1
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron‐Górecka A, Andres‐Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2025; 97:344-357. [PMID: 39512205 PMCID: PMC11740271 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2025;97:344-357.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and BiotechnologyMaria Curie‐Skłodowska UniversityLublinPoland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katelyn L. Reeb
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Rhea Temmermand
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Mirosław Zagaja
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Maciej Maj
- Department of BiopharmacyMedical University of LublinLublinPoland
| | - Magdalena Kolasa
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Agata Faron‐Górecka
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Marta Andres‐Mach
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Aleksandra Szewczyk
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Mustafa Q. Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Andréia C. K. Fontana
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rafał M. Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
2
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
van Veggel L, Mocking TA, Sijben HJ, Liu R, Gorostiola González M, Dilweg MA, Royakkers J, Li A, Kumar V, Dong YY, Bullock A, Sauer DB, Diliën H, van Westen GJ, Schreiber R, Heitman LH, Vanmierlo T. Still in Search for an EAAT Activator: GT949 Does Not Activate EAAT2, nor EAAT3 in Impedance and Radioligand Uptake Assays. ACS Chem Neurosci 2024; 15:1424-1431. [PMID: 38478848 PMCID: PMC10995951 DOI: 10.1021/acschemneuro.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| | - Tamara A.M. Mocking
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Hubert J. Sijben
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rongfang Liu
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Marina Gorostiola González
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Majlen A. Dilweg
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Jeroen Royakkers
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Anna Li
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Vijay Kumar
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Yin Yao Dong
- Nuffield
Department of Clinical Neurosciences, Weatherall Institute of Molecular
Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Alex Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - David B. Sauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Hanne Diliën
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Gerard J.P. van Westen
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rudy Schreiber
- Section
of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty
of Psychology and Neuroscience, Maastricht
University, 6200 Maastricht, The Netherlands
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 Leiden, The Netherlands
| | - Tim Vanmierlo
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| |
Collapse
|
4
|
Sijben HJ, Dall’ Acqua L, Liu R, Jarret A, Christodoulaki E, Onstein S, Wolf G, Verburgt SJ, Le Dévédec SE, Wiedmer T, Superti-Furga G, IJzerman AP, Heitman LH. Impedance-Based Phenotypic Readout of Transporter Function: A Case for Glutamate Transporters. Front Pharmacol 2022; 13:872335. [PMID: 35677430 PMCID: PMC9169222 DOI: 10.3389/fphar.2022.872335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell’s physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.
Collapse
Affiliation(s)
- Hubert J. Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura Dall’ Acqua
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Abigail Jarret
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Simone J. Verburgt
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
- *Correspondence: Laura H. Heitman,
| |
Collapse
|
5
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
6
|
Mruga D, Soldatkin O, Paliienko K, Topcheva A, Krisanova N, Kucherenko D, Borisova T, Dzyadevych S, Soldatkin A. Optimization of the Design and Operating Conditions of an Amperometric Biosensor for Glutamate Concentration Measurements in the Blood Plasma. ELECTROANAL 2021. [DOI: 10.1002/elan.202060449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- D. Mruga
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - O. Soldatkin
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - K. Paliienko
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - A. Topcheva
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - N. Krisanova
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - D. Kucherenko
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - T. Borisova
- Department of Neurochemistry Palladin Institute of Biochemistry of NASU 9 Leontovicha str. Kyiv 01601 Ukraine
| | - S. Dzyadevych
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| | - A. Soldatkin
- Department of Biomolecular Electronics Institute of Molecular Biology and Genetics of NASU 150 Zabolotnogo str. Kyiv 03680 Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv 64 Volodymyrska str. Kyiv 01003 Ukraine
| |
Collapse
|