1
|
Arbuzova NA, Lianguzova AD, Korn OM, Miroliubov AA. Organization of Lacunar and Muscular Systems of Polyascus polygeneus and Parasacculina pilosella (Rhizocephala: Polyascidae). J Morphol 2025; 286:e70037. [PMID: 39988807 DOI: 10.1002/jmor.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Circulatory systems are characteristic of most multicellular animals. In parasitic organisms, which may differ strikingly from their free-living relatives, such systems remain the least studied. Rhizocephala (Pancrustacea: Cirripedia) are among the morphologically most derived parasitic crustaceans. In the adult rhizocephalan female, transport presumably takes place along the lacunar system inside the interna rootlets and the externa. The aim of our study was to visualize and describe the lacunar and muscular systems in the externa of Polyascus polygeneus and Parasacculina pilosella (fam. Polyascidae) using micro-computed tomography and confocal microscopy. The lacunar system in the externae of both species consists of the stalk lumen, mesentery lacuna accompanying the visceral mass and mantle lacunae. These elements of the lacunar system are similar to those previously described in Peltogasterella gracilis (fam. Peltogasterellidae). However, the interposition of these elements differs. The organization of the muscular system mostly corresponds to previous descriptions in other rhizocephalan species, however some unexpected results were obtained. For example, P. polygeneus has an age-related differentiation of mantle musculature, which was not described before for any rhizocephalan species. Obtained data on lacunar and muscular systems organization allow us to assume the change in the externa body axes in the family Polyascidae.
Collapse
Affiliation(s)
- Natalia A Arbuzova
- Zoological Institute RAS, Laboratory of Parasitic Worms and Protists, Universitetskaya Embankment 1, Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | - Anastasia D Lianguzova
- Zoological Institute RAS, Laboratory of Parasitic Worms and Protists, Universitetskaya Embankment 1, Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | - Olga M Korn
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Aleksei A Miroliubov
- Zoological Institute RAS, Laboratory of Parasitic Worms and Protists, Universitetskaya Embankment 1, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Sitina M, Stark H, Schuster S. Optimal hematocrit theory: a review. J Appl Physiol (1985) 2024; 137:494-509. [PMID: 38813609 DOI: 10.1152/japplphysiol.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
In humans and many animals, a trade-off between a sufficiently high concentration of erythrocytes (hematocrit) to bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during evolution. The optimal value lies between the extreme cases of pure blood plasma, which cannot practically transport any oxygen, and 100% hematocrit, which would imply very slow blood flow or none at all. As oxygen delivery to tissues is the main task of the cardiovascular system, it is reasonable to expect that maximum oxygen delivery has been achieved during evolution. Optimal hematocrit theory, based on this optimality principle, has been successful in predicting hematocrit values of about 0.3-0.5, which are indeed observed in the systemic circulation of humans and many animal species. Similarly, the theory can explain why a hematocrit higher than normal, ranging from 0.5 to 0.7, can promote better exertional performance. Here, we present a review of theoretical approaches to the calculation of the optimal hematocrit value under different conditions and discuss them in a broad physiological context. Several physiological and medical implications are outlined, for example, in view of blood doping, temperature adaptation, dehydration, and life at high altitudes.
Collapse
Affiliation(s)
- Michal Sitina
- Department of Pathophysiology, Masaryk University, Brno, Czech Republic
- Department of Anesthesiology and Intensive Care Medicine and International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Heiko Stark
- Department of Bioinformatics, Friedrich Schiller University, Jena, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Burggren W, Fahlman A, Milsom W. Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire. Exp Physiol 2024; 109:1051-1065. [PMID: 38502538 PMCID: PMC11215480 DOI: 10.1113/ep091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Andreas Fahlman
- Fundación OceanogràficValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinkoping UniversityLinkopingSweden
| | - William Milsom
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Arbuzova NA, Lianguzova AD, Iliutkin SA, Laskova EP, Gafarova ER, Miroliubov AA. Functional role of lacunar and muscular systems in the externa of Peltogasterella gracilis (Cirripedia: Rhizocephala). J Morphol 2023; 284:e21635. [PMID: 37708509 DOI: 10.1002/jmor.21635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
One of the most conspicuous traits of parasitic organisms is a well-developed reproductive system. In Rhizocephala ("Crustacea": Cirripedia) it is believed to be nested in the externa-a "reproductive part" located outside of the host. However, it is not clear how nutrients are transported to the externa. Several authors described a system of lacunae in the externa, and muscular contractions probably enable transport through these cavities. The aim of our study was to visualize (using microcomputed tomography and confocal laser scanning microscopy) and describe lacunar and muscular systems in the externa of Peltogasterella gracilis (fam. Peltogasterellidae). The lacunar system consists of "ventral" lacuna and several protrusions. The "ventral" lacuna is probably responsible for visceral mass nutrition, and mantle protrusions are associated with the mantle nutrition. The gross organization of the muscular system mostly corresponds to previous descriptions in other rhizocephalan species. Nonetheless, we observed several features of the externa morphology that had not been described before such as a muscular thickening in the proximal externa's part and a stalk plug disk. The muscular thickening might play a role of a propulsatory organ, helping to transport liquid through the lacunar system. The plug disk might fill the hole in the host's cuticle after the old externa drop off. The results allow us to make first assumptions on transport mechanisms in Rhizocephala.
Collapse
Affiliation(s)
- Natalia A Arbuzova
- Laboratory of Parasitic Worms and Protists, Zoological Institute RAS, Universitetskaya Embankment 1, Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | - Anastasia D Lianguzova
- Laboratory of Parasitic Worms and Protists, Zoological Institute RAS, Universitetskaya Embankment 1, Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | | | - Ekaterina P Laskova
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | - Elizaveta R Gafarova
- Department of Invertebrate Zoology, Universitetskaya emb., Saint-Petersburg University, Saint-Petersburg, Russia
| | - Aleksei A Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute RAS, Universitetskaya Embankment 1, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 2021; 9:e14775. [PMID: 33709567 PMCID: PMC7953022 DOI: 10.14814/phy2.14775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
High heart rates are a feature of small endothermic—or warm‐blooded—mammals and birds. In small mammals, the QT interval is short, and local ventricular recordings reveal early repolarization that coincides with the J‐wave on the ECG, a positive deflection following the QRS complex. Early repolarization contributes to short QT‐intervals thereby enabling brief cardiac cycles and high heart rates. We therefore hypothesized high hearts rates associate with early repolarization and J‐waves on the ECG of endothermic birds. We tested this hypothesis by comparing isolated hearts of zebra finches and mice and recorded pseudo‐ECGs and optical action potentials (zebra finch, n = 8; mouse, n = 8). In both species, heart rate exceeded 300 beats per min, and total ventricular activation was fast (QRS < 10 ms). Ventricular activation progressed from the left to the right ventricle in zebra finch, whereas it progressed from apex‐to‐base in mouse. In both species, the early repolarization front followed the activation front, causing a positive J‐wave in the pseudo‐ECG. Inhibition of early repolarization by 4‐aminopyridine reduced J‐wave amplitude in both species. Action potential duration was similar between ventricles in zebra finch, whereas in mouse the left ventricular action potential was longer. Accordingly, late repolarization had opposite directions in zebra finch (left‐right) and mouse (right‐left). This caused a similar direction for the zebra finch J‐wave and T‐wave, whereas in the mouse they were discordant. Our findings demonstrate that early repolarization and the associated J‐wave may have evolved by convergence in association with high heart rates.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Sila Algül
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
6
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
7
|
Jensen B, Christoffels VM. Reptiles as a Model System to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037226. [PMID: 31712265 DOI: 10.1101/cshperspect.a037226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Ma KGL, Gamperl AK, Syme DA, Weber LP, Rodnick KJ. Echocardiography and electrocardiography reveal differences in cardiac hemodynamics, electrical characteristics, and thermal sensitivity between northern pike, rainbow trout, and white sturgeon. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:427-442. [PMID: 31385459 DOI: 10.1002/jez.2310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Doppler and B-mode ultrasonography and electrocardiography (ECG) were used to determine cardiac hemodynamics and electrical characteristics in 12°C-acclimated and metomidate-anesthetized northern pike, rainbow trout and white sturgeon (7-9 per species) at 12°C and 20°C, and at a comparable heart rate (fH , ~60 beats/min). Despite similar relative ventricle masses and cardiac output (Q), interspecific differences were observed at 12°C in fH , ventricular filling and ejection, stroke volume, the duration ECG intervals, and cardiac valve cross-sectional areas. Vis-a-fronte filling of the atrium due to ventricular contraction was observed in all species. However, biphasic ventricular filling (i.e., due to central venous pressure and then atrial contraction) was only observed in rainbow trout and white sturgeon. Changes in atrial and ventricular performance varied between the species as temperature increased from 12°C to 20°C. Rainbow trout had the highest thermal sensitivity for fH (Q10 = 3.73), which doubled Q, and the largest increase in transvalvular blood velocity during ventricular filling. Conversely, northern pike had the lowest Q10 for fH (1.58) and did not increase Q. At ~60 beats/min, the rainbow trout heart had the shortest period of electrical activity, which also resulted in the longest recovery period (TP interval) between successive beats. The QT interval at ~60 beats/min was also longer in the white sturgeon versus the other species. These results suggest that interspecific differences in fish cardiac hemodynamics may be related to cardiac morphology, the duration of electrical impulses through the heart, cardiac thermal sensitivity, and valve dimensions.
Collapse
Affiliation(s)
- Kathleen G L Ma
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University, St. Johns, Newfoundland, Canada.,Department of Biology, Memorial University, St. Johns, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
9
|
Kroneman JGH, Faber JW, Schouten JCM, Wolschrijn CF, Christoffels VM, Jensen B. Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. J Morphol 2019; 280:395-410. [PMID: 30667083 PMCID: PMC6590421 DOI: 10.1002/jmor.20952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/12/2022]
Abstract
Mammals and birds acquired high performance hearts and endothermy during their independent evolution from amniotes with many sauropsid features. A literature review shows that the variation in atrial morphology is greater in mammals than in ectothermic sauropsids. We therefore hypothesized that the transition from ectothermy to endothermy was associated with greater variation in cardiac structure. We tested the hypothesis in 14 orders of birds by assessing the variation in 15 cardiac structures by macroscopic inspection and histology, with an emphasis on the atria as they have multiple features that lend themselves to quantification. We found bird hearts to have multiple features in common with ectothermic sauropsids (synapomorphies), such as the presence of three sinus horns. Convergent features were shared with crocodylians and mammals, such as the cranial offset of the left atrioventricular junction. Other convergent features, like the compact organization of the atrial walls, were shared with mammals only. Pacemaker myocardium, identified by Isl1 expression, was anatomically node‐like (Mallard), thickened (Chicken), or indistinct (Lesser redpoll, Jackdaw). Some features were distinctly avian, (autapomorphies) including the presence of a left atrial antechamber and the ventral merger of the left and right atrial auricles, which was found in some species of parrots and passerines. Most features, however, exhibited little variation. For instance, there were always three systemic veins and two pulmonary veins, whereas among mammals there are 2–3 and 1–7, respectively. Our findings suggest that the transition to high cardiac performance does not necessarily lead to a greater variation in cardiac structure.
Collapse
Affiliation(s)
- Jelle G H Kroneman
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Jacobine C M Schouten
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia F Wolschrijn
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Burggren WW, Elmonoufy NA. Critical developmental windows for morphology and hematology revealed by intermittent and continuous hypoxic incubation in embryos of quail (Coturnix coturnix). PLoS One 2017; 12:e0183649. [PMID: 28926567 PMCID: PMC5604962 DOI: 10.1371/journal.pone.0183649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/08/2017] [Indexed: 02/01/2023] Open
Abstract
Hypoxia during embryonic growth in embryos is frequently a powerful determinant of development, but at least in avian embryos the effects appear to show considerable intra- and inter-specific variation. We hypothesized that some of this variation may arise from different protocols that may or may not result in exposure during the embryo’s critical window for hypoxic effects. To test this hypothesis, quail embryos (Coturnix coturnix) in the intact egg were exposed to hypoxia (~15% O2) during “early” (Day 0 through Day 5, abbreviated as D0-D5), “middle” (D6-D10) or “late” (D11-D15) incubation or for their entire 16–18 day incubation (“continuous hypoxia”) to determine critical windows for viability and growth. Viability, body mass, beak and toe length, heart mass, and hematology (hematocrit and hemoglobin concentration) were measured on D5, D10, D15 and at hatching typically between D16 and D18 Viability rate was ~50–70% immediately following the exposure period in the early, middle and late hypoxic groups, but viability improved in the early and late groups once normoxia was restored. Middle hypoxia groups showed continuing low viability, suggesting a critical period from D6-D10 for embryo viability. The continuous hypoxia group experienced viability reaching <10% after D15. Hypoxia, especially during late and continuous hypoxia, also inhibited growth of body, beak and toe when measured at D15. Full recovery to normal body mass upon hatching occurred in all other groups except for continuous hypoxia. Contrary to previous avian studies, heart mass, hematocrit and hemoglobin concentration were not altered by any hypoxic incubation pattern. Although hypoxia can inhibit embryo viability and organ growth during most incubation periods, the greatest effects result from continuous or middle incubation hypoxic exposure. Hypoxic inhibition of growth can subsequently be “repaired” by catch-up growth if a final period of normoxic development is available. Collectively, these data indicate a critical developmental window for hypoxia susceptibility during the mid-embryonic period of development.
Collapse
Affiliation(s)
- Warren W. Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- * E-mail:
| | - Nourhan A. Elmonoufy
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| |
Collapse
|
11
|
Crossley DA, Crossley JL, Smith C, Harfush M, Sánchez-Sánchez H, Garduño-Paz MV, Méndez-Sánchez JF. Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea). Comp Biochem Physiol A Mol Integr Physiol 2017. [PMID: 28642099 DOI: 10.1016/j.cbpa.2017.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina).
Collapse
Affiliation(s)
- Dane Alan Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Janna Lee Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Camilla Smith
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martha Harfush
- Centro Mexicano de la Tortuga CONANP-SEMARNAT, Mazunte, Tonameca, Oaxaca, Mexico
| | - Hermilo Sánchez-Sánchez
- Laboratorio de Ecofisiologia Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Mónica Vanessa Garduño-Paz
- Laboratorio de Ecofisiologia Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Fernando Méndez-Sánchez
- Laboratorio de Ecofisiologia Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| |
Collapse
|
12
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Wearing OH, Conner J, Nelson D, Crossley J, Crossley DA. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina). J Exp Biol 2017; 220:2589-2597. [DOI: 10.1242/jeb.160549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles (Chelydra serpentina). Turtles exposed to hypoxia as embryos (10% O2, H10) exhibited an earlier and increased peak postprandial oxygen consumption rate, compared to control turtles (21% O2, N21). In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic (Q̇sys) and pulmonary (Q̇pul) blood flows and heart rate (fH) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, fH was increased significantly by feeding. While total stroke volume (Vstot) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output (Q̇tot). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher Q̇sys due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Justin Conner
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Janna Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|