1
|
Jasinska W, Birenzweig Y, Sharav Y, Aframian DJ, Rettman A, Hanut A, Brotman Y, Haviv Y. Salivary Metabolomics as a Diagnostic Tool: Distinct Metabolic Profiles Across Orofacial Pain Subtypes. Int J Mol Sci 2025; 26:2260. [PMID: 40076882 PMCID: PMC11900362 DOI: 10.3390/ijms26052260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Orofacial pain (OFP) includes chronic pain conditions categorized into musculoskeletal (MS), neurovascular (NV), and neuropathic (NP) pain types, encompassing temporomandibular disorders (TMD), migraines, trigeminal neuralgia (TN), post-traumatic neuropathies, and burning mouth syndrome (BMS). These conditions significantly affect quality of life; yet, their underlying metabolic disruptions remain inadequately explored. Salivary metabolomics provides a non-invasive method to investigate biochemical alterations associated with OFP subtypes. This study aimed to identify pain-specific salivary metabolites across chronic OFP types and examine their correlations with clinical characteristics. Saliva samples from 63 OFP patients (TMD, migraines, TN, post-traumatic neuropathies, BMS) and 37 pain-free controls were analyzed using liquid chromatography-mass spectrometry (LC-MS) targeting 28 metabolites linked to pain. Statistical analyses determined significant metabolite changes and associations with pain subtypes and patient characteristics. Among the 28 analyzed metabolites, 18 showed significant differences between OFP patients and controls. Key amino acids, including DL-glutamic acid, DL-aspartic acid, DL-citrulline, spermidine, and DL-ornithine, were significantly elevated in MS, NV, and NP pain types compared to controls. Additionally, DL-glutamine, DL-valine, and DL-phenylalanine were distinctively elevated in TMD and migraine patients. BMS displayed fewer alterations, with significantly lower levels of DL-proline, DL-tryptophan, DL-glutamic acid, DL-asparagine, and DL-aspartic acid compared to other pain types but elevated spermidine levels relative to controls. Salivary metabolomics revealed distinct metabolic alterations in OFP subtypes, providing insights into potential biomarkers for diagnosis and monitoring. These findings offer a foundation for personalized approaches in OFP management, although further research is required to validate and expand these results.
Collapse
Affiliation(s)
- Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Yonatan Birenzweig
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| | - Yair Sharav
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| | - Doron J. Aframian
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| | - Andra Rettman
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| | - Aiham Hanut
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| | - Yariv Brotman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Yaron Haviv
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (Y.B.); (D.J.A.); (A.R.); (A.H.); (Y.H.)
| |
Collapse
|
2
|
Chen S, Li X, Shi D, Xu Y, Lu Y, Tu P. Identification strategy of wild and cultivated Astragali Radix based on REIMS combined with two-dimensional LC-MS. NPJ Sci Food 2024; 8:91. [PMID: 39516475 PMCID: PMC11549423 DOI: 10.1038/s41538-024-00333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A rapid and real-time method was established based on the combination of rapid evaporative ionization mass spectrometry (REIMS) and two-dimensional liquid chromatography mass spectrometry (2DLC-MS) for identification of wild Astragali Radix (WAR) and cultivated AR (CAR). The samples were analyzed under ambient ionization without time-consuming sample preparation. The phenotypic data of WAR and CAR were used to develop a real-time recognition model. Subsequently, the compounds in these two species were comprehensively characterized based on 2DLC-MS, and 45 different compounds were screened out by multivariate statistical analysis. A semi-quantitative method for 45 different compounds was established based on ultrahigh-performance liquid chromatography/quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). The results showed that the relative content of most compounds in WAR was higher than in CAR. In summary, the method has demonstrated remarkable performance in distinguishing between WAR and CAR, providing a reference in the field of traditional Chinese medicine (TCM) analysis and identification.
Collapse
Affiliation(s)
- Sijian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Danshu Shi
- Shimadzu (China) Co., Ltd., Beijing Branch, Beijing, China
| | - Yisheng Xu
- Waters Technology(Beijing) Co., Ltd., Beijing, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Nicolas P, Pattison RJ, Zheng Y, Lapidot-Cohen T, Brotman Y, Osorio S, Fernie AR, Fei Z, Catalá C. Starch deficiency in tomato causes transcriptional reprogramming that modulates fruit development, metabolism, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6331-6348. [PMID: 37279327 DOI: 10.1093/jxb/erad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Tomato (Solanum lycopersicum) fruit store carbon as starch during early development and mobilize it at the onset of ripening. Starch accumulation has been suggested to buffer fluctuations in carbon supply to the fruit under abiotic stress, and contribute to sugar levels in ripe fruit. However, the role of starch accumulation and metabolism during fruit development is still unclear. Here we show that the tomato mutant adpressa (adp) harbors a mutation in a gene encoding the small subunit of ADP-glucose pyrophosphorylase that abolishes starch synthesis. The disruption of starch biosynthesis causes major transcriptional and metabolic remodeling in adp fruit but only minor effects on fruit size and ripening. Changes in gene expression and metabolite profiles indicate that the lack of carbon flow into starch increases levels of soluble sugars during fruit growth, triggers a readjustment of central carbohydrate and lipid metabolism, and activates growth and stress protection pathways. Accordingly, adp fruits are remarkably resistant to blossom-end rot, a common physiological disorder induced by environmental stress. Our results provide insights into the effects of perturbations of carbohydrate metabolism on tomato fruit development, with potential implications for the enhancement of protective mechanisms against abiotic stress in fleshy fruit.
Collapse
Affiliation(s)
| | | | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Carmen Catalá
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Chen Z, Jasinska W, Ashraf M, Rosental L, Hong J, Zhang D, Brotman Y, Shi J. Lipidomic insights into the response of Arabidopsis sepals to mild heat stress. ABIOTECH 2023; 4:224-237. [PMID: 37970465 PMCID: PMC10638258 DOI: 10.1007/s42994-023-00103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 11/17/2023]
Abstract
Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00103-x.
Collapse
Affiliation(s)
- Zican Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Muhammad Ashraf
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jung Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
6
|
Hong J, Rosental L, Xu Y, Xu D, Orf I, Wang W, Hu Z, Su S, Bai S, Ashraf M, Hu C, Zhang C, Li Z, Xu J, Liu Q, Zhang H, Zhang F, Luo Z, Chen M, Chen X, Betts N, Fernie A, Liang W, Chen G, Brotman Y, Zhang D, Shi J. Genetic architecture of seed glycerolipids in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1278-1294. [PMID: 35698268 DOI: 10.1111/pce.14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Glycerolipids are essential for rice development and grain quality but its genetic regulation remains unknown. Here we report its genetic base using metabolite-based genome-wide association study and metabolite-based quantitative traits locus (QTL) analyses based on lipidomic profiles of seeds from 587 Asian cultivated rice accessions and 103 chromosomal segment substitution lines, respectively. We found that two genes encoding phosphatidylcholine (PC):diacylglycerol cholinephosphotransferase (OsLP1) and granule-bound starch synthase I (Waxy) contribute to variations in saturated triacylglycerol (TAG) and lyso-PC contents, respectively. We demonstrated that allelic variation in OsLP1 sequence between indica and japonica results in different enzymatic preference for substrate PC-16:0/16:0 and different saturated TAG levels. Further evidence demonstrated that OsLP1 also affects heading date, and that co-selection of OsLP1 and a flooding-tolerant QTL in Aus results in the abundance of saturated TAGs associated with flooding tolerance. Moreover, we revealed that the sequence polymorphisms in Waxy has pleiotropic effects on lyso-PC and amylose content. We proposed that rice seed glycerolipids have been unintentionally shaped during natural and artificial selection for adaptive or import seed quality traits. Collectively, our findings provide valuable genetic resources for rice improvement and evolutionary insights into seed glycerolipid variations in rice.
Collapse
Affiliation(s)
- Jun Hong
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Dawei Xu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Wengsheng Wang
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mohammed Ashraf
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoyang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Changquan Zhang
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Zhikang Li
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoquan Liu
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Zhang
- Department of Plant Science, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengli Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alisdair Fernie
- Department of Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wanqi Liang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Smirnov D, Eremenko E, Stein D, Kaluski S, Jasinska W, Cosentino C, Martinez-Pastor B, Brotman Y, Mostoslavsky R, Khrameeva E, Toiber D. SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death Dis 2023; 14:35. [PMID: 36653345 PMCID: PMC9849342 DOI: 10.1038/s41419-022-05542-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
The SIRT6 deacetylase has been implicated in DNA repair, telomere maintenance, glucose and lipid metabolism and, importantly, it has critical roles in the brain ranging from its development to neurodegeneration. Here, we combined transcriptomics and metabolomics approaches to characterize the functions of SIRT6 in mouse brains. Our analysis reveals that SIRT6 is a central regulator of mitochondrial activity in the brain. SIRT6 deficiency in the brain leads to mitochondrial deficiency with a global downregulation of mitochondria-related genes and pronounced changes in metabolite content. We suggest that SIRT6 affects mitochondrial functions through its interaction with the transcription factor YY1 that, together, regulate mitochondrial gene expression. Moreover, SIRT6 target genes include SIRT3 and SIRT4, which are significantly downregulated in SIRT6-deficient brains. Our results demonstrate that the lack of SIRT6 leads to decreased mitochondrial gene expression and metabolomic changes of TCA cycle byproducts, including increased ROS production, reduced mitochondrial number, and impaired membrane potential that can be partially rescued by restoring SIRT3 and SIRT4 levels. Importantly, the changes we observed in SIRT6-deficient brains are also occurring in aging human brains and particularly in patients with Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis disease. Overall, our results suggest that the reduced levels of SIRT6 in the aging brain and neurodegeneration initiate mitochondrial dysfunction by altering gene expression, ROS production, and mitochondrial decay.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shai Kaluski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
8
|
Barros JAS, Cavalcanti JHF, Pimentel KG, Medeiros DB, Silva JCF, Condori-Apfata JA, Lapidot-Cohen T, Brotman Y, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL. The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence. PLANT, CELL & ENVIRONMENT 2022; 45:2682-2695. [PMID: 35818668 DOI: 10.1111/pce.14393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Karla G Pimentel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - José C F Silva
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Heterosis for capsacinoids accumulation in chili pepper hybrids is dependent on parent-of-origin effect. Sci Rep 2022; 12:14450. [PMID: 36002476 PMCID: PMC9402712 DOI: 10.1038/s41598-022-18711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Heterosis for agronomic traits is a widespread phenomenon that underpins hybrid crop breeding. However, heterosis at the level of cellular metabolites has not yet been fully explored. Some metabolites are highly sought after, like capsaicinoids found in peppers of the Capsicum genus, which confer the characteristic pungent ('hot') flavour of the fruits. We analysed the metabolic profile of the fruit placenta and pericarp of inter- and intra-specific hybrids of two species of Capsicum peppers, C. chinense (cv. Habanero and cv. Biquinho) and C. annuum var. annuum (cv. Jalapeño and cv. Cascadura Ikeda) in complete diallel crosses with reciprocals. The parents and hybrids were grown in a glasshouse and the profile of primary metabolites (sugars, amino acids and organic acids) and capsaicinoids was generated via gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS), respectively. We found considerable heterotic effects specifically for capsaicinoids accumulation in the fruit placenta of the hybrids, including those derived from non-pungent parents. Furthermore, a large fraction of fruit primary metabolism was influenced by the specific cross combination, with marked parent-of-origin effects, i.e. whether a specific genotype was used as the pistillate or pollen parent. The differences in metabolite levels between the hybrids and their parents provide a snapshot of heterosis for primary and secondary metabolites and may contribute to explain the manifestation of whole-plant heterotic phenotypes.
Collapse
|
10
|
Pretorius CJ, Zeiss DR, Dubery IA. The presence of oxygenated lipids in plant defense in response to biotic stress: a metabolomics appraisal. PLANT SIGNALING & BEHAVIOR 2021; 16:1989215. [PMID: 34968410 PMCID: PMC9208797 DOI: 10.1080/15592324.2021.1989215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/31/2023]
Abstract
Recent lipid-based findings suggest more direct roles for fatty acids and their degradation products in inducing/modulating various aspects of plant defense, e.g. as signaling molecules following stress responses that may regulate plant innate immunity. The synthesis of oxylipins is a highly dynamic process and occurs in both a developmentally regulated mode and in response to abiotic and biotic stresses. This mini-review summarizes the occurrence of free - and oxygenated fatty acid derivatives in plants as part of an orchestrated metabolic defense against pathogen attack. Oxygenated C18 derived polyunsaturated fatty acids were identified by untargeted metabolomics studies of a number of different plant-microbe pathosystems and may serve as potential biomarkers of oxidative stress. Untargeted metabolomics in combination with targeted lipidomics, can uncover previously unrecognized aspects of lipid mobilization during plant defense.
Collapse
Affiliation(s)
- Chanel J. Pretorius
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
11
|
Barros JAS, Magen S, Lapidot-Cohen T, Rosental L, Brotman Y, Araújo WL, Avin-Wittenberg T. Autophagy is required for lipid homeostasis during dark-induced senescence. PLANT PHYSIOLOGY 2021; 185:1542-1558. [PMID: 33793926 PMCID: PMC8133563 DOI: 10.1093/plphys/kiaa120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 05/31/2023]
Abstract
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| |
Collapse
|