched type had significantly higher CPs compared with unmatched pairs, suggesting that subpopulations of layer 4, 5, and 6 neurons preferentially connect to each tall cell type. Hence, this study shows that unconnected but matching pairs of tall pyramidal neurons, but not short pyramidal neurons, receive functional input from different interconnected networks within layers 4, 5, and 6.
Collapse
Affiliation(s)
- Amir Zarrinpar
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Neurosciences Program.,Current Address: Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Neurosciences Program
| |
Collapse
|
50
|
Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits 2014; 8:110. [PMID: 25278843 PMCID: PMC4166322 DOI: 10.3389/fncir.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2022] Open
Abstract
Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive “TET-ON/TET-OFF system” in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1–6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|