1
|
Kosakowski HL, Eldaief MC, Buckner RL. Ventral Striatum is Preferentially Correlated with the Salience Network Including Regions in Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618063. [PMID: 39416211 PMCID: PMC11482876 DOI: 10.1101/2024.10.13.618063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The ventral striatum (VS) receives input from the cerebral cortex and is modulated by midbrain dopaminergic projections in support of processing reward and motivation. Here we explored the organization of cortical regions linked to the human VS using within-individual functional connectivity MRI in intensively scanned participants. In two initial participants (scanned 31 sessions each), seed regions in the VS were preferentially correlated with distributed cortical regions that are part of the Salience (SAL) network. The VS seed region recapitulated SAL network topography in each individual including anterior and posterior midline regions, anterior insula, and dorsolateral prefrontal cortex (DLPFC) - a topography that was distinct from a nearby striatal seed region. The region of DLPFC linked to the VS is positioned adjacent to regions associated with domain-flexible cognitive control. The full pattern was replicated in independent data from the same two individuals and generalized to 15 novel participants (scanned 8 or more sessions each). These results suggest that the VS forms a cortico-basal ganglia loop as part of the SAL network. The DLPFC is a neuromodulatory target to treat major depressive disorder. The present results raise the possibility that the DLPFC may be an effective neuromodulatory target because of its preferential coupling to the VS and suggests a path toward further personalization.
Collapse
|
2
|
Waer FB, Sahli S, Alexe CI, Man MC, Alexe DI, Burchel LO. The Effects of Listening to Music on Postural Balance in Middle-Aged Women. SENSORS (BASEL, SWITZERLAND) 2023; 24:202. [PMID: 38203063 PMCID: PMC10781301 DOI: 10.3390/s24010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Listening to music has been found to influence postural balance in both healthy participants and certain patients, whereas no study investigates such effects among healthy middle-aged women. Thus, this study aimed to investigate the effect of music on postural balance in middle-aged women. Twenty-six healthy women aged between 50 and 55 years participated in this study. A stabilometric platform was used to assess their postural balance by recording the mean center of pressure velocity (VmCOP) in the eyes-opened (OE) and -closed (EC) conditions on both firm and foam surfaces. Our results showed that listening to an excerpt of Mozart's Jupiter significantly decreased the VmCOP values in two sensory conditions (firm surface/EO: (p < 0.01; 95% CI: 0.27 to 2.22); foam surface/EC: (p < 0.001; 95% CI: 0.48 to 2.44)), but not in the other two conditions (firm surface/EC and foam surface/EO). We concluded that listening to Mozart's symphony improved postural performance in middle-aged women, even in challenged postural conditions. These enhancements could offer great potential for everyday functioning.
Collapse
Affiliation(s)
- Fatma Ben Waer
- Research Laboratory Education, Motricity, Sport and Health, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (F.B.W.); (S.S.)
| | - Sonia Sahli
- Research Laboratory Education, Motricity, Sport and Health, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (F.B.W.); (S.S.)
| | - Cristina Ioana Alexe
- Department of Physical Education and Sports Performance, Faculty of Movement, Sports and Health Sciences, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
| | - Maria Cristina Man
- Department of Physical Education, 1 Decembrie 1918 University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Dan Iulian Alexe
- Department of Physical and Occupational Therapy, Faculty of Movement, Sports and Health Sciences, “Vasile Alecsandri” University of Bacău, 600115 Bacau, Romania;
| | - Lucian Ovidiu Burchel
- Department of Environmental Sciences, Physics, Physical Education and Sports, Faculty of Sciences, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
3
|
López-Ornelas A, Escobedo-Avila I, Ramírez-García G, Lara-Rodarte R, Meléndez-Ramírez C, Urrieta-Chávez B, Barrios-García T, Cáceres-Chávez VA, Flores-Ponce X, Carmona F, Reynoso CA, Aguilar C, Kerik NE, Rocha L, Verdugo-Díaz L, Treviño V, Bargas J, Ramos-Mejía V, Fernández-Ruiz J, Campos-Romo A, Velasco I. Human Embryonic Stem Cell-Derived Immature Midbrain Dopaminergic Neurons Transplanted in Parkinsonian Monkeys. Cells 2023; 12:2738. [PMID: 38067166 PMCID: PMC10706241 DOI: 10.3390/cells12232738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Gabriel Ramírez-García
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Beetsi Urrieta-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Tonatiuh Barrios-García
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - Verónica A. Cáceres-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Xóchitl Flores-Ponce
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Carlos Alberto Reynoso
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Carlos Aguilar
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Nora E. Kerik
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Leticia Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - José Bargas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Verónica Ramos-Mejía
- Gene Regulation, Stem Cells, and Development Group, GENYO-Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain;
| | - Juan Fernández-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Aurelio Campos-Romo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
4
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
5
|
Isett BR, Nguyen KP, Schwenk JC, Yurek JR, Snyder CN, Vounatsos MV, Adegbesan KA, Ziausyte U, Gittis AH. The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. Neuron 2023; 111:2218-2231.e4. [PMID: 37207651 PMCID: PMC10524991 DOI: 10.1016/j.neuron.2023.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jenna C Schwenk
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeff R Yurek
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christen N Snyder
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maxime V Vounatsos
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kendra A Adegbesan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ugne Ziausyte
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Del Rey NLG, García-Cabezas MÁ. Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiol Dis 2023; 176:105945. [PMID: 36481436 DOI: 10.1016/j.nbd.2022.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Degeneration of neurons and circuits across the striatum shows stereotyped time-course and spatial topography patterns that are distinct for Huntington's disease, Parkinson's disease, or the Tauopathies. These patterns of neurodegeneration in humans have not yet been systematically related to developmental, connectional, cellular, and chemical factors studied in human and non-human primates, that may underlie potential differences in selective vulnerability across striatal sectors. Relating primate anatomy to human pathology could provide new venues for identifying molecular, cellular, and connectional factors linked to the degeneration of striatal neurons and circuits. This review describes and summarizes several developmental, cellular, structural, and connectional features of the primate striatum in relation to patterns of neurodegeneration in the striatum of humans and of non-human primate models. We review (1) the types of neurons in the primate striatum, (2) the cyto-, myelo-, and chemoarchitecture of the primate striatum, (3) the developmental origin of the striatum in light of modern patterning studies, (4) the organization of corticostriatal projections in relation to cortical types, and (5) the topography and time-course of neuron loss, glial reaction, and protein aggregation induced by neurodegenerative diseases in humans and in non-human primate models across striatal sectors and their corresponding cortical areas. We summarize current knowledge about key aspects of primate striatal anatomy and human pathology and indicate knowledge gaps that should be addressed in future studies. We aim to identify factors for selective vulnerability to neurodegeneration of striatal neurons and circuits and obtain hints that could help elucidate striatal pathology in humans.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur. HM Hospitales. Madrid, Spain
| | - Miguel Ángel García-Cabezas
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid, Spain.
| |
Collapse
|
7
|
Evans R. Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions. Neurobiol Dis 2022; 172:105815. [PMID: 35820645 PMCID: PMC9851599 DOI: 10.1016/j.nbd.2022.105815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's Disease, with the ventral region degenerating more severely than the dorsal region. Compared with the dorsal neurons, the ventral neurons in the SNc have distinct dendritic morphology, electrophysiological characteristics, and circuit connections with the basal ganglia. These characteristics shape information processing in the ventral SNc and structure the balance of inhibition and disinhibition in the striatonigral circuitry. In this paper, I review foundational studies and recent work comparing the circuitry of the ventral and dorsal SNc neurons and discuss how loss of the ventral neurons early in Parkinson's Disease could affect the overall balance of inhibition and disinhibition of dopamine signals.
Collapse
Affiliation(s)
- R.C. Evans
- Georgetown University Medical Center, Department of Neuroscience, United States of America
| |
Collapse
|
8
|
Suzuki M, Nishimura Y. The ventral striatum contributes to the activity of the motor cortex and motor outputs in monkeys. Front Syst Neurosci 2022; 16:979272. [PMID: 36211590 PMCID: PMC9540202 DOI: 10.3389/fnsys.2022.979272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
The ventral striatum (VSt) is thought to be involved in the vigor of motivated behavior and is suggested to be a limbic-motor interface between limbic areas involved in motivational processes and neural circuits regulating behavioral outputs. However, there is little direct evidence demonstrating the involvement of the VSt in motor control for motivated behaviors. To clarify the functional role of the VSt in motor control, we investigated the effect of reversible pharmacological inactivation of the VSt on the oscillatory activity of the sensorimotor cortices and motor outputs in two macaque monkeys. VSt inactivation reduced movement-related activities of the primary motor cortex and premotor area at 15–120 Hz and increased those at 5–7 Hz. These changes were accompanied by reduced torque outputs but had no effect on the correct performance rate. The present study provides direct evidence that the VSt regulates activities of the motor cortices and motor output.
Collapse
Affiliation(s)
- Michiaki Suzuki
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, Hayama, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Neural Prosthetics Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yukio Nishimura
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, Hayama, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Neural Prosthetics Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- *Correspondence: Yukio Nishimura
| |
Collapse
|
9
|
Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different? Biol Psychiatry 2021; 90:667-677. [PMID: 32951818 PMCID: PMC9569132 DOI: 10.1016/j.biopsych.2020.06.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation is a promising therapeutic approach for patients with treatment-resistant obsessive-compulsive disorder, a condition linked to abnormalities in corticobasal ganglia networks. Effective targets are placed in one of four subcortical areas with the goal of capturing prefrontal, anterior cingulate, and basal ganglia connections linked to the limbic system. These include the anterior limb of the internal capsule, the ventral striatum, the subthalamic nucleus, and a midbrain target. The goal of this review is to examine these 4 targets with respect to the similarities and differences of their connections. Following a review of the connections for each target based on anatomic studies in nonhuman primates, we examine the accuracy of diffusion magnetic resonance imaging tractography to replicate those connections in nonhuman primates, before evaluating the connections in the human brain based on diffusion magnetic resonance imaging tractography. Results demonstrate that the four targets generally involve similar connections, all of which are part of the internal capsule. Nonetheless, some connections are unique to each site. Delineating the similarities and differences across targets is a critical step for evaluating and comparing the effectiveness of each and how circuits contribute to the therapeutic outcome. It also underscores the importance that the terminology used for each target accurately reflects its position and its anatomic connections, so as to enable comparisons across clinical studies and for basic scientists to probe mechanisms underlying deep brain stimulation.
Collapse
|
10
|
Foster NN, Barry J, Korobkova L, Garcia L, Gao L, Becerra M, Sherafat Y, Peng B, Li X, Choi JH, Gou L, Zingg B, Azam S, Lo D, Khanjani N, Zhang B, Stanis J, Bowman I, Cotter K, Cao C, Yamashita S, Tugangui A, Li A, Jiang T, Jia X, Feng Z, Aquino S, Mun HS, Zhu M, Santarelli A, Benavidez NL, Song M, Dan G, Fayzullina M, Ustrell S, Boesen T, Johnson DL, Xu H, Bienkowski MS, Yang XW, Gong H, Levine MS, Wickersham I, Luo Q, Hahn JD, Lim BK, Zhang LI, Cepeda C, Hintiryan H, Dong HW. The mouse cortico-basal ganglia-thalamic network. Nature 2021; 598:188-194. [PMID: 34616074 PMCID: PMC8494639 DOI: 10.1038/s41586-021-03993-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/03/2021] [Indexed: 12/05/2022]
Abstract
The cortico–basal ganglia–thalamo–cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1–4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico–basal ganglia–thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico–basal ganglia–thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop. Mesoscale connectomic mapping of the cortico–basal ganglia–thalamic network reveals key architectural and information processing features.
Collapse
Affiliation(s)
- Nicholas N Foster
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Joshua Barry
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Korobkova
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luis Garcia
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lei Gao
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marlene Becerra
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasmine Sherafat
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bo Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lin Gou
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Zingg
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sana Azam
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Darrick Lo
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neda Khanjani
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bin Zhang
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jim Stanis
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ian Bowman
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaelan Cotter
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chunru Cao
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seita Yamashita
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amanda Tugangui
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Sarvia Aquino
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyun-Seung Mun
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muye Zhu
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anthony Santarelli
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nora L Benavidez
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Monica Song
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gordon Dan
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marina Fayzullina
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Ustrell
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tyler Boesen
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David L Johnson
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hanpeng Xu
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Bienkowski
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - X William Yang
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| | - Michael S Levine
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ian Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Houri Hintiryan
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Wei Dong
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Elliott BL, D'Ardenne K, Mukherjee P, Schweitzer JB, McClure SM. Limbic and Executive Meso- and Nigrostriatal Tracts Predict Impulsivity Differences in Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:415-423. [PMID: 34051394 DOI: 10.1016/j.bpsc.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Impulsivity is a defining characteristic of attention-deficit/hyperactivity disorder (ADHD), which has been associated with substance use disorders, higher accident rates, and lower educational and occupational outcomes. The meso- and nigrostriatal pathways of the dopamine system are hypothesized to be functionally heterogeneous, supporting diverse cognitive functions and impairments, including those associated with ADHD. We tested whether human midbrain pathways (where dopaminergic cell bodies originate) between the substantia nigra (SN) and ventral tegmental area (VTA) and the striatum differed between participants with ADHD and typically developing adolescent and young adult participants. We also assessed whether pathway connectivity predicted impulsivity regardless of diagnosis. METHODS Diffusion tensor imaging data were used to predict impulsivity (parent and self-report ratings, task-based behavioral measures) from participants with ADHD and typically developing adolescent and young adult participants (n = 155; 86 male, 69 female). Using probabilistic tractography, we mapped these pathways and divided the tracts into limbic, executive, and sensorimotor based on frontostriatal connectivity. ADHD and typically developing participants differed on all behavioral measures of impulsivity. We used correlation and machine learning analyses to test for a relationship between tract probabilities and impulsivity regardless of diagnosis. RESULTS Participants with ADHD had stronger structural connectivity between SN/VTA regions and the limbic striatum, weaker connectivity with the executive striatum, and no significant differences in sensorimotor tracts. Increased tract integrity between the limbic striatal and SN/VTA regions predicted greater impulsivity, while increased integrity between executive striatal and SN/VTA regions predicted reduced impulsivity. CONCLUSIONS These findings support the theory that functional diversity in the dopamine system is an important consideration for understanding dysfunction in ADHD.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology, Arizona State University, Tempe, Arizona.
| | | | - Prerona Mukherjee
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California; MIND Institute, University of California, Davis, Sacramento, California
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California; MIND Institute, University of California, Davis, Sacramento, California
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, Arizona
| |
Collapse
|
12
|
Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat Commun 2021; 12:2100. [PMID: 33833228 PMCID: PMC8032767 DOI: 10.1038/s41467-021-22335-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
The ventral striatum (VS) is considered a key region that flexibly updates recent changes in reward values for habit learning. However, this update process may not serve to maintain learned habitual behaviors, which are insensitive to value changes. Here, using fMRI in humans and single-unit electrophysiology in macaque monkeys we report another role of the primate VS: that the value memory subserving habitual seeking is stably maintained in the VS. Days after object-value associative learning, human and monkey VS continue to show increased responses to previously rewarded objects, even when no immediate reward outcomes are expected. The similarity of neural response patterns to each rewarded object increases after learning among participants who display habitual seeking. Our data show that long-term memory of high-valued objects is retained as a single representation in the VS and may be utilized to evaluate visual stimuli automatically to guide habitual behavior.
Collapse
|
13
|
Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatry 2020; 11:613. [PMID: 32719622 PMCID: PMC7350524 DOI: 10.3389/fpsyt.2020.00613] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the dopamine system is central to many models of the pathophysiology of psychosis in schizophrenia. However, emerging evidence suggests that this dysregulation is driven by the disruption of upstream circuits that provide afferent control of midbrain dopamine neurons. Furthermore, stress can profoundly disrupt this regulatory circuit, particularly when it is presented at critical vulnerable prepubertal time points. This review will discuss the dopamine system and the circuits that regulate it, focusing on the hippocampus, medial prefrontal cortex, thalamic nuclei, and medial septum, and the impact of stress. A greater understanding of the regulation of the dopamine system and its disruption in schizophrenia may provide a more complete neurobiological framework to interpret clinical findings and develop novel treatments.
Collapse
Affiliation(s)
- Susan F. Sonnenschein
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Benedek G, Keri S, Nagy A, Braunitzer G, Norita M. A multimodal pathway including the basal ganglia in the feline brain. Physiol Int 2019; 106:95-113. [PMID: 31271309 DOI: 10.1556/2060.106.2019.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this paper is to give an overview of our present knowledge about the feline tecto-thalamo-basal ganglia cortical sensory pathway. We reviewed morphological and electrophysiological studies of the cortical areas, located in ventral bank of the anterior ectosylvian sulcus as well as the region of the insular cortex, the suprageniculate nucleus of the thalamus, caudate nucleus, and the substantia nigra. Microelectrode studies revealed common receptive field properties in all these structures. The receptive fields were extremely large and multisensory, with pronounced sensitivity to motion of visual stimuli. They often demonstrated directional and velocity selectivity. Preference for small visual stimuli was also a frequent finding. However, orientation sensitivity was absent. It became obvious that the structures of the investigated sensory loop exhibit a unique kind of information processing, not found anywhere else in the feline visual system.
Collapse
Affiliation(s)
- G Benedek
- 1 Department of Physiology, University of Szeged , Szeged, Hungary
| | - S Keri
- 1 Department of Physiology, University of Szeged , Szeged, Hungary.,2 Nyirő Gyula Hospital, Laboratory for Perception & Cognition and Clinical Neuroscience , Budapest, Hungary
| | - A Nagy
- 1 Department of Physiology, University of Szeged , Szeged, Hungary
| | - G Braunitzer
- 3 Department of Anatomy, Niigata University , Niigata, Japan
| | - M Norita
- 3 Department of Anatomy, Niigata University , Niigata, Japan
| |
Collapse
|
15
|
Abstract
The basal ganglia are a complex subcortical structure that is principally involved in the selection and implementation of purposeful actions in response to external and internal cues. The basal ganglia set the pattern for facilitation of voluntary movements and simultaneous inhibition of competing or interfering movements. In addition, the basal ganglia are involved in the control of a wide variety of non-motor behaviors, spanning emotions, language, decision making, procedural learning, and working memory. This review presents a comparative overview of classic and contemporary models of basal ganglia organization and functional importance, including their increased integration with cortical and cerebellar structures.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Irmen F, Horn A, Meder D, Neumann WJ, Plettig P, Schneider GH, Siebner HR, Kühn AA. Sensorimotor subthalamic stimulation restores risk-reward trade-off in Parkinson's disease. Mov Disord 2018; 34:366-376. [PMID: 30485537 DOI: 10.1002/mds.27576] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND STN-DBS effectively treats motor symptoms of advanced PD. Nonmotor cognitive symptoms, such as impaired impulse control or decision making, may either improve or worsen with DBS. A potential mediating factor of DBS-induced modulation of cognition is the electrode position within the STN with regard to functional subareas of parallel motor, cognitive, and affective basal ganglia loops. However, to date, the volume of tissue activated and weighted stimulation of STN motor versus nonmotor territories are yet to be linked to differential DBS effects on cognition. OBJECTIVES We aim to investigate whether STN-DBS influences risk-reward trade-off decisions and analyze its dependency on electrode placement. METHODS Seventeen PD patients ON and OFF STN-DBS and 17 age-matched healthy controls conducted a sequential decision-making task with escalating risk and reward. We computed the effect of STN-DBS on risk-reward trade-off decisions, localized patients' bilateral electrodes, and analyzed the predictive value of volume of tissue activated in STN motor and nonmotor territories on behavioral change. RESULTS We found that STN-DBS not only improves PD motor symptoms, but also normalizes overly risk-averse decision behavior in PD. Intersubject variance in electrode location could explain this behavioral change. Specifically, if STN-DBS activated preferentially STN motor territory, patients' risk-reward trade-off decisions more resembled those of healthy controls. CONCLUSIONS Our findings support the notion of convergence of different functional circuits within the STN and imply a positive effect of well-placed STN-DBS on nonmotor cognitive functioning in PD. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Philip Plettig
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
17
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Wang Y, Fang J, Song P, Bao Y, Song W, Liu J, Lang C, Jorgenson K, Jung M, Shen D, Li S, Sun R, Ding X, Yang J, Meng X, Wang N, Yan Z, Yan Y, Kong Q, Dong Y, Cui F, Tu Y, Cui B, Kong J. The Dysfunction of the Cerebellum and Its Cerebellum-Reward-Sensorimotor Loops in Chronic Spontaneous Urticaria. CEREBELLUM (LONDON, ENGLAND) 2018; 17:507-516. [PMID: 29574551 PMCID: PMC6126981 DOI: 10.1007/s12311-018-0933-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic spontaneous urticaria (CSU) is a common itchy skin disease. Despite its prevalence, the neuropathology of CSU is uncertain. In this study, we explored resting state functional connectivity (rs-FC) changes in CSU, as well as how the symptom changes following intervention can modulate rs-FC. Forty patients and 40 healthy controls (HCs) were recruited. Following an intervention, 32 patients participated in a second scan approximately 6 weeks after the first scan. Compared with healthy controls, CSU subjects exhibited higher regional homogeneity (ReHo) values in the cerebellum, which were positively associated with urticaria activity scores over 7 days (UAS7) at baseline. After an intervention accompanied with clinical improvement, we found that ReHo values decreased at the cerebellum and increased at the bilateral primary somatosensory cortex (SI)/primary motor cortex (MI)/supplementary motor area (SMA). Using the cerebellum as a seed, CSU subjects exhibited increased rs-FC with reward regions when compared with HCs and exhibited decreased rs-FC at the right orbitofrontal cortex and right sensorimotor region following the intervention. The improvement rate values were positively associated with reduced rs-FC values in the two regions. Using the cluster of SI/MI/SMA as a seed, CSU patients exhibited decreased rs-FC with the left putamen, caudate, accumbens, and thalamus following the intervention. These results demonstrate the altered cerebellar activity and cerebellum-reward-sensorimotor loops in CSU.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wenwen Song
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiao Liu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Minyoung Jung
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dong Shen
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shasha Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ruirui Sun
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xu Ding
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiao Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiao Meng
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ning Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhifang Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuhe Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Kong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Dong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fangyuan Cui
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Heilbronner SR, Meyer MAA, Choi EY, Haber SN. How do cortico-striatal projections impact on downstream pallidal circuitry? Brain Struct Funct 2018; 223:2809-2821. [PMID: 29654360 DOI: 10.1007/s00429-018-1662-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
The frontal cortico-basal ganglia network plays a central role in action selection, associative learning, and motivation, processes requiring the integration of information from functionally distinct cortical regions. The cortico-striatal projection is a likely substrate of information integration, as terminal fields from different cortical regions converge in the striatum. These intersecting projections form complex zones of unique cortical inputs. Here, our goal was to follow these projection zones downstream in the basal ganglia to the globus pallidus. We combined a sizable database of 3D models of striato-pallidal chartings in macaques with maps of frontal cortical inputs to determine the topography of the striato-pallidal projection and the indirect cortical influence over the pallidum. We found that the striato-pallidal projection is highly topographic, with the location of the striatal injection site strongly predicting the location of the resulting pallidal terminal fields. Furthermore, striato-pallidal projections are specific and largely nonoverlapping. Thus, striatal hubs receiving unique combinations of cortical inputs have distinct projections to the pallidum. However, because of the strong convergence of cortical terminal fields in the striatum, the indirect pallidal representation of any given frontal cortical region remains broad. We illustrate this arrangement by contrasting the pallidal projections from two nearby striatal cases: one a putative hub for cortical attentional bias signals, and the other with a different, more ventral set of cortical inputs. Thus, the striato-pallidal projection faithfully conveys unique combinations of cortical inputs to different locations within the pallidum via the striatum.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA.
| | - Mariah A A Meyer
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Eun Young Choi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
20
|
The biological and behavioral computations that influence dopamine responses. Curr Opin Neurobiol 2018; 49:123-131. [PMID: 29505948 PMCID: PMC6095465 DOI: 10.1016/j.conb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/06/2023]
Abstract
Phasic dopamine responses demonstrate remarkable simplicity; they code for the differences between received and predicted reward values. Yet this simplicity belies the subtle complexity of the psychological, computational, and contextual factors that influence this signal. Advances in behavioral paradigms and models, in monkeys and rodents, have demonstrated that phasic dopamine responses reflect numerous behavioral computations and factors including choice, subjective value, confidence, and context. The application of optogenetics has provided evidence that dopamine reward prediction error responses cause value learning. Furthermore, studies using advanced circuit tracing techniques have begun to uncover the biological network implementation of the reward learning algorithm. The purpose of this review is to summarize the recent advances in dopamine neurophysiology and synthesize an updated account of the behavioral function of dopamine signals.
Collapse
|
21
|
Abstract
Gait is one of the keys to functional independence. For a long-time, walking was considered an automatic process involving minimal higher-level cognitive input. Indeed, walking does not take place without muscles that move the limbs and the "lower-level" control that regulates the timely activation of the muscles. However, a growing body of literature suggests that walking can be viewed as a cognitive process that requires "higher-level" cognitive control, especially during challenging walking conditions that require executive function and attention. Two main locomotor pathways have been identified involving multiple brain areas for the control of posture and gait: the dorsal pathway of cognitive locomotor control and the ventral pathway for emotional locomotor control. These pathways may be distinctly affected in different pathologies that have important implications for rehabilitation and therapy. The clinical assessment of gait should be a focused, simple, and cost-effective process that provides both quantifiable and qualitative information on performance. In the last two decades, gait analysis has gradually shifted from analysis of a few steps in a restricted space to long-term monitoring of gait using body fixed sensors, capturing real-life and routine behavior in the home and community environment. The chapter also describes this evolution and its implications.
Collapse
Affiliation(s)
- Anat Mirelman
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Laboratory of Early Markers of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shirley Shema
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Laboratory of Early Markers of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffery M Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
22
|
Alikaya A, Rack-Wildner M, Stauffer WR. Reward and value coding by dopamine neurons in non-human primates. J Neural Transm (Vienna) 2017; 125:565-574. [PMID: 29076112 PMCID: PMC5847197 DOI: 10.1007/s00702-017-1793-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Rewards are fundamental to everyday life. They confer pleasure, support learning, and mediate decisions. Dopamine-releasing neurons in the midbrain are critical for reward processing. These neurons receive input from more than 30 brain areas and send widespread projections to the basal ganglia and frontal cortex. Their phasic responses are tuned to rewards. Specifically, dopamine signals code reward prediction error, the difference between received and predicted rewards. Decades of research in awake, behaving non-human primates (NHP), have shown the importance of these neural signals for learning and decision making. In this review, we will provide an overview of the bedrock findings that support the reward prediction error hypothesis and examine evidence that this signal plays a role in learning and decision making. In addition, we will highlight some of the conceptual challenges in dopamine neurophysiology and identify future areas of research to address these challenges. Keeping with the theme of this special issue, we will focus on the role of NHP studies in understanding dopamine neurophysiology and make the argument that primate models are essential to this line of research.
Collapse
Affiliation(s)
- Aydin Alikaya
- Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - William R Stauffer
- Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
23
|
Subramanian K, Brandenburg C, Orsati F, Soghomonian JJ, Hussman JP, Blatt GJ. Basal ganglia and autism - a translational perspective. Autism Res 2017; 10:1751-1775. [PMID: 28730641 DOI: 10.1002/aur.1837] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The basal ganglia are a collection of nuclei below the cortical surface that are involved in both motor and non-motor functions, including higher order cognition, social interactions, speech, and repetitive behaviors. Motor development milestones that are delayed in autism such as gross motor, fine motor and walking can aid in early diagnosis of autism. Neuropathology and neuroimaging findings in autism cases revealed volumetric changes and altered cell density in select basal ganglia nuclei. Interestingly, in autism, both the basal ganglia and the cerebellum are impacted both in their motor and non-motor domains and recently, found to be connected via the pons through a short disynaptic pathway. In typically developing individuals, the basal ganglia plays an important role in: eye movement, movement coordination, sensory modulation and processing, eye-hand coordination, action chaining, and inhibition control. Genetic models have proved to be useful toward understanding cellular and molecular changes at the synaptic level in the basal ganglia that may in part contribute to these autism-related behaviors. In autism, basal ganglia functions in motor skill acquisition and development are altered, thus disrupting the normal flow of feedback to the cortex. Taken together, there is an abundance of emerging evidence that the basal ganglia likely plays critical roles in maintaining an inhibitory balance between cortical and subcortical structures, critical for normal motor actions and cognitive functions. In autism, this inhibitory balance is disturbed thus impacting key pathways that affect normal cortical network activity. Autism Res 2017, 10: 1751-1775. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Habit learning, action selection and performance are modulated by the basal ganglia, a collection of groups of neurons located below the cerebral cortex in the brain. In autism, there is emerging evidence that parts of the basal ganglia are structurally and functionally altered disrupting normal information flow. The basal ganglia through its interconnected circuits with the cerebral cortex and the cerebellum can potentially impact various motor and cognitive functions in the autism brain.
Collapse
Affiliation(s)
| | - Cheryl Brandenburg
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| | - Fernanda Orsati
- Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | | | - John P Hussman
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201.,Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | - Gene J Blatt
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| |
Collapse
|
24
|
Balsters JH, Apps MAJ, Bolis D, Lehner R, Gallagher L, Wenderoth N. Disrupted prediction errors index social deficits in autism spectrum disorder. Brain 2017; 140:235-246. [PMID: 28031223 PMCID: PMC5379861 DOI: 10.1093/brain/aww287] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/10/2016] [Accepted: 09/23/2016] [Indexed: 01/26/2023] Open
Abstract
Social deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these deficits remain unclear. It has been suggested that social prediction errors—coding discrepancies between the predicted and actual outcome of another’s decisions—might play a crucial role in processing social information. While the gyral surface of the anterior cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in individuals with autism spectrum disorder. Importantly, the degree to which social prediction error signalling was aberrant correlated with diagnostic measures of social deficits. Effective connectivity analyses further revealed that, in typically developing individuals but not in autism spectrum disorder, the magnitude of social prediction errors was driven by input from the ventromedial prefrontal cortex. These data provide a novel insight into the neural substrates underlying autism spectrum disorder social symptom severity, and further research into the gyral surface of the anterior cingulate cortex and ventromedial prefrontal cortex could provide more targeted therapies to help ameliorate social deficits in autism spectrum disorder.
Collapse
Affiliation(s)
- Joshua H Balsters
- 1 Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland .,2 Department of Psychology, Royal Holloway University of London, Egham, Surrey, UK
| | - Matthew A J Apps
- 3 Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Dimitris Bolis
- 1 Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Rea Lehner
- 1 Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Louise Gallagher
- 4 Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nicole Wenderoth
- 1 Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.,5 Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Belgium
| |
Collapse
|
25
|
Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J Mov Disord 2017; 10:1-17. [PMID: 28122432 PMCID: PMC5288669 DOI: 10.14802/jmd.16062] [Citation(s) in RCA: 518] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
26
|
Abstract
Corticostriatal connections play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. The cortex projects to the striatum topographically. Thus, different regions of the striatum have been associated with these different functions: the ventral striatum with reward; the caudate nucleus with cognition; and the putamen with motor control. However, corticostriatal connections are more complex, and interactions between functional territories are extensive. These interactions occur in specific regions in which convergence of terminal fields from different functional cortical regions are found. This article provides an overview of the connections of the cortex to the striatum and their role in integrating information across reward, cognitive, and motor functions. Emphasis is placed on the interface between functional domains within the striatum.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
27
|
Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A, Aziz TZ, Papa SM, Factor SA, Hallett M. Physiology of freezing of gait. Ann Neurol 2016; 80:644-659. [DOI: 10.1002/ana.24778] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anke H. Snijders
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior; Radboud University Medical Center; Nijmegen the Netherlands
- Maasziekenhuis Pantein; Boxmeer the Netherlands
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering; Asahikawa Medical University; Asahikawa Japan
| | - Bettina Debu
- Joseph Fourier University, Grenoble Universities; Grenoble France
| | - Andres M. Lozano
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
| | - Vibhor Krishna
- Division of Neurosurgery; University of Toronto; Toronto Ontario Canada
- Department of Neurosurgery; Ohio State University; Columbus OH
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
| | - Tipu Z. Aziz
- John Radcliffe Hospital; Headington Oxford United Kingdom
| | - Stella M. Papa
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Stewart A. Factor
- Department of Neurology, Jean and Paul Amos Parkinson's Disease and Movement Disorders Center; Emory University School of Medicine; Atlanta GA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda MD
| |
Collapse
|
28
|
Abstract
Reinforcement learning theory powerfully characterizes how we learn to benefit ourselves. In this theory, prediction errors-the difference between a predicted and actual outcome of a choice-drive learning. However, we do not operate in a social vacuum. To behave prosocially we must learn the consequences of our actions for other people. Empathy, the ability to vicariously experience and understand the affect of others, is hypothesized to be a critical facilitator of prosocial behaviors, but the link between empathy and prosocial behavior is still unclear. During functional magnetic resonance imaging (fMRI) participants chose between different stimuli that were probabilistically associated with rewards for themselves (self), another person (prosocial), or no one (control). Using computational modeling, we show that people can learn to obtain rewards for others but do so more slowly than when learning to obtain rewards for themselves. fMRI revealed that activity in a posterior portion of the subgenual anterior cingulate cortex/basal forebrain (sgACC) drives learning only when we are acting in a prosocial context and signals a prosocial prediction error conforming to classical principles of reinforcement learning theory. However, there is also substantial variability in the neural and behavioral efficiency of prosocial learning, which is predicted by trait empathy. More empathic people learn more quickly when benefitting others, and their sgACC response is the most selective for prosocial learning. We thus reveal a computational mechanism driving prosocial learning in humans. This framework could provide insights into atypical prosocial behavior in those with disorders of social cognition.
Collapse
|
29
|
Opris I, Lebedev MA, Nelson RJ. Neostriatal Neuronal Activity Correlates Better with Movement Kinematics under Certain Rewards. Front Neurosci 2016; 10:336. [PMID: 27579022 PMCID: PMC4986930 DOI: 10.3389/fnins.2016.00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
This study investigated how the activity of neostriatal neurons is related to the kinematics of movement when monkeys performed visually and vibratory cued wrist extensions and flexions. Single-unit recordings of 142/236 neostriatal neurons showed pre-movement activity (PMA) in a reaction time task with unpredictable reward. Monkeys were pseudo-randomly (75%) rewarded for correct performance. A regression model was used to determine whether the correlation between neostriatal neuronal activity and the kinematic variables (position, velocity, and acceleration) of wrist movement changes as a function of reward contingency, sensory cues, and movement direction. The coefficients of determination (CoD) representing the proportion of the variance in neuronal activity explained by the regression model on a trial by trial basis, together with their temporal occurrences (time of best regression/correlation, ToC) were compared across sensory modality, movement direction, and reward contingency. The best relationship (correlation) between neuronal activity and movement kinematic variables, given by the average coefficient of determination (CoD), was: (a) greater during trials in which rewards were certain, called "A" trials, as compared with those in which reward was uncertain called ("R") trials, (b) greater during flexion (Flex) trials as compared with extension (Ext) trials, and (c) greater during visual (VIS) cued trials than during vibratory (VIB) cued trials, for the same type of trial and the same movement direction. These results are consistent with the hypothesis that predictability of reward for correct performance is accompanied by faster linkage between neostriatal PMA and the vigor of wrist movement kinematics. Furthermore, the results provide valuable insights for building an upper-limb neuroprosthesis.
Collapse
Affiliation(s)
- Ioan Opris
- Miami Project, University of FloridaMiami, FL, USA
| | | | - Randall J. Nelson
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
30
|
Encoding of Vicarious Reward Prediction in Anterior Cingulate Cortex and Relationship with Trait Empathy. J Neurosci 2016; 35:13720-7. [PMID: 26446224 DOI: 10.1523/jneurosci.1703-15.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Empathy--the capacity to understand and resonate with the experiences of others--can depend on the ability to predict when others are likely to receive rewards. However, although a plethora of research has examined the neural basis of predictions about the likelihood of receiving rewards ourselves, very little is known about the mechanisms that underpin variability in vicarious reward prediction. Human neuroimaging and nonhuman primate studies suggest that a subregion of the anterior cingulate cortex in the gyrus (ACCg) is engaged when others receive rewards. Does the ACCg show specialization for processing predictions about others' rewards and not one's own and does this specialization vary with empathic abilities? We examined hemodynamic responses in the human brain time-locked to cues that were predictive of a high or low probability of a reward either for the subject themselves or another person. We found that the ACCg robustly signaled the likelihood of a reward being delivered to another. In addition, ACCg response significantly covaried with trait emotion contagion, a necessary foundation for empathizing with other individuals. In individuals high in emotion contagion, the ACCg was specialized for processing others' rewards exclusively, but for those low in emotion contagion, this region also responded to information about the subject's own rewards. Our results are the first to show that the ACCg signals probabilistic predictions about rewards for other people and that the substantial individual variability in the degree to which the ACCg is specialized for processing others' rewards is related to trait empathy. SIGNIFICANCE STATEMENT Successfully cooperating, competing, or empathizing with others can depend on our ability to predict when others are going to get something rewarding. Although many studies have examined how the brain processes rewards we will get ourselves, very little is known about vicarious reward processing. Here, we show that a subregion of the anterior cingulate cortex in the gyrus (ACCg) shows a degree of specialization for processing others' versus one's own rewards. However, the degree to which the ACCg is specialized varies with people's ability to empathize with others. This new insight into how vicarious rewards are processed in the brain and vary with empathy may be key for understanding disorders of social behavior, including psychopathy and autism.
Collapse
|
31
|
Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2015; 123:695-729. [PMID: 26497023 PMCID: PMC4919383 DOI: 10.1007/s00702-015-1475-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan.
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
32
|
Di Lorenzo Alho AT, Suemoto CK, Polichiso L, Tampellini E, de Oliveira KC, Molina M, Santos GAB, Nascimento C, Leite REP, de Lucena Ferreti-Rebustini RE, da Silva AV, Nitrini R, Pasqualucci CA, Jacob-Filho W, Heinsen H, Grinberg LT. Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain Struct Funct 2015; 221:3393-403. [PMID: 26386691 DOI: 10.1007/s00429-015-1108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/05/2015] [Indexed: 11/24/2022]
Abstract
The human brain undergoes non-uniform changes during aging. The substantia nigra (SN), the source of major dopaminergic pathways in the brain, is particularly vulnerable to changes in the progression of several age-related neurodegenerative diseases. To establish normative data for high-resolution imaging, and to further clinical and anatomical studies we analyzed SNs from 15 subjects aged 50-91 cognitively normal human subjects without signs of parkinsonism. Complete brains or brainstems with substantia nigra were formalin-fixed, celloidin-mounted, serially cut and Nissl-stained. The shapes of all SNs investigated were reconstructed using fast, high-resolution computer-assisted 3D reconstruction software. We found a negative correlation between age and SN volume (p = 0.04, rho = -0.53), with great variability in neuronal numbers and density across participants. The 3D reconstructions revealed SN inter- and intra-individual variability. Furthermore, we observed that human SN is a neuronal reticulum, rather than a group of isolated neuronal islands. Caution is required when using SN volume as a surrogate for SN status in individual subjects. The use of multimodal sequences including those for fiber tracts may enhance the value of imaging as a diagnostic tool to assess SN in vivo. Further studies with a larger sample size are needed for understanding the structure-function interaction of human SN.
Collapse
Affiliation(s)
- Ana Tereza Di Lorenzo Alho
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Claudia Kimie Suemoto
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lívia Polichiso
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Edilaine Tampellini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Kátia Cristina de Oliveira
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Mariana Molina
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Glaucia Aparecida Bento Santos
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Camila Nascimento
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Renata Elaine Paraizo Leite
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata Eloah de Lucena Ferreti-Rebustini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Valotta da Silva
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Nitrini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Augusto Pasqualucci
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Helmut Heinsen
- Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany.,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA. .,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
33
|
Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 2015; 4:e10032. [PMID: 26322384 PMCID: PMC4598831 DOI: 10.7554/elife.10032] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI:http://dx.doi.org/10.7554/eLife.10032.001 Most neurons send their messages to recipient neurons by releasing a substance called a ‘neurotransmitter’ that binds to receptors on the target cell. The sites of this type of signal transmission are called synapses. Some small populations of neurons modulate the activity of hundreds or thousands of these synapses all across the brain by releasing ‘neuromodulators’ that affect how they work. These neuromodulators are essential because they broadcast information that is likely to be useful to many brain regions, like a ‘news channel’ for the brain. One important neuromodulator in the mammalian brain is dopamine, which contributes to motivation, learning, and the control of movement. Clusters of cells deep in the brain release dopamine, and people with Parkinson's disease gradually lose these cells. This makes it increasingly difficult for their brains to produce the correct amount of dopamine, and results in symptoms such as tremors and stiff muscles. Individual dopamine neurons typically send information to a single part of the brain. This suggests that dopamine neurons with different targets might have different roles. To explore this possibility, Menegas et al. classified dopamine neurons in the mouse brain into eight types based on the areas to which they project, and then mapped which neurons send input signals to each type. These inputs are likely to shape the activity of each type (that is, their ‘message’ to the rest of the brain). The mapping revealed that most dopamine neurons do not receive substantial input from the area to which they project (i.e., they do not form ‘closed loops’). Instead, most of their input comes from a common set of brain regions, including a particularly large number of inputs from the ventral striatum. However, Menegas et al. found one exception. Dopamine neurons that target part of the brain called the posterior striatum receive relatively little input from the ventral striatum. Their input comes instead from a set of other brain structures, and in particular from a region called the subthalamic nucleus. Electrical stimulation of the subthalamic nucleus can help to relieve the symptoms of Parkinson's disease. Therefore, the results presented by Menegas et al. suggest that this population of dopamine neurons might be particularly relevant to Parkinson's disease and that focusing future studies on them could ultimately be beneficial for patients. DOI:http://dx.doi.org/10.7554/eLife.10032.002
Collapse
Affiliation(s)
- William Menegas
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Joseph F Bergan
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Sachie K Ogawa
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yoh Isogai
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Naoshige Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
34
|
Ding S, Li L, Zhou FM. Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol 2014; 113:1697-711. [PMID: 25552639 DOI: 10.1152/jn.00752.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In Parkinson's disease (PD), the dopamine (DA) neuron loss in the substantia nigra and the DA axon loss in the dorsal striatum are severe, but DA neurons in the ventral tegmental area and DA axons in middle and ventral striatal subregions are less affected. Severe DA loss leads to DA receptor supersensitivity, but it was not known whether the supersensitivity of the DA D1 receptors (D1Rs) on the striatonigral axon terminal is determined by the severe striatal or nigral DA loss. This question is important because these two possibilities affect the extent of the striatonigral terminals with supersensitive D1Rs and hence the strength of the direct pathway output. Here we have investigated this question in the transcription factor Pitx3 mutant mice that have a PD-like DA loss pattern. We found that the presynaptic D1R function was upregulated globally: the D1R-mediated facilitation was equally enhanced for the striatonigral GABA output originated in the dorsal striatum where the DA loss is severe and the somatic D1Rs are supersensitive, and for the striatonigral GABA output originated in the middle and ventral striatum where the DA loss is moderate and the somatic D1Rs are not supersensitive. These results suggest that severe nigral DA loss is sufficient to induce functional upregulation of the D1Rs on striatonigral axon terminals. Consequently, in PD, the globally enhanced D1Rs on striatonigral axon terminals originated in broad striatal subregions may strongly enhance the striatonigral GABA output upon D1R stimulation, potentially contributing to D1R agonism's profound motor-stimulating effects.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Li Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| |
Collapse
|
35
|
Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014; 282:248-57. [PMID: 25445194 DOI: 10.1016/j.neuroscience.2014.10.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
The midbrain dopamine (DA) neurons play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. Indeed, subpopulations of DA neurons have been associated with these different functions: the mesolimbic, mesocortical, and nigrostriatal pathways. The mesolimbic and nigrostriatal pathways are an integral part of the basal ganglia through its reciprocal connections to the ventral and dorsal striatum respectively. This chapter reviews the connections of the midbrain DA cells and their role in integrating information across limbic, cognitive and motor functions. Emphasis is placed on the interface between these functional domains within the striatum through corticostriatal connections, through the striato-nigro-striatal connection, and through the lateral habenula projection to the midbrain.
Collapse
Affiliation(s)
- S N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
36
|
Murty VP, Shermohammed M, Smith DV, Carter RM, Huettel SA, Adcock RA. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 2014; 100:580-9. [PMID: 24979343 PMCID: PMC4370842 DOI: 10.1016/j.neuroimage.2014.06.047] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/29/2014] [Accepted: 06/20/2014] [Indexed: 01/18/2023] Open
Abstract
Dopaminergic networks modulate neural processing across a spectrum of function from perception to learning to action. Multiple organizational schemes based on anatomy and function have been proposed for dopaminergic nuclei in the midbrain. One schema originating in rodent models delineated ventral tegmental area (VTA), implicated in complex behaviors like addiction, from more lateral substantia nigra (SN), preferentially implicated in movement. However, because anatomy and function in rodent midbrain differs from the primate midbrain in important ways, the utility of this distinction for human neuroscience has been questioned. We asked whether functional definition of networks within the human dopaminergic midbrain would recapitulate this traditional anatomical topology. We first developed a method for reliably defining SN and VTA in humans at conventional MRI resolution. Hand-drawn VTA and SN regions-of-interest (ROIs) were constructed for 50 participants, using individually-localized anatomical landmarks and signal intensity. Individual segmentation was used in seed-based functional connectivity analysis of resting-state functional MRI data; results of this analysis recapitulated traditional anatomical targets of the VTA versus SN. Next, we constructed a probabilistic atlas of the VTA, SN, and the dopaminergic midbrain region (comprised of SN plus VTA) from individual hand-drawn ROIs. The combined probabilistic (SN plus VTA) ROI was then used for connectivity-based dual-regression analysis in two independent resting-state datasets (n = 69 and n = 79). Results of the connectivity-based, dual-regression functional segmentation recapitulated results of the anatomical segmentation, validating the utility of this probabilistic atlas for future research.
Collapse
Affiliation(s)
- Vishnu P Murty
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Department of Neurobiology, Duke University, Durham, NC, 27708, USA
| | | | - David V Smith
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - R McKell Carter
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC, 27708, USA
| | - Scott A Huettel
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Department of Neurobiology, Duke University, Durham, NC, 27708, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC, 27708, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - R Alison Adcock
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA; Department of Neurobiology, Duke University, Durham, NC, 27708, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC, 27708, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
37
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
38
|
Gombkötő P, Berényi A, Nagypál T, Benedek G, Braunitzer G, Nagy A. Co-oscillation and synchronization between the posterior thalamus and the caudate nucleus during visual stimulation. Neuroscience 2013; 242:21-7. [PMID: 23542042 DOI: 10.1016/j.neuroscience.2013.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/15/2013] [Indexed: 12/01/2022]
Abstract
Recent results suggest significant cross-correlation between the spike trains of the suprageniculate nucleus (SG) of the posterior thalamus and the caudate nucleus (CN) during visual stimulation. In the present study visually evoked local field potentials (LFPs) were recorded simultaneously in the CN and the SG in order to investigate the coupling between these structures at a population level. The effect of static and dynamic visual stimulation was analyzed in 55 SG-CN LFP pairs in the frequency range 5-57Hz. Statistical analysis revealed significant correlation of the relative powers of each investigated frequency band (5-8Hz, 8-12Hz, 12-35Hz and 35-57Hz) during both static and dynamic visual stimulation. The temporal evolution of cross-correlation showed that in the majority of the cases the SG was activated first, and in approximately one third of the cases, the CN was activated earlier. These observations suggest a bidirectional information flow. The most interesting finding of this study is that different frequency bands exhibited significant cross-correlation in a stimulation paradigm-dependent manner. That is, static stimulation usually increased the cross-correlation of the higher frequency components (12-57Hz) of the LFP, while dynamic stimulation induced changes in the lowest frequency band (5-8Hz). This suggests a parallel processing of dynamic and static visual information in the SG and the CN. To our knowledge we are the first to provide evidence on the co-oscillation and synchronization of the CN and the SG at a population level upon visual stimulation, which suggests a significant cooperation between these structures in visual information processing.
Collapse
Affiliation(s)
- P Gombkötő
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
39
|
Dybdal D, Forcelli PA, Dubach M, Oppedisano M, Holmes A, Malkova L, Gale K. Topography of dyskinesias and torticollis evoked by inhibition of substantia nigra pars reticulata. Mov Disord 2012; 28:460-8. [PMID: 23115112 DOI: 10.1002/mds.25215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/07/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022] Open
Abstract
GABAergic neurons of the substantia nigra pars reticulata (SNpr) and globus pallidus pars interna (GPi) constitute the output pathways of the basal ganglia. In monkeys, choreiform limb dyskinesias have been described after inhibition of the GPi, but not the SNpr. Given the anatomical and functional similarities between these structures, we hypothesized that choreiform dyskinesias could be evoked by inhibition of an appropriate region within the SNpr. The GABAA receptor agonist, muscimol, was infused into various sites within the SNpr and the adjacent STN of freely moving macaques. The effect of the GABAA antagonist, bicuculline (BIC), was also examined. Muscimol (MUS) in SNpr evoked the following: (1) choreiform dyskinesias of the contralateral arm and/or leg from central and lateral sites; (2) contralaterally directed torticollis from central and posterior sites; and (3) contraversive quadrupedal rotation from anterior and lateral sites. MUS infusions into the adjacent SN pars compacta or STN were without effect, ruling out a contribution of drug spread to adjacent structures. BIC in SNpr induced ipsiversive postures without choreiform dyskinesia or torticollis, whereas in the STN, it evoked ballistic movements. This is the first report of choreiform dyskinesia evoked by inhibition of the SNpr. This highly site-specific effect was obtained from a restricted region within the SNpr distinct from that responsible for inducing torticollis. These results suggest that overactivity of different SNpr outputs mediates choreiform dyskinesia and torticollis. These abnormalities are symptoms of dystonia, Huntington's disease, and iatrogenic dyskinesias, suggesting that these conditions may result, in part, from a loss of function in SNpr efferent projections.
Collapse
Affiliation(s)
- David Dybdal
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Sutton AC, Yu W, Calos ME, Smith AB, Ramirez-Zamora A, Molho ES, Pilitsis JG, Brotchie JM, Shin DS. Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J Neurophysiol 2012; 109:363-74. [PMID: 23076106 DOI: 10.1152/jn.00311.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
Collapse
Affiliation(s)
- Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033559 PMCID: PMC3181806 DOI: 10.31887/dcns.2004.6.3/galexander] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Collapse
Affiliation(s)
- Garrett E Alexander
- Department of Neurology, Emory University School of Medicine, Atlanta, Ga, USA
| |
Collapse
|
42
|
Simonyan K, Horwitz B, Jarvis ED. Dopamine regulation of human speech and bird song: a critical review. BRAIN AND LANGUAGE 2012; 122:142-50. [PMID: 22284300 PMCID: PMC3362661 DOI: 10.1016/j.bandl.2011.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 05/23/2023]
Abstract
To understand the neural basis of human speech control, extensive research has been done using a variety of methodologies in a range of experimental models. Nevertheless, several critical questions about learned vocal motor control still remain open. One of them is the mechanism(s) by which neurotransmitters, such as dopamine, modulate speech and song production. In this review, we bring together the two fields of investigations of dopamine action on voice control in humans and songbirds, who share similar behavioral and neural mechanisms for speech and song production. While human studies investigating the role of dopamine in speech control are limited to reports in neurological patients, research on dopaminergic modulation of bird song control has recently expanded our views on how this system might be organized. We discuss the parallels between bird song and human speech from the perspective of dopaminergic control as well as outline important differences between these species.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States.
| | | | | |
Collapse
|
43
|
Abstract
OBJECTIVES A large and diverse literature has implicated abnormalities of striatal structure and function in both unipolar and bipolar disorder. Recent functional imaging studies have greatly expanded this body of research. The aim of this review is to provide a comprehensive and critical appraisal of the relevant literature. METHODS A total of 331 relevant articles were reviewed to develop an integrated overview of striatal function in mood disorders. RESULTS There is compelling evidence from multiple studies that functional abnormalities of the striatum and greater corticostriatal circuitry exist in at least some forms of affective illness. The literature does not yet provide data to determine whether these aberrations represent primary pathology or they contribute directly to symptom expression. Finally, there is considerable evidence that bipolar disorder may be associated with striatal hyperactivity and some suggestion that unipolar illness may be associated with hypoactivation. CONCLUSIONS Additional research investigating striatal function in affective disorders will be critical to the development of comprehensive models of the neurobiology of these conditions.
Collapse
Affiliation(s)
- William R Marchand
- Department of Veterans Affairs, VISN 19 MIRECC, 5500 Foothill, Salt Lake City, UT 84148, USA.
| | | |
Collapse
|
44
|
Korchounov A, Meyer MF, Krasnianski M. Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J Neural Transm (Vienna) 2010; 117:1359-69. [PMID: 21076988 PMCID: PMC3000910 DOI: 10.1007/s00702-010-0454-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/22/2010] [Indexed: 12/30/2022]
Abstract
The article presents the hypothesis that nigrostriatal dopamine may regulate movement by modulation of tone and contraction in skeletal muscles through a concentration-dependent influence on the postsynaptic D1 and D2 receptors on the follow manner: nigrostriatal axons innervate both receptor types within the striatal locus somatotopically responsible for motor control in agonist/antagonist muscle pair around a given joint. D1 receptors interact with lower and D2 receptors with higher dopamine concentrations. Synaptic dopamine concentration increases immediately before movement starts. We hypothesize that increasing dopamine concentrations stimulate first the D1 receptors and reduce muscle tone in the antagonist muscle and than stimulate D2 receptors and induce contraction in the agonist muscle. The preceded muscle tone reduction in the antagonist muscle eases the efficient contraction of the agonist. Our hypothesis is applicable for an explanation of physiological movement regulation, different forms of movement pathology and therapeutic drug effects. Further, this hypothesis provides a theoretical basis for experimental investigation of dopaminergic motor control and development of new strategies for treatment of movement disorders.
Collapse
Affiliation(s)
- Alexei Korchounov
- Parkinson Department, Marienhospital Kevelaer, Basilikastr. 55, 47612 Kevelaer, Germany.
| | | | | |
Collapse
|
45
|
Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113:287-302. [PMID: 20089137 DOI: 10.1111/j.1471-4159.2010.06604.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of anti-psychotic drugs. In this review, we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis.
Collapse
Affiliation(s)
- Emma Perez-Costas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
46
|
|
47
|
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010; 35:4-26. [PMID: 19812543 PMCID: PMC3055449 DOI: 10.1038/npp.2009.129] [Citation(s) in RCA: 2545] [Impact Index Per Article: 169.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022]
Abstract
Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
48
|
Abstract
Previous studies have shown that imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers that are specific for brain dopamine receptors can be used to indirectly image the change in the levels of neurotransmitters within the brain. Most of the studies in addiction have focused on dopamine, since the dopamine neurons that project to the striatum have been shown to play a critical role in mediating addictive behavior. These imaging studies have shown that increased extracellular dopamine produced by psychostimulants can be measured with PET and SPECT. However, there are some technical issues associated with imaging changes in dopamine, and these are reviewed in this chapter. Among these are the loss of sensitivity, the time course of dopamine pulse relative to PET and SPECT imaging, and the question of affinity state of the receptor. In addition, animal studies have shown that most drugs of abuse increase extracellular dopamine in the striatum, yet not all produce a change in neurotransmitter that can be measured. As a result, imaging with a psychostimulant has become the preferred method for imaging presynaptic dopamine transmission, and this method has been used in studies of addiction. The results of these studies suggest that cocaine and alcohol addiction are associated with a loss of dopamine transmission, and a number of studies show that this loss correlates with severity of disease.
Collapse
|
49
|
Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 2010; 35:48-69. [PMID: 19776734 PMCID: PMC3055420 DOI: 10.1038/npp.2009.131] [Citation(s) in RCA: 1210] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/08/2022]
Abstract
Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus-response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue.
Collapse
Affiliation(s)
- Bernard W Balleine
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | |
Collapse
|
50
|
Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. J Cogn Neurosci 2009; 21:1332-45. [PMID: 18752410 DOI: 10.1162/jocn.2009.21092] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to the DS and the VS seem to play a critical role in this functional distinction. Here, subjects performed a dynamic, reward-based decision-making task during fMRI acquisition. A computational model of reinforcement learning was used to estimate the different effects of positive and negative reinforcements on future decisions for each subject individually. We found that activity in both the DS and the VS correlated with reward prediction errors. Using functional connectivity, we show that the DS and the VS are differentially connected to different midbrain regions (possibly corresponding to the substantia nigra [SN] and the ventral tegmental area [VTA], respectively). However, only functional connectivity between the DS and the putative SN predicted the impact of different reinforcement types on future behavior. These results suggest that connections between the putative SN and the DS are critical for modulating action values in the DS according to both positive and negative reinforcements to guide future decision making.
Collapse
Affiliation(s)
- Thorsten Kahnt
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin (Charité Campus Mitte), Berlin, Germany.
| | | | | | | | | | | |
Collapse
|