1
|
Junge M, Liaukouskaya N, Schwarz N, Pinto-Espinoza C, Schaffrath AZ, Rissiek B, Krebs CF, Rattay G, Mittrücker HW, Tomas NM, Nicke A, Haag F, Huber TB, Meyer-Schwesinger C, Koch-Nolte F, Wanner N. ATP-Gated P2X7-Ion Channel on Kidney-Resident Natural Killer T Cells and Memory T Cells in Intrarenal Inflammation. J Am Soc Nephrol 2025; 36:602-613. [PMID: 39675762 PMCID: PMC11975244 DOI: 10.1681/asn.0000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Key Points Parenchymal T cells in the kidney expressed much higher levels of P2X7 than vascular T cells. P2X7-blocking nanobodies uncover a large fraction of kidney-resident natural killer T and tissue-resident memory T cells. These cells were lost during cell preparation because of activation of P2X7 by NAD+ released from damaged cells, unless blocked by nanobodies. Background The P2X7 ion channel, a key sensor of sterile inflammation, has been implicated as a therapeutic target in GN, and P2X7-antagonistic nanobodies can attenuate experimental GN. However, little is known about the expression of P2X7 on renal immune cells. Methods We used conventional immunofluorescence of kidney sections and intraperitoneal injection of nanobodies in mice followed by flow cytometry analysis of parenchymal T cells and RNA sequencing to elucidate the expression and function of P2X7 on parenchymal and vascular immune cells in the mouse kidney. Results Our study showed that parenchymal T cells, including a large subset of natural killer T cells and CD69+ tissue-resident memory T cells, display much higher cell surface levels of P2X7 than vascular T cells. After a single intraperitoneal injection of P2X7-blocking nanobodies, P2X7 on parenchymal T cells was fully occupied by the injected nanobodies within 30 minutes. This resulted in an effective protection of these cells from nicotinamide adenine dinucleotide–induced cell death during cell preparation. Conversely, systemic injection of nicotinamide adenine dinucleotide that mimics sterile inflammation results in the selective depletion of P2X7hiCD69hi T cells from the kidney parenchyma. Conclusions Our study uncovered a novel purinergic regulatory mechanism affecting kidney-resident T-cell populations.
Collapse
Affiliation(s)
- Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nastassia Liaukouskaya
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z. Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Rattay
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Okoye GD, Kumar A, Ghanbari F, Chowdhury NU, Wu L, Newcomb DC, Van Kaer L, Algood HMS, Joyce S. Single-cell map of innate-like lymphocyte response to Francisella tularensis infection reveals interleukin-17-dependent protection by MAIT cells. iScience 2025; 28:111810. [PMID: 40160424 PMCID: PMC11951026 DOI: 10.1016/j.isci.2025.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025] Open
Abstract
Early immune dynamics during the initiation of fatal tularemia caused by Francisella tularensis infection remain unknown. Unto that end, we generated a transcriptomic map at single-cell resolution of the innate-like lymphocyte responses to F. tularensis live vaccine strain (LVS) infection of mice. We found that both interferon-γ (IFN-γ)-producing type 1 and interleukin-17 (IL-17)-producing type 3 innate-like lymphocytes expanded in the infected lungs. Natural killer (NK) and NKT cells drove the type 1 response, whereas mucosal-associated invariant T (MAIT) and γδ T cells drove the type 3 response. Furthermore, tularemia-like disease resistant NKT cell-deficient, Cd1d -/- mice accumulated more MAIT1 cells, MAIT17 cells, and cells with a hybrid phenotype between MAIT1 and MAIT17 cells than wild-type mice. Critically, adoptive transfer of LVS-activated MAIT cells from Cd1d -/- mice, which were enriched in MAIT17 cells, was sufficient to protect LVS-susceptible, immunodeficient RAG2 -/- mice from severe LVS infection-inflicted pathology. Collectively, our findings position MAIT cells as potential mediators of IL-17-dependent protection from pulmonary tularemia-like disease.
Collapse
Affiliation(s)
- G. Donald Okoye
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Farshad Ghanbari
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Nowrin U. Chowdhury
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Lan Wu
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Dawn C. Newcomb
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Luc Van Kaer
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Holly M. Scott Algood
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Zhang H, Zhang F, Modrak S. Effects of TNF-α deletion on iNKT cell development, activation, and maturation in the steady-state and chronic alcohol-consuming mice. J Leukoc Biol 2022; 112:233-241. [PMID: 34766371 PMCID: PMC9095768 DOI: 10.1002/jlb.1a0821-466r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines play critical roles in regulating iNKT cell development, activation, and maturation. TNF-α co-occurs with iNKT cells in steady-state and many disease conditions. How TNF-α affects iNKT cell function has not been thoroughly investigated. It was found that chronic alcohol consumption enhanced iNKT cell activation and maturation. The underlying mechanism is not known. Herein, a TNF-α KO mouse model was used to address these issues. It was found that the depletion of TNF-α mitigated alcohol consumption-enhanced iNKT cell activation and maturation. In steady-state, depletion of TNF-α did not affect the frequency of iNKT cells in the thymus and spleen but decreased iNKT cells in the liver and increased liver iNKT cell apoptosis. The portion of stage-2 immature iNKT cells increased, stage-3 mature iNKT cells decreased in the thymus of TNF-α KO mice, suggesting that depletion of TNF-α impairs iNKT cell development and maturation. The percentage of CD69+ iNKT cells was significantly lower in the thymus, spleen, and liver of TNF-α KO mice compared to their wild-type littermates, suggesting that depletion of TNF-α inhibits iNKT cell activation. Moreover, the percentage of splenic IL-4- and IFN-γ-producing iNKT cells was significantly lower in TNF-α KO mice than in their wild-type littermates. The depletion of TNF-α increased PLZF+ iNKT cells in the thymus and down-regulated the expression of CD122 on iNKT cells. Collectively, these results support that TNF-α plays a vital role in the regulation of iNKT cell development, activation, and maturation, and alcohol consumption enhances iNKT cell activation and maturation through TNF-α.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Samantha Modrak
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
4
|
Liposomes Bearing Non-Bilayer Phospholipid Arrangements Induce Specific IgG Anti-Lipid Antibodies by Activating NK1.1+, CD4+ T Cells in Mice. MEMBRANES 2022; 12:membranes12070643. [PMID: 35877846 PMCID: PMC9319584 DOI: 10.3390/membranes12070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Liposomes are artificial models of cellular membranes that are used as delivery systems for genes, drugs and protein antigens. We have previously used them to study the antigenic properties of their phospholipids. Here, we used them to induce the production of IgG anti-non-bilayer phospholipid arrangements (NPAs) antibodies in mice; these antibodies cause cell lysis and trigger a lupus-like disease in mice. We studied the mechanisms that lead to the production of these antibodies, and provide evidence that NK1.1+, CD4+ T cells respond to NPA-bearing liposomes and deliver the help required for specific B cell activation and antibody class-switching to IgG. We found increased numbers of IL-4-producing NK1.1+, CD4+ T cells in the secondary lymphoid organs of mice administered with NPAs, and these cells also expressed CD40L, which is required for B cell activation. Additionally, we isolated and purified NK1.1+, CD4+ T cells from spleens and determined that they over-expressed 40 genes, which are key players in inflammatory processes and B cell stimulation and have TRAF6 and UNC39B1 as key nodes in their network. These results show that liposomes are membrane models that can be used to analyze the immunogenicity of lipids.
Collapse
|
5
|
Kumar A, Suryadevara NC, Wolf KJ, Wilson JT, Di Paolo RJ, Brien JD, Joyce S. Heterotypic immunity against vaccinia virus in an HLA-B*07:02 transgenic mousepox infection model. Sci Rep 2020; 10:13167. [PMID: 32759969 PMCID: PMC7406653 DOI: 10.1038/s41598-020-69897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Vaccination with vaccinia virus (VACV) elicits heterotypic immunity to smallpox, monkeypox, and mousepox, the mechanistic basis for which is poorly understood. It is generally assumed that heterotypic immunity arises from the presentation of a wide array of VACV-derived, CD8+ T cell epitopes that share homology with other poxviruses. Herein this assumption was tested using a large panel of VACV-derived peptides presented by HLA-B*07:02 (B7.2) molecules in a mousepox/ectromelia virus (ECTV)-infection, B7.2 transgenic mouse model. Most dominant epitopes recognized by ECTV- and VACV-reactive CD8+ T cells overlapped significantly without altering immunodominance hierarchy. Further, several epitopes recognized by ECTV-reactive CD8+ T cells were not recognized by VACV-reactive CD8+ T cells, and vice versa. In one instance, the lack of recognition owed to a N72K variation in the ECTV C4R70-78 variant of the dominant VACV B8R70-78 epitope. C4R70-78 does not bind to B7.2 and, hence, it was neither immunogenic nor antigenic. These findings provide a mechanistic basis for VACV vaccination-induced heterotypic immunity which can protect against Variola and Monkeypox disease. The understanding of how cross-reactive responses develop is essential for the rational design of a subunit-based vaccine that would be safe, and effectively protect against heterologous infection.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Naveen Chandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Kyle J Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard J Di Paolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA.
| |
Collapse
|
6
|
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, Joyce S. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proc Natl Acad Sci U S A 2020; 117:17156-17165. [PMID: 32611812 PMCID: PMC7382224 DOI: 10.1073/pnas.2001665117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell
- Thymocytes
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Timothy M Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Chemistry and Life Science, US Military Academy, West Point, NY 10996
| | - Laura E Gordy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biology, Caltech, Pasadena, CA 91125
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
7
|
Abstract
NKT cells are a small but influential member of the T cell family, recognizing lipids presented by the non-classical MHC-like molecule CD1d rather than peptides presented by classical MHC molecules. They bridge between the innate and adaptive immune systems, serving as rapid responders but also allowing the T cell immune system to recognize lipid antigens, for example derived from tumors or bacteria. They also serve as potent regulatory cells, controlling other immune responses. Type I NKT cells use a semi-invariant T cell receptor (TCR) whereas type II use diverse TCRs. Most often, type I NKT cells promote tumor immunity whereas type II tend to suppress it, and the two subtypes crossregulate each other, forming an immunoregulatory axis. Lack of tools to study these important cells has limited the understanding of these, but newer tools have allowed great advances, especially in mouse models. These range from transgenic and knock-out mice to CD1d tetramers carrying ligands for type I or II NKT cells, to antibodies and NKT cell hybridomas. Here we describe these complementary tools and approaches and their use to study NKT cells and their role in the immunology and immunotherapy of cancer.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Purevdorj B Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Yang J, Kumar A, Vilgelm AE, Chen SC, Ayers GD, Novitskiy SV, Joyce S, Richmond A. Loss of CXCR4 in Myeloid Cells Enhances Antitumor Immunity and Reduces Melanoma Growth through NK Cell and FASL Mechanisms. Cancer Immunol Res 2018; 6:1186-1198. [PMID: 30108045 PMCID: PMC6170679 DOI: 10.1158/2326-6066.cir-18-0045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022]
Abstract
The chemokine receptor, CXCR4, is involved in cancer growth, invasion, and metastasis. Several promising CXCR4 antagonists have been shown to halt tumor metastasis in preclinical studies, and clinical trials evaluating the effectiveness of these agents in patients with cancer are ongoing. However, the impact of targeting CXCR4 specifically on immune cells is not clear. Here, we demonstrate that genetic deletion of CXCR4 in myeloid cells (CXCR4MyeΔ/Δ) enhances the antitumor immune response, resulting in significantly reduced melanoma tumor growth. Moreover, CXCR4MyeΔ/Δ mice exhibited slowed tumor progression compared with CXCR4WT mice in an inducible melanocyte BrafV600E/Pten -/- mouse model. The percentage of Fas ligand (FasL)-expressing myeloid cells was reduced in CXCR4MyeΔ/Δ mice as compared with myeloid cells from CXCR4WT mice. In contrast, there was an increased percentage of natural killer (NK) cells expressing FasL in tumors growing in CXCR4MyeΔ/Δ mice. NK cells from CXCR4MyeΔ/Δ mice also exhibited increased tumor cell killing capacity in vivo, based on clearance of NK-sensitive Yac-1 cells. NK cell-mediated killing of Yac-1 cells occurred in a FasL-dependent manner, which was partially dependent upon the presence of CXCR4MyeΔ/Δ neutrophils. Furthermore, enhanced NK cell activity in CXCR4MyeΔ/Δ mice was also associated with increased production of IL18 by specific leukocyte subpopulations. These data suggest that CXCR4-mediated signals from myeloid cells suppress NK cell-mediated tumor surveillance and thereby enhance tumor growth. Systemic delivery of a peptide antagonist of CXCR4 to tumor-bearing CXCR4WT mice resulted in enhanced NK-cell activation and reduced tumor growth, supporting potential clinical implications for CXCR4 antagonism in some cancers. Cancer Immunol Res; 6(10); 1186-98. ©2018 AACR.
Collapse
Affiliation(s)
- Jinming Yang
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee., Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Amrendra Kumar
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Anna E. Vilgelm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee,Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | | | - Sebastian Joyce
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front Immunol 2017; 8:1858. [PMID: 29312339 PMCID: PMC5743650 DOI: 10.3389/fimmu.2017.01858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Kumar A, Gordy LE, Bezbradica JS, Stanic AK, Hill TM, Boothby MR, Van Kaer L, Joyce S. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death. Sci Rep 2017; 7:15594. [PMID: 29142275 PMCID: PMC5688132 DOI: 10.1038/s41598-017-15461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-xL-coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Laura E Gordy
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Aleksandar K Stanic
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|