1
|
Shi P, Han J, Tian Y, Wang J, Lv Y, Li Y, Zhang X, Li C. Engineering CuZnOAl 2O 3 Catalyst for Enhancing CO 2 Hydrogenation to Methanol. Molecules 2025; 30:1350. [PMID: 40142125 PMCID: PMC11946585 DOI: 10.3390/molecules30061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The CuZnOAl2O3 catalyst shows excellent activity and selectivity in the reaction of CO2 hydrogenation to methanol as a consequence of its controllable physicochemical properties, which is expected to offer an efficient route to renewable energy. In this study, CuZnOAl2O3 catalysts are engineered by a special pretreatment, constructing a carbonate structure on the surface of the catalyst. Compared to the unmodified catalyst, the optimized catalyst (CZA-H-C1) not only exhibits an improved methanol selectivity of 62.5% (250 °C and 3 MPa) but also retains a minimal degree of deactivation of 9.57% over a 100 h period. By characterizing the catalysts with XRD, TEM, XPS and in situ DRIFTS spectroscopy, it was found that the surface carbonate species on Cu-based catalysts could significantly enhance the reaction and shield the active sites. This study offers theoretical insights and practical strategies for the rational design and optimization of high-performance heterogeneous catalysts.
Collapse
Affiliation(s)
- Peixiang Shi
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
- College of Safety and Emergency Management, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiahao Han
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| | - Yuhao Tian
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| | - Jingjing Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| | - Yongkang Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| | - Yanchun Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| | - Xinghua Zhang
- College of Safety and Emergency Management, Taiyuan University of Technology, Taiyuan 030024, China
| | - Congming Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China (Y.L.)
| |
Collapse
|
2
|
Mishra AK, Willoughby J, Estes SL, Kohler KC, Brinkman KS. Impact of morphology and oxygen vacancy content in Ni, Fe co-doped ceria for efficient electrocatalyst based water splitting. NANOSCALE ADVANCES 2024; 6:4672-4682. [PMID: 39263402 PMCID: PMC11385549 DOI: 10.1039/d4na00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
Designing a highly efficient, low-cost, sustainable electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through water splitting is a current challenge for renewable energy technologies. This work presents a modified sol-gel route to prepare metal-ion(s) doped cerium oxide nanostructures as an efficient electrocatalyst for overall water splitting. Nickle (Ni) and iron (Fe) co-doping impacts the morphology in cerium oxide resulting in 5 nm nanoparticles with a mesoporous-like microstructure. The high level 20 mol% (1 : 1 ratio) of Ni + Fe bimetal-ion(s) doped CeO2 shows excellent HER and OER activities compared to the monodoped Fe/Ni and pristine CeO2. The co-doped catalysts required a low overpotential of 104 mV and 380 mV for HER and OER, respectively, in 1 M KOH, at a current density of 10 mA cm-2. The Tafel slopes of 95 mV dec-1 and 65 mV dec-1 were measured for HER and OER with the same representative samples which demonstrated excellent stability even after continuous operation for 20 hours in the alkaline medium. The unique morphology, enhanced oxygen vacancy (Ov) content and the synergistic effects of dopants in CeO2 play essential roles in enhancing the activities of Ni + Fe doped samples.
Collapse
Affiliation(s)
- Abhaya Kumar Mishra
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Joshua Willoughby
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Shanna L Estes
- Department of Environmental Engineering and Earth Sciences, Clemson University Anderson SC 29625 USA
| | - Keliann Cleary Kohler
- Advanced Materials Research Laboratory (AMRL), Clemson University Anderson SC 29625 USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| |
Collapse
|
3
|
Moxon S, Symington AR, Tse JS, Flitcroft JM, Skelton JM, Gillie LJ, Cooke DJ, Parker SC, Molinari M. Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2O and CO 2: a density functional theory study. NANOSCALE 2024; 16:11232-11249. [PMID: 38779821 DOI: 10.1039/d4nr01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.
Collapse
Affiliation(s)
- Samuel Moxon
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Adam R Symington
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua S Tse
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Joseph M Flitcroft
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa J Gillie
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - David J Cooke
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Stephen C Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Marco Molinari
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
4
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Gericke SM, Kauppinen MM, Wagner M, Riva M, Franceschi G, Posada-Borbón A, Rämisch L, Pfaff S, Rheinfrank E, Imre AM, Preobrajenski AB, Appelfeller S, Blomberg S, Merte LR, Zetterberg J, Diebold U, Grönbeck H, Lundgren E. Effect of Different In 2O 3(111) Surface Terminations on CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45367-45377. [PMID: 37704018 PMCID: PMC10540140 DOI: 10.1021/acsami.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.
Collapse
Affiliation(s)
| | - Minttu M. Kauppinen
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Margareta Wagner
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Michele Riva
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Giada Franceschi
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alvaro Posada-Borbón
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Lisa Rämisch
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Sebastian Pfaff
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Erik Rheinfrank
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alexander M. Imre
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | | | | | - Sara Blomberg
- Department
of Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Lindsay R. Merte
- Department
of Materials Science and Applied Mathematics, Malmö University, 20506 Malmö, Sweden
| | - Johan Zetterberg
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Ulrike Diebold
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Henrik Grönbeck
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, 22100 Lund, Sweden
| |
Collapse
|
6
|
Mendoza D, Dong ST, Lassalle-Kaiser B. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: status and perspectives. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Mn-doped CeO2-CNT nanohybrid for removal of water soluble organic dyes. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hung CM, Chen CW, Huang CP, Dong CD. Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar. ENVIRONMENTAL RESEARCH 2022; 211:113076. [PMID: 35271836 DOI: 10.1016/j.envres.2022.113076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The contamination of marine sediments by 4-nonylphenol (4-NP) has become a global environmental problem, therefore there are necessaries searching appropriate and sustainable remediation methods for in-situ applications. Herein, water hyacinth [(WH) (Eichhornia crassipes)]-derived metal-free biochar (WHBC) prepared at 300-900 °C was used to promote the calcium peroxide (CP)-mediated remediation of 4-NP-contaminaed sediments. At [CP] = 4.37 × 10-4 M, [WHBC] = 1.5 g L-1, and pH = 6.0, the degradation of 4-NP was 77% in 12 h following the pseudo-first order rate law with rate constant (kobs) of 4.2 × 10-2 h-1. The efficient 4-NP degradation performance and reaction mechanisms of the WHBC/CP system was ascribed to the synergy between the reactive species (HO• and 1O2) at the WHBC surface on which there were abundant electron-rich carbonyl groups and defects/vacancies in the catalyst structure provides active sites, and the ability of the graphitized carbon framework to act as a medium for electron shuttling. According to microbial community analysis based on amplicon sequence variants, bacteria of the genus Solirubrobacter (Actinobacteria phylum) were dominant in WHBC/CP-treated sediments and were responsible for the biodegradation of 4-NP. The results showed great promise and novelty of the hydroxyl radical-driven carbon advanced oxidation processes (HR-CAOPs) that relies on the value-added utilization of water hyacinth for contaminated sediment remediation in achieving circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
In Situ NAP-XPS Study of CO2 and H2O Adsorption on cerium oxide thin films. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO 2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides can catalyze the CO2 transformation reactions. On metal oxide-based catalysts, CO2 transformations are promoted significantly in the presence of surface oxygen vacancies or surface defect sites. Electrons transferable to the neutral CO2 molecule can be enriched on oxygen vacancies, which can also act as CO2 adsorption sites. CO2 activation is also possible without necessarily transferring electrons by tailoring catalytic sites that promote interactions at an appropriate energy level alignment of the catalyst and CO2 molecule. This review discusses CO2 activation on various catalysts, particularly the impacts of various structural factors, such as oxygen vacancies, on CO2 activation.
Collapse
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| |
Collapse
|
11
|
Chen WF, Malacco CMDS, Mehmood R, Johnson KK, Yang JL, Sorrell CC, Koshy P. Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111663. [PMID: 33545829 DOI: 10.1016/j.msec.2020.111663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023]
Abstract
The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the {111} planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.
Collapse
Affiliation(s)
- Wen-Fan Chen
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kochurani K Johnson
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Koverga AA, Gómez-Marín AM, Dorkis L, Flórez E, Ticianelli EA. Role of Transition Metals on TM/Mo 2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27150-27165. [PMID: 32441912 DOI: 10.1021/acsami.0c04806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modification of electronic and chemical properties of a material by the introduction of another element into its lattice is one of the most common methods for designing new catalysts for different applications. In this work the effect of modifying molybdenum carbide with transition metals (Fe, Co, Ni, Cu), TM-Mo2C composites, upon the catalytic activity toward hydrogen evolution reaction (HER) in mild acidic and alkaline media has been studied. Catalysts were prepared by carbothermal reduction of molybdenum and TM oxides precursors and were characterized by different physicochemical techniques. Results evidenced a strong pH effect on the catalytic performance of TM-Mo2C, while, at pH = 5, inclusion of TM into the Mo2C lattice has a deleterious effect on the HER activity and, at pH = 9, a promoting effect was observed, highlighting the importance of considering specific operation conditions during the catalyst design process. Analysis of in situ near-edge X-ray adsorption data reveals a decrease on the oxidation state and average bond ionicity of dopant metal upon a pH increase, shedding light of the different effects of TMs on the resulting HER activity in acidic and alkaline media. Finally, stability tests demonstrated no deterioration on catalysts' performance after 8 h of continuous cycling within the HER working range, confirming the suitability of Mo2C materials as promising HER catalysts.
Collapse
Affiliation(s)
- Andrey A Koverga
- Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia sede Medellín, Medellín 050041, Colombia
| | - Ana M Gómez-Marín
- Department of Chemistry, Division of Fundamental Sciences (IEFQ), Technological Institute of Aeronautics (ITA), São José dos Campos CEP 12228-900, SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
| | - Ludovic Dorkis
- Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia sede Medellín, Medellín 050041, Colombia
| | - Elizabeth Flórez
- Facultad de Ciencias Básicas, Grupo de Investigación MAT&MPAC, Universidad de Medellín, Medellín 050026, Colombia
| | - Edson A Ticianelli
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
| |
Collapse
|
13
|
Seal S, Jeyaranjan A, Neal CJ, Kumar U, Sakthivel TS, Sayle DC. Engineered defects in cerium oxides: tuning chemical reactivity for biomedical, environmental, & energy applications. NANOSCALE 2020; 12:6879-6899. [PMID: 32191231 DOI: 10.1039/d0nr01203c] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanocrystalline cerium oxide (nanoceria) is a rare earth oxide with a complex surface chemistry. This material has seen substantial investigation in recent years in both fundamental and applied studies due largely to more precise characterization of the unique surface structures, which mediate its pronounced redox activity. In particular, oxygen storage/buffering capacities have been thoroughly correlated with synthesis and processing condition effects on other material features such as surface (micro-) faceting, reconstruction, and (extent of) hydration. Key material features such as these modulate nanoceria redox performance by changing the crystal microenvironment. In this review, we present nanoengineering methods, which have produced increased nanoceria performance in biomedical, energy, and catalysis applications. The impact of combined/cooperative theoretical and experimental studies are highlighted throughout.
Collapse
Affiliation(s)
- Sudipta Seal
- Department of Materials Science & Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Durable ruthenium oxide/ceria catalyst with ultralarge mesopores for low-temperature CO oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
|
16
|
Schaefer A, Hagman B, Höcker J, Hejral U, Flege JI, Gustafson J. Thermal reduction of ceria nanostructures on rhodium(111) and re-oxidation by CO 2. Phys Chem Chem Phys 2018; 20:19447-19457. [PMID: 29998237 DOI: 10.1039/c8cp01505h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The thermal reduction of cerium oxide nanostructures deposited on a rhodium(111) single crystal surface and the re-oxidation of the structures by exposure to CO2 were investigated. Two samples are compared: a rhodium surface covered to ≈60% by one to two O-Ce-O trilayer high islands and a surface covered to ≈65% by islands of four O-Ce-O trilayer thickness. Two main results stand out: (1) the thin islands reduce at a lower temperature (870-890 K) and very close to Ce2O3, while the thicker islands need higher temperature for reduction and only reduce to about CeO1.63 at a maximum temperature of 920 K. (2) Ceria is re-oxidized by CO2. The rhodium surface promotes the re-oxidation by splitting the CO2 and thus providing atomic oxygen. The process shows a clear temperature dependence. The maximum oxidation state of the oxide reached by re-oxidation with CO2 differs for the two samples, showing that the thinner structures require a higher temperature for re-oxidation with CO2. Adsorbed carbon species, potentially blocking reactive sites, desorb from both samples at the same temperature and cannot be the sole origin for the observed differences. Instead, an intrinsic property of the differently sized CeOx islands must be at the origin of the observed temperature dependence of the re-oxidation by CO2.
Collapse
Affiliation(s)
- Andreas Schaefer
- Department of Chemistry and Chemical Engineering - Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Mihai O, Trandafilović L, Wentworth T, Torres FF, Olsson L. The Effect of Si/Al Ratio for Pd/BEA and Pd/SSZ-13 Used as Passive NOx Adsorbers. Top Catal 2018. [DOI: 10.1007/s11244-018-1017-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|