1
|
Bento LC, Bacal NS, Marti LC. Overview of the development, characterization, and function of human types 1, 2, and 3 innate lymphoid cells. EINSTEIN-SAO PAULO 2024; 22:eRW1042. [PMID: 39630753 PMCID: PMC11634355 DOI: 10.31744/einstein_journal/2024rw1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/31/2024] [Indexed: 12/07/2024] Open
Abstract
Hematopoiesis is characterized by the differentiation and maturation of multipotent stem cells into hematopoietic cells. Common lymphoid progenitor cells differentiate into B and T lymphocytes; natural killer cells can also originate from common lymphoid progenitors. In recent years, a cellular subtype of lymphocytes, called innate lymphocytes, has been described. Innate lymphoid cells (ILCs) play an important effector and regulatory role in innate immunity, and similar to natural killer cells, depend on the γc and Id2 chains for their development. These cells are divided into three main subtypes according to their characteristics, namely type 1 innate lymphocytes (ILC1), type 2 (ILC2), and type 3 (ILC3); the production of cytokines and transcription factors is essential for this classification. Furthermore, these cells have high plasticity, which allows them to change their phenotype in response to the environment. ILCs have recently been characterized further and emerged as a family of effectors and regulators of innate immune responses. Uncontrolled activation of these cells can contribute to inflammatory, autoimmune diseases and cancer. The current review aimed to describe their main characteristics, immunophenotypes, and plasticity, and based on the existing literature, suggested a phenotypic analysis to differentiate innate lymphocytes from natural killer cells, and across the subsets.
Collapse
Affiliation(s)
- Laiz Cameirão Bento
- Hospital Israelita Albert EinsteinClinical Pathology LaboratorySão PauloSPBrazilClinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Nydia Strachman Bacal
- Hospital Israelita Albert EinsteinClinical Pathology LaboratorySão PauloSPBrazilClinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Luciana Cavalheiro Marti
- Hospital Israelita Albert EinsteinExperimental Biology Laboratory Prof. Dr Geraldo Antonio de Medeiros NetoSão PauloSPBrazilExperimental Biology Laboratory Prof. Dr Geraldo Antonio de Medeiros Neto, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Kaleta B, Zielniok K, Roszczyk A, Turło J, Zagożdżon R. Selenopolysaccharide Isolated from Lentinula edodes Mycelium Affects Human T-Cell Function. Int J Mol Sci 2024; 25:11576. [PMID: 39519128 PMCID: PMC11546230 DOI: 10.3390/ijms252111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood mononuclear cells (PBMCs) and T cells were isolated from healthy donors' buffy coats. The effects of SeLe30 on CD25, CD366, and CD279 expression, the subsets of CD8+ T cells, and IFN-γ, IL-6, and TNF-α production were analyzed. SeLe30 downregulated CD25, CD279, and CD366 expression on T cells stimulated by the anti-CD3 antibody (Ab) and upregulated in unstimulated and anti-CD3/CD28-Abs-stimulated T cells. It increased the percentage of central memory CD8+ T cells in unstimulated PBMCs and naïve and central memory T cells in anti-CD3-Ab-stimulated PBMCs. SeLe30 decreased the number of central memory and naïve CD8+ T cells in anti-CD3/CD28-stimulated T cells, whereas, in PBMCs, it reduced the percentage of effector memory CD8+ T cells. Moreover, SeLe30 upregulated cytokine production. SeLe30 exhibits context-dependent effects on T cells. It acts on unstimulated T cells, affecting their activation while increasing the expression of immune checkpoints, which sensitizes them to inhibitory signals that can silence this activation. In the case of a lack of costimulation, SeLe30 exhibits an inhibitory effect, reducing T-cell activation. In cells stimulated by dual signals, its effect is further enhanced, again increasing the "safety brake" of CD366 and CD279. However, the final SeLe30 effect is mediated by its indirect impacts by altering interactions with other immune cells.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| |
Collapse
|
3
|
Bennstein SB, Uhrberg M. Circulating innate lymphoid cells (cILCs): Unconventional lymphocytes with hidden talents. J Allergy Clin Immunol 2024; 154:523-536. [PMID: 39046403 DOI: 10.1016/j.jaci.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Innate lymphoid cells (ILCs) are a group of lymphocytes that are devoid of antigen-specific receptors and are mainly found in tissues. The subtypes ILC1, 2, and 3 mirror T-cell functionality in terms of cytokine production and expression of key transcription factors. Although the majority of ILCs are found in tissue (tILCs), they have also been described within the circulation (cILCs). As a result of their better accessibility and putative prognostic value, human cILCs are getting more and more attention in clinical research. However, cILCs are in many aspects functionally distinct from their tILC counterparts. In fact, from the 3 ILC subsets found within the circulation, only for cILC2s could a clear functional correspondence to their tissue counterparts be established. Indeed, cILC2s are emerging as a major driver of allergic reactions with a particular role in asthma. In contrast, recent studies revealed that cILC1s and cILC3s are predominantly in an immature state and constitute progenitors for natural killer cells and ILCs, respectively. We provide an overview about the phenotype and function of the different cILC subtypes compared to tILCs in health and disease, including transcriptomic signatures, frequency dynamics, and potential clinical value. Furthermore, we will highlight the dynamics of the NKp44+ ILC3 subset, which emerges as prognostic marker in peripheral blood for inflammatory bowel disease and leukemia.
Collapse
Affiliation(s)
- Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Mathä L, Krabbendam L, Martinez Høyer S, Heesters BA, Golebski K, Kradolfer C, Ghaedi M, Ma J, Stadhouders R, Bachert C, Cardell LO, Zhang N, Holtappels G, Reitsma S, Helgers LC, Geijtenbeek TB, Coquet JM, Takei F, Spits H, Martinez-Gonzalez I. Human CD127 negative ILC2s show immunological memory. J Exp Med 2024; 221:e20231827. [PMID: 38889332 PMCID: PMC11187981 DOI: 10.1084/jem.20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
ILC2s are key players in type 2 immunity and contribute to maintaining homeostasis. ILC2s are also implicated in the development of type 2 inflammation-mediated chronic disorders like asthma. While memory ILC2s have been identified in mouse, it is unknown whether human ILC2s can acquire immunological memory. Here, we demonstrate the persistence of CD45RO, a marker previously linked to inflammatory ILC2s, in resting ILC2s that have undergone prior activation. A high proportion of these cells concurrently reduce the expression of the canonical ILC marker CD127 in a tissue-specific manner. Upon isolation and in vitro stimulation of CD127-CD45RO+ ILC2s, we observed an augmented ability to proliferate and produce cytokines. CD127-CD45RO+ ILC2s are found in both healthy and inflamed tissues and display a gene signature of cell activation. Similarly, mouse memory ILC2s show reduced expression of CD127. Our findings suggest that human ILC2s can acquire innate immune memory and warrant a revision of the current strategies to identify human ILC2s.
Collapse
Affiliation(s)
- Laura Mathä
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
| | - Lisette Krabbendam
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | | | - Balthasar A. Heesters
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Chantal Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Maryam Ghaedi
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Junjie Ma
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | - Claus Bachert
- Department of Oto-Rhino-Laryngology, Münster University, Münster, Germany
- Sun Yat-sen University, The First Affiliated Hospital, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- ENT-Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Nan Zhang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Sietze Reitsma
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Leanne Carijn Helgers
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan M. Coquet
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Willinger T. Single-cell RNA sequencing of human lung innate lymphoid cells in the vascular and tissue niche reveals molecular features of tissue adaptation. DISCOVERY IMMUNOLOGY 2023; 2:kyad007. [PMID: 38650756 PMCID: PMC11034571 DOI: 10.1093/discim/kyad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 04/25/2024]
Abstract
Innate lymphoid cells (ILCs) are sentinels of healthy organ function, yet it is unknown how ILCs adapt to distinct anatomical niches within tissues. Here, we used a unique humanized mouse model, MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs), to define the gene signatures of human ILCs in the vascular versus the tissue (extravascular) compartment of the lung. Single-cell RNA sequencing in combination with intravascular cell labeling demonstrated that heterogeneous populations of human ILCs and natural killer (NK) cells occupied the vascular and tissue niches in the lung of HSPC-engrafted MISTRG mice. Moreover, we discovered that niche-specific cues shape the molecular programs of human ILCs in the distinct sub-anatomical compartments of the lung. Specifically, extravasation of ILCs into the lung tissue was associated with the upregulation of genes involved in the acquisition of tissue residency, cell positioning within the lung, sensing of tissue-derived signals, cellular stress responses, nutrient uptake, and interaction with other tissue-resident immune cells. We also defined a core tissue signature shared between human ILCs and NK cells in the extravascular space of the lung, consistent with imprinting by signals from the local microenvironment. The molecular characterization of human ILCs and NK cells in the vascular and tissue niches of the lung provides new knowledge on the mechanisms of ILC tissue adaptation and represents a resource for further studies.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Tamadaho RSE, Osei-Mensah J, Arndts K, Debrah LB, Debrah AY, Layland LE, Hoerauf A, Pfarr K, Ritter M. Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals. Pathogens 2023; 12:pathogens12050665. [PMID: 37242335 DOI: 10.3390/pathogens12050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Approximately 51 million individuals suffer from lymphatic filariasis (LF) caused mainly by the filarial worm Wuchereria bancrofti. Mass drug administration (MDA) programs led to a significant reduction in the number of infected individuals, but the consequences of the treatment and clearance of infection in regard to host immunity remain uncertain. Thus, this study investigates the composition of myeloid-derived suppressor cells (MDSCs), macrophage subsets and innate lymphoid cells (ILCs), in patent (circulating filarial antigen (CFA)+ microfilariae (MF)+) and latent (CFA+MF-) W. bancrofti-infected individuals, previously W. bancrofti-infected (PI) individuals cured of the infection due to MDA, uninfected controls (endemic normal (EN)) and individuals who suffer from lymphoedema (LE) from the Western Region of Ghana. Frequencies of ILC2 were significantly reduced in W. bancrofti-infected individuals, while the frequencies of MDSCs, M2 macrophages, ILC1 and ILC3 were comparable between the cohorts. Importantly, clearance of infection due to MDA restored the ILC2 frequencies, suggesting that ILC2 subsets might migrate to the site of infection within the lymphatic tissue. In general, the immune cell composition in individuals who cured the infection were comparable to the uninfected individuals, showing that filarial-driven changes of the immune responses require an active infection and are not maintained upon the clearance of the infection.
Collapse
Affiliation(s)
- Ruth S E Tamadaho
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
| | - Jubin Osei-Mensah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), UPO, PMB, Kumasi 00233, Ghana
- Department of Pathobiology, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, UPO, PMB, Kumasi 00233, Ghana
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), UPO, PMB, Kumasi 00233, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, UPO, PMB, Kumasi 00233, Ghana
| | - Alexander Y Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, UPO, PMB, Kumasi 00233, Ghana
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
7
|
van Lier YF, Krabbendam L, Haverkate NJE, Zeerleder SS, Rutten CE, Blom B, Spits H, Hazenberg MD. GATA2 haploinsufficient patients lack innate lymphoid cells that arise after hematopoietic cell transplantation. Front Immunol 2022; 13:1020590. [PMID: 36268026 PMCID: PMC9577555 DOI: 10.3389/fimmu.2022.1020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Innate lymphoid cells (ILC) are important barrier tissue immune regulators. They play a pivotal role in early non-specific protection against infiltrating pathogens, regulation of epithelial integrity, suppression of pro-inflammatory immune responses and shaping the intestinal microbiota. GATA2 haploinsufficiency causes an immune disorder that is characterized by bone marrow failure and (near) absence of monocytes, dendritic cells, B cells and natural killer (NK) cells. T cells develop normally, albeit at lower numbers. Here, we describe the absence of ILCs and their progenitors in blood and bone marrow of two patients with GATA2 haploinsufficiency and show that all subsets of ILCs appear after allogeneic hematopoietic stem cell transplantation, irrespective of the preparative conditioning regimen. Our data indicate that GATA2 is involved in the development of hematopoietic precursor cells (HPC) towards the ILC lineage.
Collapse
Affiliation(s)
- Y. F. van Lier
- Department of Hematology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
| | - L. Krabbendam
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
| | - N. J. E. Haverkate
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
| | - S. S. Zeerleder
- Department of Hematology, Luzerner Kantonsspital, and University of Bern, Lucerne, Switzerland
| | - C. E. Rutten
- Department of Hematology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - B. Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
| | - H. Spits
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
| | - M. D. Hazenberg
- Department of Hematology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute (AII), Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC) location Academic Medical Center (AMC), Amsterdam, Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
- *Correspondence: M. D. Hazenberg,
| |
Collapse
|
8
|
Cristiani CM, Capone M, Garofalo C, Madonna G, Mallardo D, Tuffanelli M, Vanella V, Greco M, Foti DP, Viglietto G, Ascierto PA, Spits H, Carbone E. Altered Frequencies and Functions of Innate Lymphoid Cells in Melanoma Patients Are Modulated by Immune Checkpoints Inhibitors. Front Immunol 2022; 13:811131. [PMID: 35173725 PMCID: PMC8841353 DOI: 10.3389/fimmu.2022.811131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
Monoclonal antibodies targeting immune checkpoints improved clinical outcome of patients with malignant melanoma. However, the mechanisms are not fully elucidated. Since immune check-point receptors are also expressed by helper innate lymphoid cells (ILCs), we investigated the capability of immune checkpoints inhibitors to modulate ILCs in metastatic melanoma patients as well as melanoma cells effects on ILC functions. Here, we demonstrated that, compared to healthy donors, patients showed a higher frequency of total peripheral ILCs, lower percentages of CD117+ ILC2s and CD117+ ILCs as well as higher frequencies of CD117- ILCs. Functionally, melanoma patients also displayed an impaired TNFα secretion by CD117- ILCs and CD117+ ILCs. Nivolumab therapy reduced the frequency of total peripheral ILCs but increased the percentage of CD117- ILC2s and enhanced the capability of ILC2s and CD117+ ILCs to secrete IL-13 and TNFα, respectively. Before Nivolumab therapy, high CCL2 serum levels were associated with longer Overall Survival and Progression Free Survival. After two months of treatment, CD117- ILC2s frequency as well as serum concentrations of IL-6, CXCL8 and VEGF negatively correlated with both the parameters. Moreover, melanoma cells boosted TNFα production in all ILC subsets and increased the number of IL-13 producing ILC2s in vitro. Our work shows for the first time that PD-1 blockade is able to affect ILCs proportions and functions in melanoma patients and that a specific subpopulation is associated with the therapy response.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- *Correspondence: Costanza Maria Cristiani, ; Paolo Antonio Ascierto,
| | - Mariaelena Capone
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Vito Vanella
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Marta Greco
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
- *Correspondence: Costanza Maria Cristiani, ; Paolo Antonio Ascierto,
| | - Hergen Spits
- Department of Experimental Immunology, University Medical Centres (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
9
|
Alisjahbana A, Gao Y, Sleiers N, Evren E, Brownlie D, von Kries A, Jorns C, Marquardt N, Michaëlsson J, Willinger T. CD5 Surface Expression Marks Intravascular Human Innate Lymphoid Cells That Have a Distinct Ontogeny and Migrate to the Lung. Front Immunol 2021; 12:752104. [PMID: 34867984 PMCID: PMC8640955 DOI: 10.3389/fimmu.2021.752104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) contribute to immune defense, yet it is poorly understood how ILCs develop and are strategically positioned in the lung. This applies especially to human ILCs due to the difficulty of studying them in vivo. Here we investigated the ontogeny and migration of human ILCs in vivo with a humanized mouse model (“MISTRG”) expressing human cytokines. In addition to known tissue-resident ILC subsets, we discovered CD5-expressing ILCs that predominantly resided within the lung vasculature and in the circulation. CD5+ ILCs contained IFNγ-producing mature ILC1s as well as immature ILCs that produced ILC effector cytokines under polarizing conditions in vitro. CD5+ ILCs had a distinct ontogeny compared to conventional CD5- ILCs because they first appeared in the thymus, spleen and liver rather than in the bone marrow after transplantation of MISTRG mice with human CD34+ hematopoietic stem and progenitor cells. Due to their strategic location, human CD5+ ILCs could serve as blood-borne sentinels, ready to be recruited into the lung to respond to environmental challenges. This work emphasizes the uniqueness of human CD5+ ILCs in terms of their anatomical localization and developmental origin compared to well-studied CD5- ILCs.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas von Kries
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Krabbendam L, Heesters BA, Kradolfer CMA, Haverkate NJE, Becker MAJ, Buskens CJ, Bemelman WA, Bernink JH, Spits H. CD127+ CD94+ innate lymphoid cells expressing granulysin and perforin are expanded in patients with Crohn's disease. Nat Commun 2021; 12:5841. [PMID: 34615883 PMCID: PMC8494908 DOI: 10.1038/s41467-021-26187-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Phenotypic definition of helper ILC1 and NK cells is problematic due to overlapping markers. Recently we showed the identification of cytotoxic ILC3s characterized by expression of CD94. Here we analyse CD127+ ILCs and NK cells in intestinal lamina propria from healthy donors and Crohn's disease patients and identify two populations of CD127+CD94+ ILCs, designated population A and B, that can be distinguished on the expression of CD117, CD18 and cytotoxic molecules. Population B expresses granulysin, a cytotoxic molecule linked to bacterial lysis and/or chemotaxis of monocytes. Granulysin protein is secreted by population B cells upon stimulation with IL-15. Activation of population B in the presence of TGF-β strongly reduces the expression of cytotoxic effector molecules of population B. Strikingly, samples from individuals that suffer from active Crohn's disease display enhanced frequencies of granulysin-expressing effector CD127+CD94+ ILCs in comparison to controls. Thus this study identifies group 1 ILC populations which accumulate in inflamed intestinal tissue of Crohn's disease patients and may play a role in the pathology of the disease.
Collapse
Affiliation(s)
- L Krabbendam
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - B A Heesters
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - C M A Kradolfer
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - N J E Haverkate
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A J Becker
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C J Buskens
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - W A Bemelman
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - J H Bernink
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584, CT, Utrecht, The Netherlands
| | - H Spits
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Huang JCC, Schleisman M, Choi D, Mitchell C, Watson L, Asquith M, Rosenbaum JT. Preliminary Report on Interleukin-22, GM-CSF, and IL-17F in the Pathogenesis of Acute Anterior Uveitis. Ocul Immunol Inflamm 2021; 29:558-565. [PMID: 31763950 PMCID: PMC7246145 DOI: 10.1080/09273948.2019.1686156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023]
Abstract
Purpose:Anterior uveitis is the most common anatomic subset of uveitis. We developed a novel multi-parametric flow cytometry panel to identify immune dysregulation signatures in HLA B27-associated acute anterior uveitis (AAU) and axial spondyloarthritis (AxSpA).Methods: We used fluorescence activated cell sorting to characterize T cell cytokine expression in stimulated T cell subsets from patients with AAU (n = 4) compared to healthy controls (n = 14) or subjects with AxSpA (n = 6).Results: Positive findings among subjects with AAU included a statistically significant increase in stimulated granulocyte-macrophage colony stimulating factor (GM-CSF), IL-17, and IL-22 synthesized by CD8 cells, a trend for stimulated ILC (innate lymphoid cells)-3 cells to synthesize more IL-22 (p = .07), and stimulated MAIT (mucosa associated innate lymphoid cells)-like cells that express the T cell receptor V alpha 7.2 to express IL-17A, IL-17F, and IL-22 in a greater percentage of cells relative to controls. IL-17F, GM- CSF, and IL-22 represent potentially novel targets in AAU.Conclusion: Our report is arguably the first to implicate IL-17F or ILC-3 and MAIT cells in the pathogenesis of AAU.Abbreviations AAU: acute anterior uveitis; AxSpA: axial spondyloarthritis; BASDAI: Bath ankylosing spondylitis disease activity index; CCR: chemokine receptor; DMSO: dimethylsulfoxide; EULAR:European League Against Rheumatism; FACS: fluorescence activated cell sorter; FBS: fetal bovine serum; FSC: orward light scatter; GM-CSF: granulocyte-macrophage colony stimulating factor; HC: healthy control; ILC: innate lymphoid cell; KIR: killer immunoglobulin receptor; MAIT: mucosal associated immune T cell; ND: not detected; NK: natural killer cell; OHSU-Oregon Health & Science University; PBMC: peripheral blood mononuclear cell; SSC: side light scatter; TCR: T cell receptor.
Collapse
Affiliation(s)
- Jerry Chien-Chieh Huang
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan 2. Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | | | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University and Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Claire Mitchell
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
| | - Lindsey Watson
- Department of Ophthalmology, Oregon Health & Science University (OHSU)
| | - Mark Asquith
- Department of Medicine, OHSU (Dr. Asquith is deceased)
| | - James T. Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, OHSU
- Legacy Devers Eye Institute, Portland, Oregon
| |
Collapse
|
13
|
Wu J, Cheng H, Wang H, Zang G, Qi L, Lv X, Liu C, Zhu S, Zhang M, Cui J, Ueno H, Liu YJ, Suo J, Chen J. Correlation Between Immune Lymphoid Cells and Plasmacytoid Dendritic Cells in Human Colon Cancer. Front Immunol 2021; 12:601611. [PMID: 33708200 PMCID: PMC7940519 DOI: 10.3389/fimmu.2021.601611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Innate lymphoid cells (ILCs), so far studied mostly in mouse models, are important tissue-resident innate immune cells that play important roles in the colorectal cancer microenvironment and maintain mucosal tissue homeostasis. Plasmacytoid dendritic cells (pDCs) present complexity in various tumor types and are correlated with poor prognosis. pDCs can promote HIV-1-induced group 3 ILC (ILC3) depletion through the CD95 pathway. However, the role of ILC3s in human colon cancer and their correlation with other immune cells, especially pDCs, remain unclear. Methods We characterized ILCs and pDCs in the tumor microenvironment of 58 colon cancer patients by flow cytometry and selected three patients for RNA sequencing. Results ILC3s were negatively correlated, and pDCs were positively correlated, with cancer pathological stage. There was a negative correlation between the numbers of ILC3s and pDCs in tumor tissues. RNA sequencing confirmed the correlations between ILC3s and pDCs and highlighted the potential function of many ILC- and pDC-associated differentially expressed genes in the regulation of tumor immunity. pDCs can induce apoptosis of ILC3s through the CD95 pathway in the tumor-like microenvironment. Conclusions One of the interactions between ILC3s and pDCs is via the CD95 pathway, which may help explain the role of ILC3s in colon cancer.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Hang Cheng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Pediatrics, The First Hospital, Jilin University, Changchun, China
| | - Helei Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Stomach Colorectal Anal Surgery, The First Hospital, Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Lingli Qi
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Pediatric Gastroenterology, The First Hospital, Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Chunyan Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Gynecology, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Mingyou Zhang
- Department of Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yong-Jun Liu
- Department of Research and Development of Sanofi, Cambridge, MA, United States
| | - Jian Suo
- Department of Stomach Colorectal Anal Surgery, The First Hospital, Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
van der Ploeg EK, Golebski K, van Nimwegen M, Fergusson JR, Heesters BA, Martinez-Gonzalez I, Kradolfer CMA, van Tol S, Scicluna BP, de Bruijn MJW, de Boer GM, Tramper-Stranders GA, Braunstahl GJ, van IJcken WFJ, Nagtegaal AP, van Drunen CM, Fokkens WJ, Huylebroeck D, Spits H, Hendriks RW, Stadhouders R, Bal SM. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol 2021; 6:6/55/eabd3489. [PMID: 33514640 DOI: 10.1126/sciimmunol.abd3489] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Joannah R Fergusson
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands.,Department of Neonatology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Center for Biomics, Erasmus MC, Rotterdam, Netherlands
| | - A Paul Nagtegaal
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands. .,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Suzanne M Bal
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Krabbendam L, Heesters BA, Kradolfer CMA, Spits H, Bernink JH. Identification of human cytotoxic ILC3s. Eur J Immunol 2021; 51:811-823. [PMID: 33300130 PMCID: PMC8248192 DOI: 10.1002/eji.202048696] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Human ILCs are classically categorized into five subsets; cytotoxic CD127−CD94+ NK cells and non‐cytotoxic CD127+CD94−, ILC1s, ILC2s, ILC3s, and LTi cells. Here, we identify a previously unrecognized subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs resemble conventional ILC3s in terms of phenotype, transcriptome, and cytokine production, but are highly cytotoxic. IL‐15 was unable to induce differentiation of CD94+ ILCs toward mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R1 expression and produced IL‐22 in response to IL‐15. Culturing non‐cytotoxic ILC3s with IL‐12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL‐15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.
Collapse
Affiliation(s)
- Lisette Krabbendam
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Balthasar A Heesters
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Chantal M A Kradolfer
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bennstein SB, Weinhold S, Manser AR, Scherenschlich N, Noll A, Raba K, Kögler G, Walter L, Uhrberg M. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR +NKG2A - NK cells. eLife 2020; 9:55232. [PMID: 32657756 PMCID: PMC7358013 DOI: 10.7554/elife.55232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Despite their identification several years ago, molecular identity and developmental relation between human ILC1 and NK cells, comprising group 1 ILCs, is still elusive. To unravel their connection, thorough transcriptional, epigenetic, and functional characterization was performed from umbilical cord blood (CB). Unexpectedly, ILC1-like cells lacked Tbet expression and failed to produce IFNγ. Moreover, in contrast to previously described ILC1 subsets they could be efficiently differentiated into NK cells. These were characterized by highly diversified KIR repertoires including late stage NKG2A-KIR+ effector cells that are commonly not generated from previously known NK cell progenitor sources. This property was dependent on stroma cell-derived Notch ligands. The frequency of the novel ILC1-like NK cell progenitor (NKP) significantly declined in CB from early to late gestational age. The study supports a model in which circulating fetal ILC1-like NKPs travel to secondary lymphoid tissues to initiate the formation of diversified NK cell repertoires after birth.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Riccarda Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nadine Scherenschlich
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibnitz-Institute for Primate Research, Göttingen, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibnitz-Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Mack MR, Brestoff JR, Berrien-Elliott MM, Trier AM, Yang TLB, McCullen M, Collins PL, Niu H, Bodet ND, Wagner JA, Park E, Xu AZ, Wang F, Chibnall R, Council ML, Heffington C, Kreisel F, Margolis DJ, Sheinbein D, Lovato P, Vivier E, Cella M, Colonna M, Yokoyama WM, Oltz EM, Fehniger TA, Kim BS. Blood natural killer cell deficiency reveals an immunotherapy strategy for atopic dermatitis. Sci Transl Med 2020; 12:eaay1005. [PMID: 32102931 PMCID: PMC7433875 DOI: 10.1126/scitranslmed.aay1005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is a widespread, chronic skin disease associated with aberrant allergic inflammation. Current treatments involve either broad or targeted immunosuppression strategies. However, enhancing the immune system to control disease remains untested. We demonstrate that patients with AD harbor a blood natural killer (NK) cell deficiency that both has diagnostic value and improves with therapy. Multidimensional protein and RNA profiling revealed subset-level changes associated with enhanced NK cell death. Murine NK cell deficiency was associated with enhanced type 2 inflammation in the skin, suggesting that NK cells play a critical immunoregulatory role in this context. On the basis of these findings, we used an NK cell-boosting interleukin-15 (IL-15) superagonist and observed marked improvement in AD-like disease in mice. These findings reveal a previously unrecognized application of IL-15 superagonism, currently in development for cancer immunotherapy, as an immunotherapeutic strategy for AD.
Collapse
Affiliation(s)
- Madison R Mack
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna M Trier
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting-Lin B Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew McCullen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haixia Niu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nancy D Bodet
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Z Xu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fang Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Chibnall
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M Laurin Council
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Friederike Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Margolis
- Department of Dermatology and Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Sheinbein
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paola Lovato
- Skin Research, LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | - Eric Vivier
- Aix Marseille University, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University, Wexner School of Medicine, Columbus, OH 43210, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Innate lymphoid cells in asthma: pathophysiological insights from murine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 2019; 19:53-60. [PMID: 30516548 DOI: 10.1097/aci.0000000000000497] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The current review describes the role of different types of innate lymphoid cells (ILCs) in the pathogenesis of asthma inflammatory phenotypes by linking findings from murine asthma models with human studies. Novel treatment options are needed for patients with steroid-insensitive asthma. Strategies targeting ILCs, or their upstream or downstream molecules are emerging and discussed in this review. RECENT FINDINGS In eosinophilic asthma, ILCs, and especially type 2 ILCs (ILC2s), are activated by alarmins such as IL-33 upon allergen triggering of the airway epithelium. This initiates IL-5 and IL-13 production by ILC2, resulting in eosinophilic inflammation and airway hyperreactivity. Type 3 ILCs (ILC3s) have been shown to be implicated in obesity-induced asthma, via IL-1β production by macrophages, leading ILC3 and release of IL-17. ILC1s might play a role in severe asthma, but its role is currently less investigated. SUMMARY Several studies have revealed that ILC2s play a role in the induction of eosinophilic inflammation in allergic and nonallergic asthmatic patients mainly via IL-5, IL-13, IL-33 and thymic stromal lymphopoietin. Knowledge on the role of ILC3s and ILC1s in asthmatic patients is lagging behind. Further studies are needed to support the hypothesis that these other types of ILCs contribute to asthma pathogenesis, presumably in nonallergic asthma phenotypes.
Collapse
|
19
|
Mazzurana L, Forkel M, Rao A, Van Acker A, Kokkinou E, Ichiya T, Almer S, Höög C, Friberg D, Mjösberg J. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3-ILC1/NK cell transdifferentiation. Eur J Immunol 2019; 49:1344-1355. [PMID: 31151137 DOI: 10.1002/eji.201848075] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/18/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
The Ikaros family of transcription factors (TFs) are important regulators of lymphocyte function. However, their roles in human innate lymphoid cell (ILC) function remain unclear. Here, we found that Ikaros (IKZF1) is expressed by all ILC subsets, including NK cells, in blood, tonsil, and gut, while Helios (IKZF2) is preferentially expressed by ILC3 in tonsil and gut. Aiolos (IKZF3) followed the expression pattern of T-bet and Eomes, being predominantly expressed by ILC1 and NK cells. Differentiation of IFN-γ-producing ILC1 and NK cells from ILC3 by IL-1β plus IL-12-stimulation was associated with upregulation of T-bet and Aiolos. Selective degradation of Aiolos and Ikaros by lenalidomide suppressed ILC1 and NK cell differentiation and expression of ILC1 and NK cell-related transcripts (LEF1, PRF1, GRZB, CD244, NCR3, and IRF8). In line with reduced ILC1/NK cell differentiation, we observed an increase in the expression of the ILC3-related TF Helios, as well as ILC3 transcripts (TNFSF13B, IL22, NRP1, and RORC) and in the frequency of IL-22 producing ILC3 in cultures with IL-1β and IL-23. These data suggest that suppression of Aiolos and Ikaros expression inhibits ILC1 and NK cell differentiation while ILC3 function is maintained. Hence, our results open up for new possibilities in targeting Ikaros family TFs for modulation of type 1/3 immunity in inflammation and cancer.
Collapse
Affiliation(s)
- Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Forkel
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tamaki Ichiya
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, and IBD-Center, Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Höög
- Department of Medicine Solna, Karolinska Institutet and GHP Stockholm Gastro Center, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
20
|
Nagasawa M, Heesters BA, Kradolfer CMA, Krabbendam L, Martinez-Gonzalez I, de Bruijn MJW, Golebski K, Hendriks RW, Stadhouders R, Spits H, Bal SM. KLRG1 and NKp46 discriminate subpopulations of human CD117 +CRTH2 - ILCs biased toward ILC2 or ILC3. J Exp Med 2019; 216:1762-1776. [PMID: 31201208 PMCID: PMC6683990 DOI: 10.1084/jem.20190490] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
Recently, human ILCs that express CD117 and CD127 but lack CRTH2 and NKp44 have been shown to contain precursors of ILC1, ILC2, and ILC3. However, these ILCs have not been extensively characterized. We performed an unbiased hierarchical stochastic neighbor embedding (HSNE) analysis of the phenotype of peripheral blood CD117+ ILCs, which revealed the presence of three major subsets: the first expressed NKp46, the second expressed both NKp46 and CD56, and the third expressed KLRG1, but not NKp46 or CD56. Analysis of their cytokine production profiles and transcriptome revealed that NKp46+ ILCs predominantly develop into ILC3s; some of them can differentiate into ILC1/NK-like cells, but they are unable to develop into ILC2s. In contrast, KLRG1+ ILCs predominantly differentiate into ILC2s. Single-cell cultures demonstrate that KLRG1+ ILCs can also differentiate into other ILC subsets depending on the signals they receive. Epigenetic profiling of KLRG1+ ILCs is consistent with the broad differentiation potential of these cells.
Collapse
Affiliation(s)
- Maho Nagasawa
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Lisette Krabbendam
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Itziar Martinez-Gonzalez
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | | | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands .,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Suzanne M Bal
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands .,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Wagner M, Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. Trends Immunol 2019; 40:415-430. [PMID: 30992189 DOI: 10.1016/j.it.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
The immune system plays a dual role in cancer. It conveys protective immunity but also facilitates malignant progression, either by sculpting tumor immunogenicity or by creating a microenvironment that can stimulate tumor outgrowth or aid in a subsequent metastatic cascade. Innate lymphoid cells (ILCs) embody this functional heterogeneity, although the nature of their responses in cancer has only recently begun to be unveiled. We provide an overview of recent insights into the role of ILCs in cancer. We also discuss how ILCs fit into the conceptual framework of cancer immunoediting, which integrates the dual role of the immune system in carcinogenesis. A broader understanding of their relevance in cancer is essential towards the design of successful therapeutic strategies.
Collapse
Affiliation(s)
- Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Bianca Bennstein S, Riccarda Manser A, Weinhold S, Scherenschlich N, Uhrberg M. OMIP‐055: Characterization of Human Innate Lymphoid Cells from Neonatal and Peripheral Blood. Cytometry A 2019; 95:427-430. [DOI: 10.1002/cyto.a.23741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine University Düsseldorf Moorenstraße 5 40225, Düsseldorf Germany
| | - Angela Riccarda Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine University Düsseldorf Moorenstraße 5 40225, Düsseldorf Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine University Düsseldorf Moorenstraße 5 40225, Düsseldorf Germany
| | - Nadine Scherenschlich
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine University Düsseldorf Moorenstraße 5 40225, Düsseldorf Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine University Düsseldorf Moorenstraße 5 40225, Düsseldorf Germany
| |
Collapse
|