1
|
Haj Saleh N, A Youssef L. The frequencies of CYP2C19*2, *3, and *17 alleles and their impact on the clinical efficacy of doubled maintenance dose of clopidogrel in Syrian patients with coronary artery disease. BMC Cardiovasc Disord 2025; 25:330. [PMID: 40295977 PMCID: PMC12036300 DOI: 10.1186/s12872-025-04768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Genetic variations in the CYP2C19 gene, which encodes the major enzyme responsible for activating clopidogrel, may influence response to Clopidogrel antiplatelet therapy. This study aimed to assess the prevalence of CYP2C19 variants in Syrian patients with coronary artery disease (CAD) and evaluate the impact of these variants on the clinical efficacy of a doubled maintenance dose of clopidogrel following percutaneous coronary intervention (PCI). METHODS This study included 50 Syrian CAD patients on dual antiplatelet therapy (DAPT) with a doubled maintenance dose of clopidogrel. CYP2C19 genotypes were determined by PCR, followed by Sanger sequencing. Clinical outcomes, including major acute cardiovascular events (MACE) and bleeding events, were monitored over 18-24 months. RESULTS The allele frequencies were 8% for CYP2C19*2, 0% for CYP2C19*3, and 17% for CYP2C19*17. The distribution of our study population by CYP2C19 genotype-predicted metabolizer phenotypes was 56% for normal metabolizers (NMs), 26% for intermediate metabolizers (IMs), 12% for rapid metabolizers (RMs), and 2% for ultra-rapid metabolizers (UMs). No association was found between the CYP2C19*2 allele and recurrent ischemic events or between the CYP2C19*17 allele and bleeding complications in patients treated with a doubled maintenance dose of clopidogrel. CONCLUSIONS In Syrian patients undergoing PCI, a doubled maintenance dose of clopidogrel (150 mg/day) may help mitigate variability in response due to CYP2C19*2 carrier status, offering potential benefits in optimizing antiplatelet therapy. However, given the study's limited sample size, these findings should be interpreted with caution, and larger studies are needed to confirm this potential benefit.
Collapse
Affiliation(s)
- Nour Haj Saleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, April 17th street, Al-Mazzeh, Damascus, Syria
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, April 17th street, Al-Mazzeh, Damascus, Syria.
- National Commission for Biotechnology, Damascus, Syria.
| |
Collapse
|
2
|
Yang G, González P, Moneró M, Carrasquillo K, Renta JY, Hernandez-Suarez DF, Botton MR, Melin K, Scott SA, Ruaño G, Roche-Lima A, Alarcon C, Ritchie MD, Perera MA, Duconge J. Discovery of ancestry-specific variants associated with clopidogrel response among Caribbean Hispanics. NPJ Genom Med 2025; 10:20. [PMID: 40055373 PMCID: PMC11889249 DOI: 10.1038/s41525-025-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
High on-treatment platelet reactivity (HTPR) with clopidogrel predicts ischemic events in adults with coronary artery disease, and while HTPR varies by ethnicity, no genome-wide association study (GWAS) of clopidogrel response has been conducted in Caribbean Hispanics. This study aimed to identify genetic predictors of HTPR in a cohort of 511 Puerto Rican cardiovascular patients treated with clopidogrel, stratified by P2Y12 reaction units (PRU) into responders and non-responders (HTPR). Local ancestry inference (LAI) and traditional GWAS identified variants in the CYP2C19 region associated with HTPR, primarily in individuals with European ancestry. Three variants (OSBPL10 rs1376606, DERL3 rs5030613, RGS6 rs9323567) showed suggestive significance, and a variant in UNC5C was linked to increased HTPR risk. These findings highlight the unique genetic landscape of Caribbean Hispanics and challenge the significance of CYP2C19*2 in predicting clopidogrel response in patients with high non-European ancestry. Further studies are needed to replicate these results in other diverse cohorts.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pablo González
- Department of Pharmacology, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Mariangeli Moneró
- Department of Pharmacology, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Kelvin Carrasquillo
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Jessicca Y Renta
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Dagmar F Hernandez-Suarez
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Mariana R Botton
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Kyle Melin
- Department of Pharmacy Practice, School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | | | - Abiel Roche-Lima
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marylyn D Ritchie
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Minoli A Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jorge Duconge
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA.
| |
Collapse
|
3
|
Serra-Llovich A, Cullell N, Maroñas O, José Herrero M, Cruz R, Almoguera B, Ayuso C, López-Rodríguez R, Domínguez-Garrido E, Ortiz-Lopez R, Barreda-Sánchez M, Corton M, Dalmau D, Calbo E, Boix-Palop L, Dietl B, Sangil A, Gil-Rodriguez A, Guillén-Navarro E, Mancebo E, Lira-Albarrán S, Minguez P, Paz-Artal E, Olivera GG, Recarey-Rama S, Sendra L, Zucchet EG, López de Heredia M, Flores C, Riancho JA, Rojas-Martinez A, Lapunzina P, Carracedo Á, Arranz MJ. Pharmacogenomic Study of SARS-CoV-2 Treatments: Identifying Polymorphisms Associated with Treatment Response in COVID-19 Patients. Biomedicines 2025; 13:553. [PMID: 40149530 PMCID: PMC11940783 DOI: 10.3390/biomedicines13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from existing therapies for other infectious and non-infectious diseases. Emerging evidence suggests a role for genetic factors in both susceptibility to SARS-CoV-2 infection and response to treatment. However, comprehensive studies correlating clinical outcomes with genetic variants are lacking. The main aim of our study is the identification of host genetic biomarkers that predict the clinical outcome of COVID-19 pharmacological treatments. Methods: In this study, we present findings from GWAS and candidate gene and pathway enrichment analyses leveraging diverse patient samples from the Spanish Coalition to Unlock Research of Host Genetics on COVID-19 (SCOURGE), representing patients treated with immunomodulators (n = 849), corticoids (n = 2202), and the combined cohort of both treatments (n = 2487) who developed different outcomes. We assessed various phenotypes as indicators of treatment response, including survival at 90 days, admission to the intensive care unit (ICU), radiological affectation, and type of ventilation. Results: We identified significant polymorphisms in 16 genes from the GWAS and candidate gene studies (TLR1, TLR6, TLR10, CYP2C19, ACE2, UGT1A1, IL-1α, ZMAT3, TLR4, MIR924HG, IFNG-AS1, ABCG1, RBFOX1, ABCB11, TLR5, and ANK3) that may modulate the response to corticoid and immunomodulator therapies in COVID-19 patients. Enrichment analyses revealed overrepresentation of genes involved in the innate immune system, drug ADME, viral infection, and the programmed cell death pathways associated with the response phenotypes. Conclusions: Our study provides an initial framework for understanding the genetic determinants of treatment response in COVID-19 patients, offering insights that could inform precision medicine approaches for future epidemics.
Collapse
Affiliation(s)
| | - Natalia Cullell
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Olalla Maroñas
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Raquel Cruz
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro Nacional de Genotipado (CEGEN), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Almoguera
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Rosario López-Rodríguez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud and Hospital San Jose TecSalud, Monterrey 64718, Mexico
| | - María Barreda-Sánchez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio de Murcia (UCAM), 30120 Murcia, Spain
| | - Marta Corton
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - David Dalmau
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Esther Calbo
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | | | - Beatriz Dietl
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Anna Sangil
- Hospital Universitario Mutua Terrassa, 08221 Terrassa, Spain
| | - Almudena Gil-Rodriguez
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Encarna Guillén-Navarro
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain
- Sección Genética Médica-Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, 30120 Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Transplant Immunology and Immunodeficiencies Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | | | - Pablo Minguez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Transplant Immunology and Immunodeficiencies Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gladys G. Olivera
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Sheila Recarey-Rama
- Grupo de Farmacogenómica y Descubrimiento de Medicamentos (GenDeM), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.G.-R.); (S.R.-R.)
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Sendra
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique G. Zucchet
- IIS La Fe, Plataforma de Farmacogenética, 43026 Valencia, Spain
- Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Miguel López de Heredia
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain;
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - José A. Riancho
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud and Hospital San Jose TecSalud, Monterrey 64718, Mexico
| | - Pablo Lapunzina
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Genómica (FPGMX), Centro Nacional de Genotipado (CEGEN), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
- Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Arranz
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain;
| | | |
Collapse
|
4
|
Lebreton L, Boyer J, Lafay‐Chebassier C, Hennart B, Baklouti S, Cunat S, Vilquin P, Medard Y, Gautier‐Veyret E, Laffitte‐Redondo C, Verstuyft C, Ait Tayeb AEK, Haufroid V, Wils J, Lamoureux F, Evrard A, Davaze‐Schneider J, Ben‐Sassi M, Picard N, Quaranta S, Ayme‐Dietrich E. French-Speaking Network of Pharmacogenetics (RNPGx) Recommendations for Clinical Use of Mavacamten. Clin Pharmacol Ther 2025; 117:387-397. [PMID: 39584620 PMCID: PMC11739748 DOI: 10.1002/cpt.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Mavacamten, the first drug in the class of β-cardiac myosin modulator, is used for the treatment of patients with hypertrophic cardiomyopathy. This orally administered drug demonstrates wide interpatient variability in pharmacokinetics parameters, due in part to variant CYP2C19 alleles. Individuals who are CYP2C19 poor metabolizers have increased exposure and are at increased risk of reduced cardiac hypercontractility. To ensure the safety of all patients, European Medicines Agency recommends CYP2C19 preemptive genotyping, and consecutively, to adapt maintenance and initial mavacamten doses, and to manage drug-drug interactions, according to CYP2C19 phenotype. In this article, we summarize evidence from the literature supporting the association between CYP2C19 phenotype and pharmacological features of mavacamten and provide, beyond biologic guidelines, therapeutic recommendations for the use of mavacamten based on CYP2C19 and CYP3A4/CYP3A5 genotype.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Jean‐Christophe Boyer
- Laboratoire de Biochimie et Biologie MoléculaireCarémeau University HospitalNîmesFrance
| | | | | | - Sarah Baklouti
- Laboratoire de Pharmacocinétique et Toxicologie, Institut Fédératif de BiologieCHU de ToulouseToulouseFrance
- INTHERES, Inrae, ENVT, Université de ToulouseToulouseFrance
| | - Séverine Cunat
- Service d'Hématologie BiologiqueCHU de MontpellierMontpellierFrance
| | - Paul Vilquin
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | - Yves Medard
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | | | - Clara Laffitte‐Redondo
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- INSERM UMR‐S U1185, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP)Institut de Recherche Expérimentale et Clinique, UClouvainBrusselsBelgium
- Clinical Chemistry DepartmentCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Julien Wils
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Fabien Lamoureux
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Alexandre Evrard
- Institut du Cancer de Montpellier, ICM, Université de Montpellier, IRCM, Inserm U1194MontpellierFrance
- Laboratoire de Biochimie et Biologie MoléculaireCHU Nîmes‐CarémeauNîmesFrance
| | - Julie Davaze‐Schneider
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Mouna Ben‐Sassi
- Department of Clinical PharmacologyNational Centre Chalbi Belkahia of PharmacovigilanceTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Nicolas Picard
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Centre de Biologie et de Recherche en Santé (CBRS)CHU de LimogesLimogesFrance
| | - Sylvie Quaranta
- Laboratoire de Biologie Moléculaire GENOPé, M2GM/Laboratoire de Pharmacocinétique et Toxicologie, PRISMHôpital de la Timone, AP‐HMMarseilleFrance
| | - Estelle Ayme‐Dietrich
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, UR7296Hopitaux Universitaires de Strasbourg, Université de StrasbourgStrasbourgFrance
| | | |
Collapse
|
5
|
Tunehag KR, Pearce AF, Fox LP, Stouffer GA, Solander S, Lee CR. CYP2C19 Genotype-Guided Antiplatelet Therapy and Clinical Outcomes in Patients Undergoing a Neurointerventional Procedure. Clin Transl Sci 2025; 18:e70131. [PMID: 39822142 PMCID: PMC11739457 DOI: 10.1111/cts.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
In neurovascular settings, including treatment and prevention of ischemic stroke and prevention of thromboembolic complications after percutaneous neurointerventional procedures, dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is the standard of care. Clopidogrel remains the most commonly prescribed P2Y12 inhibitor for neurovascular indications. However, patients carrying CYP2C19 no-function alleles have diminished capacity for inhibition of platelet reactivity due to reduced formation of clopidogrel's active metabolite. In patients with cardiovascular disease undergoing a percutaneous coronary intervention, CYP2C19 no-function allele carriers treated with clopidogrel experience a higher risk of major adverse cardiovascular outcomes, and multiple large prospective outcomes studies have shown an improvement in clinical outcomes when antiplatelet therapy selection was guided by CYP2C19 genotype. Similarly, accumulating evidence has associated CYP2C19 no-function alleles with poor clinical outcomes in clopidogrel-treated patients in neurovascular settings. However, the utility of implementing a genotype-guided antiplatelet therapy selection strategy in the setting of neurovascular disease and the clinical outcomes evidence in neurointerventional procedures remains unclear. In this review, we will (1) summarize existing evidence and guideline recommendations related to CYP2C19 genotype-guided antiplatelet therapy in the setting of neurovascular disease, (2) evaluate and synthesize the existing evidence on the relationship of clinical outcomes to CYP2C19 genotype and clopidogrel treatment in patients undergoing a percutaneous neurointerventional procedure, and (3) identify knowledge gaps and discuss future research directions.
Collapse
Affiliation(s)
- Kayla R. Tunehag
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ashton F. Pearce
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Layna P. Fox
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - George A. Stouffer
- Division of Cardiology, Department of Medicine, UNC School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sten Solander
- Department of Radiology, UNC School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Division of Cardiology, Department of Medicine, UNC School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
6
|
Torso NDG, Rodrigues-Soares F, Altamirano C, Ramírez-Roa R, Sosa-Macías M, Galavíz-Hernández C, Terán E, Peñas-LLedó E, Dorado P, LLerena A. CYP2C19 genotype-phenotype correlation: current insights and unanswered questions. Drug Metab Pers Ther 2024; 39:201-206. [PMID: 39663234 DOI: 10.1515/dmpt-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
The CYP2C19 enzyme is implicated in the metabolism of several clinically used drugs. Its phenotype is usually predicted by genotyping and indicates the expected enzymatic activity for each patient. However, with a few exceptions, CYP2C19 genotyping has not resulted in a reliable prediction of the metabolizer status, since most of the evidence currently available for this prediction comes from research into populations of predominantly European ancestry. Therefore, this review discusses the main factors that may alter the expected phenotype, as well as the urgent need to include ethnically diverse populations in further studies, so that, in the long term, it is possible to establish guidelines appropriate to these groups.
Collapse
Affiliation(s)
- Nadine de Godoy Torso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
- Department of Pathology, Genetic and Evolution, 74348 Biological and Natural Sciences Institute, Universidade Federal Do Triângulo Mineiro , Uberaba, Brazil
| | - Catalina Altamirano
- Universidad Nacional Autónoma de Nicaragua - León, Facultad de Ciencias Médicas, León, Nicaragua
| | | | - Martha Sosa-Macías
- Instituto Politécnico Nacional-CIIDIR, Academia de Genómica, Durango, México
| | | | | | - Eva Peñas-LLedó
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Pedro Dorado
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| |
Collapse
|
7
|
Bonasser LSS, Silva CMDS, Fratelli CF, Gontijo BR, Seixas JMA, Barreto LCLDS, da Silva ICR. CYP2C19 Genetic Variants and Major Depressive Disorder: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1461. [PMID: 39598373 PMCID: PMC11597809 DOI: 10.3390/ph17111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Major depressive disorder (MDD) affects over 300 million people globally and has a multifactorial etiology. The CYP2C19 enzyme, involved in metabolizing certain antidepressants, can influence treatment response. Following the PRISMA protocol and PECOS strategy, this systematic review assessed the variation in common CYP2C19 gene variants' frequencies across populations with MDD, evaluating their impact on clinical characteristics and treatment response. We comprehensively searched five databases, identifying 240 articles, of which only nine within the last decade met our inclusion criteria. Except for one study that achieved 74.28% of STROPS items, the rest met at least 75% of GRIPS and STROPS guidelines for quality and bias risk assessment. The CYP2C19's *1 allele, the *1/*1 genotype, and the NM phenotype, considered as references, were generally more frequent. Other CYP2C19 polymorphism frequencies exhibit significant variability across different populations. Some studies associated variants with MDD development, a more extended history of depression, prolonged depressive episodes, and symptom severity, while others reported no such association. Some studies confirmed variants' effects on escitalopram and citalopram metabolism but not that of other drugs, such as sertraline, venlafaxine, and bupropion. Treatment tolerability and symptom improvement also varied between studies. Despite some common findings, inconsistencies highlight the need for further research to clarify the role of these polymorphisms in MDD and optimize treatment strategies.
Collapse
Affiliation(s)
- Larissa Sousa Silva Bonasser
- Postgraduate Program in Health Sciences, University Campus Darcy Ribeiro, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 70910-900, Brazil;
| | - Calliandra Maria de Souza Silva
- Clinical Analysis Laboratory, Molecular Pathology Sector, Pharmacy Department, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil;
| | - Caroline Ferreira Fratelli
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | - Bruna Rodrigues Gontijo
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | - Juliana Moura Alves Seixas
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | | | - Izabel Cristina Rodrigues da Silva
- Clinical Analysis Laboratory, Molecular Pathology Sector, Pharmacy Department, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil;
| |
Collapse
|
8
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Chen S, Yuan P, Liu F, Zhang S. Personalization of clopidogrel therapy based on genetic polymorphism analysis: clinical implications. Am J Transl Res 2024; 16:5708-5717. [PMID: 39544755 PMCID: PMC11558423 DOI: 10.62347/ewuh3396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/24/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study aimed to evaluate the impact of gene polymorphisms on clopidogrel metabolism and to use this analysis to inform treatment strategy for a population in southern Anhui of China. METHODS The research was conducted from 2019 to 2022, aincluding 430 patients from the Wuhu Hospital, affiliated with East China Normal University who were candidates for clopidogrel therapy. Genes influencing clopidogrel's absorption and metabolism were analyzed to guide treatment. Patient data were collected, and genotype and metabolic type distributions were compared. Patients needing medication adjustments were followed up and divided into two groups based on whether they received adjustments or not, and the re-admission rates for antiplatelet therapy within 12 months were compared. RESULTS The 430 samples showed the expected genotypes and gene distribution, with no significant correlation to age or sex. The CYP2C19 metabolic phenotype frequency was moderate at 57.44%, fast at 25.12%, slow at 15.58%, and ultra-fast at 1.86%. The ABCB1-3435C>T genotype distribution was wild type in 38.14%, heterozygous in 42.33%, and mutant homozygous in 19.53%, with the TT group being significantly younger. The PON1-576G>A genotype showed no significant baseline differences. Of the 279 patients needing medication advice, 39.07% received it. The adjusted group had a significantly lower re-admission rate within one year. CONCLUSION The distribution of gene polymorphisms related to clopidogrel metabolism varied within the study population, indicating a potential for personalized medication approaches. The study provides insight into the clinical application of genetic testing for clopidogrel therapy.
Collapse
Affiliation(s)
- Shixiong Chen
- Department of Pharmacy, Wuhu Hospital Affiliated to East China Normal UniversityWuhu 241000, Anhui, China
| | - Pingchuan Yuan
- Drug Research and Development Center, School of Pharmacy, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Fei Liu
- Department of Oncology, Wuhu Hospital Affiliated to East China Normal UniversityWuhu 241000, Anhui, China
| | - Shaonan Zhang
- Department of Pharmacy, Wuhu Hospital Affiliated to East China Normal UniversityWuhu 241000, Anhui, China
| |
Collapse
|
10
|
Abouir K, Exquis N, Gloor Y, Daali Y, Samer CF. Phenoconversion Due to Drug-Drug Interactions in CYP2C19 Genotyped Healthy Volunteers. Clin Pharmacol Ther 2024; 116:1121-1129. [PMID: 39075970 DOI: 10.1002/cpt.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
To compensate for drug response variability, drug metabolism phenotypes are determined based on the results of genetic testing, and if necessary, drug dosages are adjusted. In some cases, discrepancies between predicted and observed phenotypes (phenoconversion) may occur due to drug-drug interactions caused by concomitant medications. We conducted a prospective, exploratory study to evaluate the risk of CYP2C19 phenoconversion in genotyped healthy volunteers exposed to CYP2C19 inhibitors. Three groups of volunteers were enrolled: CYP2C19 g-RM, g-NM, and g-IM (g- for genetically predicted). All volunteers received as CYP2C19 phenotyping substrate 10 mg omeprazole (OME) alone at the control session and in co-administration with CYP2C19 inhibitors: voriconazole 400 mg and fluvoxamine 50 mg in second and third study sessions, respectively. Phenoconversion occurred in over 80% of healthy volunteers, with variations among genotypic groups, revealing distinct proportions in response to fluvoxamine and voriconazole. Statistically significant differences were observed in mean metabolic ratios between CYP2C19 intermediate metabolizers (g-IMs) with *1/*2 and *2/*17 genotypes, with the *2/*17 group exhibiting lower ratios, and distinctions were noted between genotypic groups, emphasizing the impact of genetic variations on drug metabolism. When reclassified according to CYP2C19 baseline-measured phenotype into p-RM, p-NM, and p-IM (p- for measured phenotype), we observed 100% phenoconversion of p-RMs and a significant phenotype switch in p-NMs, p-IMs, and p-PMs after fluvoxamine and voriconazole, and complete phenoconversion of p-IMs to p-PMs on both inhibitors, emphasizing the impact of genetic variations on the vulnerability to CYP2C19 phenoconversion and the importance of considering both genotyping and phenotyping in predicting drug response.
Collapse
Affiliation(s)
- Kenza Abouir
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Genève 14, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - Nadia Exquis
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Genève 14, Switzerland
| | - Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Genève 14, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Genève 14, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Genève 4, Switzerland
| | - Caroline Flora Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Genève 14, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Genève 4, Switzerland
| |
Collapse
|
11
|
Dixon P, Horton RH, Newman WG, McDermott JH, Lucassen A. Genomics and insurance in the United Kingdom: increasing complexity and emerging challenges. HEALTH ECONOMICS, POLICY, AND LAW 2024; 19:446-458. [PMID: 38752549 DOI: 10.1017/s1744133124000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This article identifies issues relating to the use of genetics and genomics in risk-rated insurance that may challenge existing regulatory models in the UK and elsewhere. We discuss three core issues: (1) As genomic testing advances, and results are increasingly relevant to guide healthcare across an individual's lifetime, the distinction between diagnostic and predictive testing that the current UK insurance code relies on becomes increasingly blurred. (2) The emerging category of pharmacogenetic tests that are predictive only in the context of a specific prescribing moment. (3) The increasing availability and affordability of polygenic scores that are neither clearly diagnostic nor highly predictive, but which nonetheless might have incremental value for risk-rated insurance underwriting beyond conventional factors. We suggest a deliberative approach is required to establish when and how genetic information can be used in risk-rated insurance.
Collapse
Affiliation(s)
- Padraig Dixon
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Centre for Personalised Medicine, University of Oxford, Oxford, UK
| | - Rachel H Horton
- Centre for Personalised Medicine, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society research group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - William G Newman
- Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - John H McDermott
- Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anneke Lucassen
- Centre for Personalised Medicine, University of Oxford, Oxford, UK
- Clinical Ethics, Law and Society research group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Zubiaur P, Rodríguez-Antona C, Boone EC, Daly AK, Tsermpini EE, Khasawneh LQ, Sangkuhl K, Duconge J, Botton MR, Savieo J, Nofziger C, Whirl-Carrillo M, Klein TE, Gaedigk A. PharmVar GeneFocus: CYP4F2. Clin Pharmacol Ther 2024; 116:963-975. [PMID: 39135485 PMCID: PMC11452279 DOI: 10.1002/cpt.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
The Pharmacogene Variation Consortium (PharmVar) serves as a global repository providing star (*) allele nomenclature for the polymorphic human CYP4F2 gene. CYP4F2 genetic variation impacts the metabolism of vitamin K, which is associated with warfarin dose requirements, and the metabolism of drugs, such as imatinib or fingolimod, and certain endogenous compounds including vitamin E and eicosanoids. This GeneFocus provides a comprehensive overview and summary of CYP4F2 genetic variation including the characterization of 14 novel star alleles, CYP4F2*4 through *17. A description of how haplotype information cataloged by PharmVar is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC) is also provided.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM) and Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IP), 28006 Madrid, Spain
| | - Cristina Rodríguez-Antona
- Pharmacogenomics and Tumor Biomarkers Group, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC/UAM, Madrid, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Raras Valencia, Spain
| | - Erin C. Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Research Institute (CMRI), Kansas City, Missouri, USA
| | - Ann K. Daly
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Lubna Q. Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Mariana R. Botton
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil and Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jessica Savieo
- Department of Clinical Operations, AccessDx, Houston, Texas
| | | | | | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Departments of Medicine (BMIR) and Genetics, Stanford University, Stanford, California
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Research Institute (CMRI), Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Tomlinson E, Cooper C, Jones HE, Manzano CL, Palmer R, Carroll J, Sadek A, Welton NJ, Leeflang M, Whiting P. Accuracy and technical characteristics of CYP2C19 point of care tests: a systematic review. Pharmacogenomics 2024; 25:407-423. [PMID: 39229818 PMCID: PMC11418221 DOI: 10.1080/14622416.2024.2392479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: To assess the accuracy and technical characteristics of CYP2C19 point of care tests (POCTs).Patients & methods: Systematic review of primary studies, in any population or setting, that evaluated POCTs for detecting CYP2C19 loss of function (LOF) alleles.Results: Eleven studies provided accuracy data (eight Spartan; one Genomadix Cube; one GMEX; one Genedrive). The POCTs had very high sensitivity and specificity for the alleles they tested for. Twenty-two studies reported technical characteristics: POCTs were easy to operate and provided results quickly. Limited data were reported for test failure rate and cost.Conclusion: CYP2C19 POCTs may be a useful alternative to laboratory-based testing to guide antiplatelet therapy. Further data are required on accuracy (GMEX; Genedrive), test failure and cost (all POCT).
Collapse
Affiliation(s)
- Eve Tomlinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Chris Cooper
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Joe Carroll
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ayman Sadek
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Penny Whiting
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Carroll J, Lopez Manzano C, Tomlinson E, Sadek A, Cooper C, Jones HE, Rowsell L, Knight J, Mumford A, Palmer R, Hollingworth W, Welton NJ, Whiting P. Clinical and cost-effectiveness of clopidogrel resistance genotype testing after ischaemic stroke or transient ischaemic attack: a systematic review and economic model. Health Technol Assess 2024; 28:1-194. [PMID: 39269241 PMCID: PMC11417645 DOI: 10.3310/pwcb4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Stroke or transient ischaemic attack patients are at increased risk of secondary vascular events. Antiplatelet medications, most commonly clopidogrel, are prescribed to reduce this risk. Factors including CYP2C19 genetic variants can hinder clopidogrel metabolism. Laboratory-based or point-of-care tests can detect these variants, enabling targeted treatment. Objective To assess the effectiveness of genetic testing to identify clopidogrel resistance in people with ischaemic stroke or transient ischaemic attack. Specific objectives: Do people tested for clopidogrel resistance, and treated accordingly, have a reduced risk of secondary vascular events? Do people with loss-of-function alleles associated with clopidogrel resistance have a reduced risk of secondary vascular events if treated with alternative interventions compared to clopidogrel? Do people with loss-of-function alleles associated with clopidogrel resistance have an increased risk of secondary vascular events when treated with clopidogrel? What is the accuracy of point-of-care tests for detecting variants associated with clopidogrel resistance? What is the technical performance and cost of CYP2C19 genetic tests? Is genetic testing for clopidogrel resistance cost-effective compared with no testing? Design Systematic review and economic model. Results Objective 1: Two studies assessed secondary vascular events in patients tested for loss-of-function alleles and treated accordingly. They found a reduced risk, but confidence intervals were wide (hazard ratio 0.50, 95% confidence interval 0.09 to 2.74 and hazard ratio 0.53, 95% confidence interval 0.24 to 1.18). Objective 2: Seven randomised controlled trials compared clopidogrel with alternative treatment in people with genetic variants. Ticagrelor was associated with a lower risk of secondary vascular events than clopidogrel (summary hazard ratio 0.76, 95% confidence interval 0.65 to 0.90; two studies). Objective 3: Twenty-five studies compared outcomes in people with and without genetic variants treated with clopidogrel. People with genetic variants were at an increased risk of secondary vascular events (hazard ratio 1.72, 95% confidence interval 1.43 to 2.08; 18 studies). There was no difference in bleeding risk (hazard ratio 0.98, 95% confidence interval 0.68 to 1.40; five studies). Objective 4: Eleven studies evaluated Genomadix Cube accuracy; no studies evaluated Genedrive. Summary sensitivity and specificity against laboratory reference standards were both 100% (95% confidence interval 94% to 100% and 99% to 100%). Objective 5: Seventeen studies evaluated technical performance of point-of-care tests. Test failure rate ranged from 0.4% to 19% for Genomadix Cube. A survey of 8/10 genomic laboratory hubs revealed variation in preferred technologies for testing, and cost per test ranging from £15 to £250. Most laboratories expected test failure rate to be < 1%. Additional resources could enhance testing capacity and expedite turnaround times. Objective 6: Laboratory and point-of-care CYP2C19 testing strategies were cost-saving and increase quality-adjusted life-years compared with no testing. Both strategies gave similar costs, quality-adjusted life-years and expected net monetary benefit. Conclusions Our results suggest that CYP2C19 testing followed by tailored treatment is likely to be effective and cost-effective in both populations. Future work Accuracy and technical performance of Genedrive. Test failure rate of Genomadix Cube in a National Health Service setting. Value of testing additional loss-of-function alleles. Appropriateness of treatment dichotomy based on loss-of-function alleles. Limitations Lack of data on Genedrive. No randomised 'test-and-treat' studies of dipyramidole plus aspirin. Study registration This study is registered as PROSPERO CRD42022357661. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135620) and is published in full in Health Technology Assessment; Vol. 28, No. 57. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Joe Carroll
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catalina Lopez Manzano
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eve Tomlinson
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ayman Sadek
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Chris Cooper
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | | | - Rachel Palmer
- South West NHS Genomic Medicine Service Alliance, UK
| | - William Hollingworth
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicky J Welton
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Penny Whiting
- Bristol TAG, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Kang Y, Guo L, Li Q, Liu C, Jin W, Huang M, Liu Y, Tang C, Zhu J, Zhang L. Association of clopidogrel resistance and ABCD-GENE score with long-term clinical prognosis in patients with ischemic stroke or TIA. Rev Neurol (Paris) 2024; 180:682-688. [PMID: 38719768 DOI: 10.1016/j.neurol.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Clopidogrel resistance (CR) is associated with adverse clinical outcomes in acute ischemic stroke or transient ischemic attack (TIA) patients. However, whether CR affects the long-term clinical prognosis remains to be clarified. The ABCD-GENE score is a novel risk model that identifies CR in cardiovascular disease patients; its diagnostic ability and application in ischemic stroke or TIA remain to be studied. This study aimed to investigate the diagnostic ability of the ABCD-GENE score for CR and analyze the relationship between CR and long-term clinical prognosis in patients with ischemic stroke or TIA. METHODS From January 2018 to January 2021, 251 ischemic stroke or TIA patients who were treated with clopidogrel for more than three months after onset and maintained the medication until the follow-up time were enrolled, and platelet reactivity was detected by thromboelastography. CYP2C19 gene analysis was performed. Adverse clinical outcomes were recorded from 3months after onset. The median follow-up time was 878days. RESULTS The prevalence of CR was 33.9%. The proportion of CYP2C19 loss-of-function carriers was 62.2%. The ABCD-GENE score≥10 was independently associated with CR (OR=1.82, 95% CI: 1.02-3.24, P=0.041), and the C-statistic value of the score (as a binary and integer variable) on CR was 0.58 and 0.63, respectively. The risk of long-term adverse clinical outcomes was not significantly different between CR and clopidogrel sensitive groups (12.94% vs. 11.44%, HR=1.22, 95% CI: 0.57-2.62, P=0.603). A similar result was observed between ABCD-GENE score≥10 and ABCD-GENE score<10 groups (10.38% vs. 12.64%, HR=1.19, 95% CI: 0.55-2.60, P=0.666). CONCLUSIONS In ischemic stroke or TIA patients, the ABCD-GENE score could identify the risk of CR. CR was not associated with long-term adverse clinical outcomes.
Collapse
Affiliation(s)
- Y Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - L Guo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - Q Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - C Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - W Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - M Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - Y Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - C Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - J Zhu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China
| | - L Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLA, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Jørgensen S, Brodersen T, Vesterager Pedersen OB, Westergaard N. Distribution of the cytochrome P450 *alleles for CYP2C9 and CYP2C19 in a cohort of the Danish Blood Donor Study determined by using the Illumina Infinium Global Screening Array. Basic Clin Pharmacol Toxicol 2024; 135:217-222. [PMID: 38813766 DOI: 10.1111/bcpt.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/19/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Steffen Jørgensen
- Centre for Engineering and Science, Department of Biomedical Laboratory Science, University College Absalon, Naestved, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital Køge, Køge, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital Køge, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
18
|
Chenchula S, Atal S, Jhaj R, Uppugunduri CRS. Implementing pharmacogenetic testing to optimize proton-pump inhibitors use among Indian population based on CPIC-CYP2C19-PPI dosing guidelines: The need of the hour. Indian J Pharmacol 2024; 56:277-284. [PMID: 39250625 PMCID: PMC11483053 DOI: 10.4103/ijp.ijp_198_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Proton-pump inhibitors (PPIs) are widely prescribed to decrease stomach acid and treat various acid-related Gastrointestinal tract (GIT) diseases. However, genetic variations, particularly in the CYP2C19 gene, affect PPIs metabolism and efficacy. Variants in CYP2C19 can result in different rates of PPI metabolism, influencing their effectiveness. Personalized medicine strategies, such as genotyping for CYP2C19, have the potential to enhance the effectiveness of PPI therapy and patient safety. This review aims to describe the relevance of CYP2C19 genetic profiling in the indian population, including normal function (e.g. CYP2C19*1, *11, *13, *15, *18, *28, and 38), decreased function (e.g., CYP2C19*9, *10, *16, *19, *25, and 26), loss of function (e.g., CYP2C19*2, *3, *4, *5, *6, *7, *8, *22, *24, *35, *36, and *37), and increased function (e.g., CYP2C19*17) variants. This review also examines the clinical pharmacogenomics implementation consortium (CPIC)-CYP2C19-PPI guidelines to highlight the importance of pharmacogenomics (PGx)-informed personalized PPI therapy for gastroesophageal reflux disease and peptic ulcer disease treatment. On average, each person in India possesses eight pharmacogenetic (PGx) variants that can be clinically significant, underscoring the need for preemptive testing. Implementing CYP2C19 genetic testing in India requires expanding laboratory capacity, increasing accessibility in primary care, increasing public awareness, collaboration between pharmacovigilance and PGx programs, investing in advanced sequencing technologies, data management systems, and integration with electronic health records and clinical decision support systems. Addressing challenges such as genetic diversity, socioeconomic factors, health-care access issues, and shortage of trained professionals is essential for implementation. Due to the lack of definitive country-specific policies and PGx guidelines from Indian drug regulatory agencies, guidelines from international consortia such as the Clinical Pharmacogenetics Implementation Consortium and drug labeling offer crucial foundational evidence. This evidence can be used to enhance patient outcomes and ensure the safe and effective use of PPIs in India.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ratinder Jhaj
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Chakradhara Rao S. Uppugunduri
- Pediatric Oncology and Hematology, CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, Geneva, Switzerland
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
19
|
Aquilante CL, Trinkley KE, Lee YM, Crooks KR, Hearst EC, Heckman SM, Hess KW, Kudron EL, Martin JL, Swartz CT, Kao DP. Implementation of clopidogrel pharmacogenetic clinical decision support for a preemptive return of results program. Am J Health Syst Pharm 2024; 81:555-562. [PMID: 38253063 PMCID: PMC11519030 DOI: 10.1093/ajhp/zxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE To describe our experiences implementing and iterating CYP2C19 genotype-guided clopidogrel pharmacogenetic clinical decision support (CDS) tools over time in the setting of a large health system-wide, preemptive pharmacogenomics program. SUMMARY Clopidogrel-treated patients who are genetically predicted cytochrome P450 isozyme 2C19 (CYP2C19) intermediate or poor metabolizers have an increased risk of atherothrombotic events, some of which can be life-threatening. The Clinical Pharmacogenetics Implementation Consortium provides guidance for the use of clopidogrel based on CYP2C19 genotype in patients with cardiovascular and cerebrovascular diseases. Our multidisciplinary team implemented an automated, interruptive alert that fires when clopidogrel is ordered or refilled for biobank participants with structured CYP2C19 intermediate or poor metabolizer genomic indicators in the electronic health record. The implementation began with a narrow cardiovascular indication and setting and was then scaled in 4 primary dimensions: (1) clinical indication; (2) availability across health-system locations; (3) care venue (e.g., inpatient vs outpatient); and (4) provider groups (eg, cardiology and neurology). We iterated our approach over time based on evolving clinical evidence and proactive strategies to optimize CDS maintenance and sustainability. A key facilitator of expansion was socialization of the broader pharmacogenomics initiative among our academic medical center community, accompanied by clinician acceptance of pharmacogenetic alerts in practice. CONCLUSION A multidisciplinary collaboration is recommended to facilitate the use of CYP2C19 genotype-guided antiplatelet therapy in patients with cardiovascular and cerebrovascular diseases. Evolving clopidogrel pharmacogenetic evidence necessitates thoughtful iteration of implementation efforts and strategies to optimize long-term maintenance and sustainability.
Collapse
Affiliation(s)
- Christina L Aquilante
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katy E Trinkley
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yee Ming Lee
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristy R Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily C Hearst
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- UCHealth, Aurora, CO, USA
| | | | | | - Elizabeth L Kudron
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James L Martin
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - David P Kao
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Teng JM, Qin S, Lu D, Gu Y, Tang SJ, Yan Q, Yao J, Zhang C. Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi. Pharmgenomics Pers Med 2024; 17:225-236. [PMID: 38765788 PMCID: PMC11102100 DOI: 10.2147/pgpm.s457805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the CYP2C19 genotype distribution and allelic frequency among the Zhuang and Han schizophrenic populations in Guangxi, examine the correlation between CYP2C19 genetic variants and standardized blood levels of Valproic Acid (VPA) in schizophrenic patients, and evaluate the effects of age, gender, and Body Mass Index (BMI) on standardized VPA blood concentrations. Patients and Methods Between February and December 2022, 192 Zhuang and Han schizophrenia patients treated with VPA were studied. Steady-state VPA concentrations were determined using homogeneous enzyme immunoassays, and CYP2C19 *1, *2, and *3 loci via q-PCR. CYP2C19 genotype distributions between Zhuang and Han groups in Nanning were compared using chi-square tests and contrasted with other ethnicities. Non-parametric tests analyzed VPA variations, identifying critical factors through multivariate stepwise regression. Results The study identified five CYP2C19 genotypes at the *2 and *3 loci, with the *3/*3 genotype absent in both cohorts. The CYP2C19 distribution in Guangxi Zhuang and Han mirrors, yet diverges significantly from Hui and Kazakh groups. Among 192 subjects, VPA blood levels remained consistent across metabolic types and ages 18-60 but varied significantly by gender. Multivariate analysis revealed gender and BMI as significant factors, overshadowing CYP2C19 genotype and age. Conclusion In Guangxi, CYP2C19 genetic variants in Zhuang and Han schizophrenia patients demonstrate statistically indistinguishable allelic and metabolic distributions. Gender and BMI can influence standardized VPA blood concentrations in schizophrenia patients. However, in our study cohort, the CYP2C19 genotype and age are not the primary determinants of standardized VPA blood levels.
Collapse
Affiliation(s)
- Jun Mei Teng
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shuiqing Qin
- Department of Science and Education, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Danyu Lu
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yefa Gu
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Jie Tang
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiong Yan
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jiawei Yao
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chao Zhang
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
21
|
Ganoci L, Palić J, Trkulja V, Starčević K, Šimičević L, Božina N, Lovrić-Benčić M, Poljaković Z, Božina T. Is CYP2C Haplotype Relevant for Efficacy and Bleeding Risk in Clopidogrel-Treated Patients? Genes (Basel) 2024; 15:607. [PMID: 38790236 PMCID: PMC11121599 DOI: 10.3390/genes15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
A recently discovered haplotype-CYP2C:TG-determines the ultrarapid metabolism of several CYP2C19 substrates. The platelet inhibitor clopidogrel requires CYP2C19-mediated activation: the risk of ischemic events is increased in patients with a poor (PM) or intermediate (IM) CYP2C19 metabolizer phenotype (vs. normal, NM; rapid, RM; or ultrarapid, UM). We investigated whether the CYP2C:TG haplotype affected efficacy/bleeding risk in clopidogrel-treated patients. Adults (n = 283) treated with clopidogrel over 3-6 months were classified by CYP2C19 phenotype based on the CYP2C19*2*17 genotype, and based on the CYP2C19/CYP2C cluster genotype, and regarding carriage of the CYP2:TG haplotype, and were balanced on a number of covariates across the levels of phenotypes/haplotype carriage. Overall, 45 (15.9%) patients experienced ischemic events, and 49 (17.3%) experienced bleedings. By either classification, the incidence of ischemic events was similarly numerically higher in PM/IM patients (21.6%, 21.8%, respectively) than in mutually similar NM, RM, and UM patients (13.2-14.8%), whereas the incidence of bleeding events was numerically lower (13.1% vs. 16.6-20.5%). The incidence of ischemic events was similar in CYP2C:TG carries and non-carries (14.1% vs. 16.1%), whereas the incidence of bleedings appeared mildly lower in the former (14.9% vs. 20.1%). We observed no signal to suggest a major effect of the CYP2C19/CYP2C cluster genotype or CYP2C:TG haplotype on the clinical efficacy/safety of clopidogrel.
Collapse
Affiliation(s)
- Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (L.G.)
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (V.T.); (N.B.)
| | - Jozefina Palić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vladimir Trkulja
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (V.T.); (N.B.)
| | - Katarina Starčević
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (K.S.); (Z.P.)
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (L.G.)
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nada Božina
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (V.T.); (N.B.)
| | - Martina Lovrić-Benčić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Zdravka Poljaković
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (K.S.); (Z.P.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
22
|
Shnayder NA, Grechkina VV, Trefilova VV, Kissin MY, Narodova EA, Petrova MM, Al-Zamil M, Garganeeva NP, Nasyrova RF. Ethnic Aspects of Valproic Acid P-Oxidation. Biomedicines 2024; 12:1036. [PMID: 38790997 PMCID: PMC11117587 DOI: 10.3390/biomedicines12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Mikhail Ya. Kissin
- Department of Psychiatry and Addiction, I.P. Pavlov First St. Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
23
|
Rodríguez-Alcolado L, Navarro P, Arias-González L, Grueso-Navarro E, Lucendo AJ, Laserna-Mendieta EJ. Proton-Pump Inhibitors in Eosinophilic Esophagitis: A Review Focused on the Role of Pharmacogenetics. Pharmaceutics 2024; 16:487. [PMID: 38675148 PMCID: PMC11054109 DOI: 10.3390/pharmaceutics16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Proton-pump inhibitors (PPIs) are the most administered first-line treatment for eosinophilic esophagitis (EoE). However, only around half of EoE patients respond histologically to a double dosage of PPI. In addition, 70% of responders maintain EoE in remission after tapering the PPI dose. In order to avoid endoscopy with biopsies-the only accurate method of assessing PPI response-efforts have been made to identify PPI responder patients. The clinical or endoscopic features and biomarkers evaluated so far, however, have not proven to be sufficient in predicting PPI response. Although new approaches based on omics technologies have uncovered promising biomarkers, the specialized and complex procedures required are difficult to implement in clinical settings. Alternatively, PPI pharmacogenetics based on identifying variations in CYP2C19 and STAT6 genes have shown promising results in EoE, and could easily be performed in most laboratories. Other genetic variations have also been associated with PPI response and may explain those cases not related to CYP2C19 or STAT6. Here, we provide an overview of PPI treatment in EoE and evidence of how genetic variations in CYP2C19 and other genes could affect PPI effectiveness, and also discuss studies evaluating the role of pharmacogenetics in predicting PPI response in patients with EoE.
Collapse
Affiliation(s)
- Leticia Rodríguez-Alcolado
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Department of Surgery, Medical and Social Sciences, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Pilar Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Laura Arias-González
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Elena Grueso-Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Alfredo J. Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Emilio J. Laserna-Mendieta
- Department of Gastroenterology, Hospital General de Tomelloso, 13700 Tomelloso, Spain; (L.R.-A.); (P.N.); (L.A.-G.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
24
|
Shen C, Yang H, Shao W, Zheng L, Zhang W, Xie H, Jiang X, Wang L. Physiologically Based Pharmacokinetic Modeling to Unravel the Drug-gene Interactions of Venlafaxine: Based on Activity Score-dependent Metabolism by CYP2D6 and CYP2C19 Polymorphisms. Pharm Res 2024; 41:731-749. [PMID: 38443631 DOI: 10.1007/s11095-024-03680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Venlafaxine (VEN) is a commonly utilized medication for alleviating depression and anxiety disorders. The presence of genetic polymorphisms gives rise to considerable variations in plasma concentrations across different phenotypes. This divergence in phenotypic responses leads to notable differences in both the efficacy and tolerance of the drug. PURPOSE A physiologically based pharmacokinetic (PBPK) model for VEN and its metabolite O-desmethylvenlafaxine (ODV) to predict the impact of CYP2D6 and CYP2C19 gene polymorphisms on VEN pharmacokinetics (PK). METHODS The parent-metabolite PBPK models for VEN and ODV were developed using PK-Sim® and MoBi®. Leveraging prior research, derived and implemented CYP2D6 and CYP2C19 activity score (AS)-dependent metabolism to simulate exposure in the drug-gene interactions (DGIs) scenarios. The model's performance was evaluated by comparing predicted and observed values of plasma concentration-time (PCT) curves and PK parameters values. RESULTS In the base models, 91.1%, 94.8%, and 94.6% of the predicted plasma concentrations for VEN, ODV, and VEN + ODV, respectively, fell within a twofold error range of the corresponding observed concentrations. For DGI scenarios, these values were 81.4% and 85% for VEN and ODV, respectively. Comparing CYP2D6 AS = 2 (normal metabolizers, NM) populations to AS = 0 (poor metabolizers, PM), 0.25, 0.5, 0.75, 1.0 (intermediate metabolizers, IM), 1.25, 1.5 (NM), and 3.0 (ultrarapid metabolizers, UM) populations in CYP2C19 AS = 2.0 group, the predicted DGI AUC0-96 h ratios for VEN were 3.65, 3.09, 2.60, 2.18, 1.84, 1.56, 1.34, 0.61, and for ODV, they were 0.17, 0.35, 0.51, 0.64, 0.75, 0.83, 0.90, 1.11, and the results were similar in other CYP2C19 groups. It should be noted that PK differences in CYP2C19 phenotypes were not similar across different CYP2D6 groups. CONCLUSIONS In clinical practice, the impact of genotyping on the in vivo disposition process of VEN should be considered to ensure the safety and efficacy of treatment.
Collapse
Affiliation(s)
- Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China.
| |
Collapse
|
25
|
Shubbar Q, Alchakee A, Issa KW, Adi AJ, Shorbagi AI, Saber-Ayad M. From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice. Front Pharmacol 2024; 15:1326776. [PMID: 38420192 PMCID: PMC10899532 DOI: 10.3389/fphar.2024.1326776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The CYP2C19 gene is frequently included in different pharmacogenomic panels tested in clinical practice, due to its involvement in the metabolism of a myriad of frequently prescribed medications. Accordingly, CYP2C19 genotyping can promote precise therapeutic decisions and avoid the occurrence of significant drug-drug-gene interactions in the clinical setting. A comprehensive examination of the role of the CYP2C19 gene in real-world medical settings is presented in this review. This review summarizes the most recent information on how genetic variants in CYP2C19 affect drug metabolism and therapeutic outcomes. It goes into the wide range of CYP2C19 phenotypes, with different degrees of metabolizing activity, and their implications for customized medication response through a review of the literature. The review also analyzes the clinical significance of CYP2C19 in several medical specialties, including cardiology, psychiatry, and gastro-enterology clinics, and illuminates how it affects pharmacological efficacy, safety, and adverse effects. Finally, CYP2C19-supported clinical decision-making is outlined, highlighting the possibility of improving therapeutic outcomes and achieving more affordable treatment options, a step towards optimizing healthcare provision through precision medicine.
Collapse
Affiliation(s)
- Qamar Shubbar
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aminah Alchakee
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled Walid Issa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Jabbar Adi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
26
|
Varma R, Staab JP, Matey ET, Wright JA, Deb B, Lazaridis KN, Szarka LA, Bailey KR, Bharucha AE. Most patients with disorders of gut-brain interaction receive pharmacotherapy with major or moderate drug-gene interactions. Neurogastroenterol Motil 2024; 36:e14722. [PMID: 38072827 DOI: 10.1111/nmo.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND How variations predicted by pharmacogenomic testing to alter drug metabolism and therapeutic response affect outcomes for patients with disorders of gut- brain interaction is unclear. AIMS To assess the prevalence of pharmacogenomics-predicted drug-gene interactions and symptom outcomes for patients with disorders of gut-brain interaction. METHODS Patients who were treated in our clinical practice for functional dyspepsia/bowel disorder underwent pharmacogenomic testing. The change in symptoms from baseline to 6 months was compared for patients with variations in CYP2D6 and CYP2C19, which metabolize neuromodulators, and SLC6A4, which encodes the sodium- dependent serotonin transporter. RESULTS At baseline, 79 of 94 participants (84%) had at least one predicted major drug- gene interaction, and all 94 (100%) had at least one predicted moderate interaction. For the 44 participants who completed a survey of their symptoms at 6 months, the mean (SD) irritable bowel syndrome-symptom severity score decreased from 284 (71) at baseline to 231 (95) at 6 months (p < 0.001). Among patients taking selective serotonin reuptake inhibitors, the decrease in symptom severity (p = 0.03) and pain (p = 0.002) scores from baseline to 6 months was greater for patients with a homozygous SLC6A4 long/long genotype (n = 30) (ie, increased serotonin transporter activity) than for patients with homozygous short/short or heterozygous long/short genotypes (n = 64). Symptom outcomes were not affected by CYP2D6 or CYP2C19 variations. CONCLUSIONS The homozygous SLC6A4 long/long genotype confers better symptom resolution for patients with disorders of gut-brain interaction who take selective serotonin reuptake inhibitors than do the homozygous short/short or heterozygous long/short genotypes.
Collapse
Affiliation(s)
- Revati Varma
- Research Fellow in the Division of Gastroenterology and Hepatology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric T Matey
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Brototo Deb
- Research Fellow in the Division of Gastroenterology and Hepatology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | | | - Lawrence A Szarka
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent R Bailey
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Khasawneh LQ, Alsafar H, Alblooshi H, Allam M, Patrinos GP, Ali BR. The diversity and clinical implications of genetic variants influencing clopidogrel bioactivation and response in the Emirati population. Hum Genomics 2024; 18:2. [PMID: 38173046 PMCID: PMC10765826 DOI: 10.1186/s40246-023-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.
Collapse
Affiliation(s)
- Lubna Q Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
28
|
Booyse RP, Twesigomwe D, Hazelhurst S. Characterization of CYP2C19 pharmacogenetic variation in African populations and comparison with other global populations. Pharmacogenomics 2023; 24:845-857. [PMID: 37929326 PMCID: PMC10694788 DOI: 10.2217/pgs-2023-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Background: CYP2C19 is important in the metabolism of clopidogrel and several antidepressants. This study aimed to characterize the distribution of CYP2C19 star alleles (haplotypes) across diverse African populations compared with global populations. Methods: CYP2C19 star alleles and diplotypes were called from high coverage genomes using the StellarPGx pipeline. Results: CYP2C19*1 (51%), *2 (17%) and *17 (22%) were the most common star alleles across African populations in this study. It was observed that 3% of African participants had potentially novel CYP2C19 haplotypes. Conclusion: This study supports the necessity for CYP2C19 pharmacogenetic testing in African and global clinical settings, as well as the importance of comprehensive star allele characterization in the African context.
Collapse
Affiliation(s)
- Ross P Booyse
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Twesigomwe
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Li B, Sangkuhl K, Whaley R, Woon M, Keat K, Whirl-Carrillo M, Ritchie MD, Klein TE. Frequencies of pharmacogenomic alleles across biogeographic groups in a large-scale biobank. Am J Hum Genet 2023; 110:1628-1647. [PMID: 37757824 PMCID: PMC10577080 DOI: 10.1016/j.ajhg.2023.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Pharmacogenomics (PGx) is an integral part of precision medicine and contributes to the maximization of drug efficacy and reduction of adverse drug event risk. Accurate information on PGx allele frequencies improves the implementation of PGx. Nonetheless, curating such information from published allele data is time and resource intensive. The limited number of allelic variants in most studies leads to an underestimation of certain alleles. We applied the Pharmacogenomics Clinical Annotation Tool (PharmCAT) on an integrated 200K UK Biobank genetic dataset (N = 200,044). Based on PharmCAT results, we estimated PGx frequencies (alleles, diplotypes, phenotypes, and activity scores) for 17 pharmacogenes in five biogeographic groups: European, Central/South Asian, East Asian, Afro-Caribbean, and Sub-Saharan African. PGx frequencies were distinct for each biogeographic group. Even biogeographic groups with similar proportions of phenotypes were driven by different sets of dominant PGx alleles. PharmCAT also identified "no-function" alleles that were rare or seldom tested in certain groups by previous studies, e.g., SLCO1B1∗31 in the Afro-Caribbean (3.0%) and Sub-Saharan African (3.9%) groups. Estimated PGx frequencies are disseminated via the PharmGKB (The Pharmacogenomics Knowledgebase: www.pharmgkb.org). We demonstrate that genetic biobanks such as the UK Biobank are a robust resource for estimating PGx frequencies. Improving our understanding of PGx allele and phenotype frequencies provides guidance for future PGx studies and clinical genetic test panel design, and better serves individuals from wider biogeographic backgrounds.
Collapse
Affiliation(s)
- Binglan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Ryan Whaley
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Mark Woon
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Karl Keat
- Genomics and Computational Biology PhD Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics (by courtesy), Stanford University, Stanford, CA 94305, USA; Department of Medicine (BMIR), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Yang G, González P, Moneró M, Carrasquillo K, Renta JY, Hernandez-Suarez DF, Botton MR, Melin K, Scott SA, Ruaño G, Roche-Lima A, Alarcon C, Ritchie MD, Perera MA, Duconge J. Discovery of Ancestry-specific Variants Associated with Clopidogrel Response among Caribbean Hispanics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.29.23296372. [PMID: 37873439 PMCID: PMC10593031 DOI: 10.1101/2023.09.29.23296372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background High on-treatment platelet reactivity (HTPR) with clopidogrel is predictive of ischemic events in adults with coronary artery disease. Despite strong data suggesting HTPR varies with ethnicity, including clinical and genetic variables, no genome-wide association study (GWAS) of clopidogrel response has been performed among Caribbean Hispanics. This study aimed to identify genetic predictors of HTPR in a cohort of Caribbean Hispanic cardiovascular patients from Puerto Rico. Methods Local Ancestry inference (LAI) and traditional GWASs were performed on a cohort of 511 clopidogrel-treated patients, stratified based on their P2Y12 reaction units (PRU) into responders and non-responders (HTPR). Results The LAI GWAS identified variants within the CYP2C19 region associated with HTPR, predominantly driven by individuals of European ancestry and absent in those with native ancestry. Incorporating local ancestry adjustment notably enhanced our ability to detect associations. While no loci reached traditional GWAS significance, three variants showed suggestive significance at chromosomes 3, 14 and 22 (OSBPL10 rs1376606, DERL3 rs5030613, and RGS6 rs9323567). In addition, a variant in the UNC5C gene on chromosome 4 was associated with an increased risk of HTPR. These findings were not identified in other cohorts, highlighting the unique genetic landscape of Caribbean Hispanics. Conclusion This is the first GWAS of clopidogrel response in Hispanics, confirming the relevance of the CYP2C19 cluster, particularly among those with European ancestry, and also identifying novel markers in a diverse patient population. Further studies are warranted to replicate our findings in other diverse cohorts and meta-analyses.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, United States
| | - Pablo González
- Department of Pharmacology, School of Medicine, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Mariangeli Moneró
- Department of Pharmacology, School of Medicine, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Kelvin Carrasquillo
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Jessicca Y. Renta
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Dagmar F. Hernandez-Suarez
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Mariana R. Botton
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Kyle Melin
- Department of Pharmacy Practice, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Stuart A. Scott
- Department of Pathology, Stanford University, Palo Alto, CA 94304, United States
| | - Gualberto Ruaño
- Institute of Living at Hartford Hospital, Hartford, CT 06102, United States
| | - Abiel Roche-Lima
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, United States
| | - Marylyn D. Ritchie
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, United States
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, United States
| | - Jorge Duconge
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, 00936, United States
| |
Collapse
|
31
|
Ramste M, Ritvos M, Häyrynen S, Kiiski JI, Niemi M, Sinisalo J. CYP2C19 loss-of-function alleles and use of omeprazole or esomeprazole increase the risk of cardiovascular outcomes in patients using clopidogrel. Clin Transl Sci 2023; 16:2010-2020. [PMID: 37551775 PMCID: PMC10582682 DOI: 10.1111/cts.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Our aim was to investigate in a real-life prospective patient cohort how CYP2C19 loss-of-function (LOF) variants and CYP2C19 inhibitor omeprazole or esomeprazole influence the incidence of cardiovascular events in patients using clopidogrel. Data based simultaneously on these factors are conflicting and sparse. A cohort of prospective patients (n = 1972) with acute coronary syndrome (n = 1302) or symptomatic chronic coronary disease (n = 656) was followed for 365 days after hospitalization with information on purchased prescription drugs, hospital discharge, death, and genotype for CYP2C19*2, CYP2C19*3, and CYP2C19*8 LOF variants. The primary study outcome measurement was cardiovascular death or recurring myocardial infarction or stroke. Altogether, 608 patients (30.8%) carried CYP2C19 LOF alleles. During the 365-day follow-up 252 patients (12.8%) had an ischemic vascular event. Cardiovascular events were significantly more frequent in carriers of CYP2C19 LOF alleles (14.8%, 95% confidence interval [CI], 11.7-17.8) than in non-carriers (10.8%, 95% CI, 9.0-12.6, p = 0.0159). Omeprazole or esomeprazole use was similar among LOF allele carriers (n = 131, 21.5%) and non-carriers (n = 250, 18.3%, p = 0.185). Cardiovascular events were significantly more common in a composite group consisting of all CYP2C19 LOF carriers regardless of proton pump inhibitor use status and non-carriers using omeprazole or esomeprazole than in non-carriers not using omeprazole or esomeprazole (14.8%, 95% CI, 12.2-17.3 vs. 9.9%, 95% CI, 8.0-11.9, p = 0.00173). We observed significantly more cardiovascular events in carriers of CYP2C19 LOF variants and in non-carriers using omeprazole or esomeprazole. For optimal patient care, both genetics and concomitant medication should be considered.
Collapse
Affiliation(s)
- Markus Ramste
- Heart and Lung Center, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Markus Ritvos
- Heart and Lung Center, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | | | - Johanna I. Kiiski
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
32
|
Yarlagadda A, Swift K, Chakraborty N, Hammamieh R, Abubakar A, Wilbur M, Clayton AH. Outpatient Pharmacogenomic Screenings to Prevent Addiction, Overdose, and Suicide. INNOVATIONS IN CLINICAL NEUROSCIENCE 2023; 20:12-17. [PMID: 38193100 PMCID: PMC10773601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Point-of-care genetic testing for single nucleotide polymorphisms (SNPs) to improve psychiatric treatment in outpatient settings remains a challenge. The presence or absence of certain genomic alleles determines the activity of the encoded enzymes, which ultimately defines the individual's drug metabolism rate. Classification of poor metabolizers (PMs) and rapid/ultrarapid metabolizers (RMs/UMs) would facilitate personalization and precision of treatment. However, current pharmacogenomic (PGx) testing of multiple genes is comprehensive and requires quantitative analyses for interpretations. We recommend qualitative, fast-track, point-of-care screenings, which are one- or-two gene-based analyses, as a quick initial screening tool to potentially eliminate the need for an expensive quantitative send-out test, which is a costly and lengthy process. We speculate that these tests will be relevant in two major scenarios: 1) clinical psychiatry for treating disease states such as major depressive disorder (MDD) and posttraumatic stress disorder (PTSD), where trial and error is still the mainstay of drug selection and symptom management, a process that is associated with significant delay in optimizing individualized treatment and dose, and thus response; and 2) pain management, where quickly determining an effective level of analgesia while avoiding a toxic level can cause a drastic improvement in mental health.
Collapse
Affiliation(s)
- Atmaram Yarlagadda
- Dr. Yarlagadda is Installation Director of Psychological Health at McDonald Army Health Center in Fort Eustis, Virginia
| | - Kevin Swift
- Drs. Swift, Chakraborty, and Hammamieh are with Medical Readiness Systems Biology, Walter Reed Army Institute of Research in Silver Spring, Maryland
| | - Nabarun Chakraborty
- Drs. Swift, Chakraborty, and Hammamieh are with Medical Readiness Systems Biology, Walter Reed Army Institute of Research in Silver Spring, Maryland
| | - Rasha Hammamieh
- Drs. Swift, Chakraborty, and Hammamieh are with Medical Readiness Systems Biology, Walter Reed Army Institute of Research in Silver Spring, Maryland
| | - Amina Abubakar
- Drs. Abubakar and Wilbur are with Avant Institute in Charlotte, North Carolina
| | - Marianna Wilbur
- Drs. Abubakar and Wilbur are with Avant Institute in Charlotte, North Carolina
| | - Anita H. Clayton
- Dr. Clayton is with Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine in Charlottesville, Virginia
| |
Collapse
|
33
|
Cataldi M, Celentano C, Bencivenga L, Arcopinto M, Resnati C, Manes A, Dodani L, Comnes L, Vander Stichele R, Kalra D, Rengo G, Giallauria F, Trama U, Ferrara N, Cittadini A, Taglialatela M. Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential. Geriatrics (Basel) 2023; 8:84. [PMID: 37736884 PMCID: PMC10514861 DOI: 10.3390/geriatrics8050084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pharmacogenomic factors affect the susceptibility to drug-drug interactions (DDI). We identified drug interaction perpetrators among the drugs prescribed to a cohort of 290 older adults and analysed the prevalence of gene polymorphisms that can increase their interacting potential. We also pinpointed clinical decision support systems (CDSSs) that incorporate pharmacogenomic factors in DDI risk evaluation. METHODS Perpetrator drugs were identified using the Drug Interactions Flockhart Table, the DRUGBANK website, and the Mayo Clinic Pharmacogenomics Association Table. Allelic variants affecting their activity were identified with the PharmVar, PharmGKB, dbSNP, ensembl and 1000 genome databases. RESULTS Amiodarone, amlodipine, atorvastatin, digoxin, esomperazole, omeprazole, pantoprazole, simvastatin and rosuvastatin were perpetrator drugs prescribed to >5% of our patients. Few allelic variants affecting their perpetrator activity showed a prevalence >2% in the European population: CYP3A4/5*22, *1G, *3, CYP2C9*2 and *3, CYP2C19*17 and *2, CYP2D6*4, *41, *5, *10 and *9 and SLC1B1*15 and *5. Few commercial CDSS include pharmacogenomic factors in DDI-risk evaluation and none of them was designed for use in older adults. CONCLUSIONS We provided a list of the allelic variants influencing the activity of drug perpetrators in older adults which should be included in pharmacogenomics-oriented CDSSs to be used in geriatric medicine.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, Cité de la Santé, Place Lange, 31300 Toulouse, France
| | - Michele Arcopinto
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Chiara Resnati
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Annalaura Manes
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Loreta Dodani
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Lucia Comnes
- Datawizard, Via Salaria 719a, 00138 Rome, Italy;
| | - Robert Vander Stichele
- Heymans Institute of Pharmacology, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (R.V.S.); (D.K.)
- European Institute for Innovation through Health Data, c/o Department Medical Informatics and Statistics, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Dipak Kalra
- Heymans Institute of Pharmacology, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (R.V.S.); (D.K.)
- European Institute for Innovation through Health Data, c/o Department Medical Informatics and Statistics, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Istituti Clinici Scientifici—ICS Maugeri S.p.A., Via Bagni Vecchi 1, 82037 Telese, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Ugo Trama
- General Directorate for Health Protection and Coordination of the Regional Health System, Regione Campania, Centro Direzionale Is. C3, 80132 Naples, Italy;
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Istituti Clinici Scientifici—ICS Maugeri S.p.A., Via Bagni Vecchi 1, 82037 Telese, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| |
Collapse
|
34
|
Soh BWT, Cusack R, Waters M, O'Connor C, Arnous S, Kiernan T. Post-percutaneous coronary intervention CYP2C19 genotyping in an Irish population: The potential role in identifying clopidogrel therapy-related bleeding risks. Br J Clin Pharmacol 2023; 89:2413-2422. [PMID: 36890711 DOI: 10.1111/bcp.15709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI) remains the standard of care. CYP2C19 genetic polymorphisms cause variable clopidogrel bioactivation. Increased function (CYP2C19*17) allele carriers (rapid metabolizers [RM] or ultrarapid metabolizers [UM]) are clopidogrel hyper-responders, hence are more susceptible to clopidogrel-related bleeding. Since current guidelines recommend against routine genotyping following PCI, data on the clinical utility of CYP2C19*17 genotype guided strategy are sparce. Our study provides real-world data on the 12-month follow-up of CYP2C19 genotyping in patients post-PCI. METHODS This is a cohort study within an Irish population receiving 12-month DAPT following PCI. It identifies the prevalence of CYP2C19 polymorphisms within an Irish population and describes the ischaemic and bleeding outcomes after 12 months of DAPT. RESULTS A total of 129 patients were included with the following CYP2C19 polymorphism prevalence: 30.2% hyper-responders (26.4% RM [1*/17*], 3.9% UM [17*/17*]) and 28.7% poor-responders (22.5% IM [1*/2*], 3.9% IM [2*/17*], 2.3% PM [2*/2*]). A total of 53 and 76 patients received clopidogrel and ticagrelor, respectively. At 12 months, total bleeding incidence within the clopidogrel group was positively correlated with CYP2C19 activity: IM/PM (0.0%), NM (15.0%) and RM/UM (25.0%). The positive relationship showed a moderate association that was statistically significant: rτ = 0.28, P = 0.035. CONCLUSIONS The prevalence of CYP2C19 polymorphisms in Ireland is 58.9% (30.2% CYP2C19*17, 28.7% CYP2C19*2) with an approximately one in three chance of being a clopidogrel hyper-responder. Positive correlation between bleeding and increasing CYP2C19 activity within the clopidogrel group (n = 53) suggests possible clinical utility of a genotype-guided strategy identifying high bleeding risk with clopidogrel in CYP2C19*17 carriers, but further studies are required.
Collapse
Affiliation(s)
| | - Ronan Cusack
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
| | - Max Waters
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
| | - Cormac O'Connor
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
| | - Samer Arnous
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
| | - Thomas Kiernan
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Alsultan A, Alalwan AA, Alshehri B, Jeraisy MA, Alghamdi J, Alqahtani S, Albassam AA. Interethnic differences in drug response: projected impact of genetic variations in the Saudi population. Pharmacogenomics 2023; 24:685-696. [PMID: 37610881 DOI: 10.2217/pgs-2023-0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Ethnicity is known to have an impact on drug responses. This is particularly important for drugs that have a narrow therapeutic window, nonlinearity in pharmacokinetics and are metabolized by enzymes that demonstrate genetic polymorphisms. However, most clinical trials are conducted among Caucasians, which might limit the usefulness of the findings of such studies for other ethnicities. The representation of participants from Saudi Arabia in global clinical trials is low. Therefore, there is a paucity of evidence to assess the impact of ethnic variability in the Saudi population on drug response. In this article, the authors assess the projected impact of genetic polymorphisms in drug-metabolizing enzymes and drug targets on drug response in the Saudi population.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alalwan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bashayer Alshehri
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Majed Al Jeraisy
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
36
|
Zhou L, Li M, Li H, Guo Z, Gao Y, Zhang H, Qin F, Sang Z, Xing Q, Cheng L, Cao W. Establishment of a mathematical prediction model for voriconazole stable maintenance dose: a prospective study. Front Cell Infect Microbiol 2023; 13:1157944. [PMID: 37565064 PMCID: PMC10410275 DOI: 10.3389/fcimb.2023.1157944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Background In patients with invasive fungal infection (IFI), the steady-state serum trough concentration (C min) of voriconazole (VCZ) is highly variable and can lead to treatment failure (C min < 0.5 mg/L) and toxicity (C min ≥ 5.0 mg/L). However, It remains challenging to determine the ideal maintenance dose to achieve the desired C min level quickly. Aims This randomized, prospective observational single-center study aimed to identify factors affecting VCZ-C min and maintenance dose and create an algorithmic model to predict the necessary maintenance dose. MeThe study enrolled 306 adult IFI patients, split into two groups: non-gene-directed (A) (where CYP2C19 phenotype is not involved in determining VCZ dose) and gene-directed (B) (where CYP2C19 phenotype is involved in determining VCZ dose). Results Results indicated that CYP2C19 genetic polymorphisms might significantly impact VCZ loading and maintenance dose selection. CYP2C19 phenotype, C-reaction protein (CRP), and average daily dose/body weight were significant influencers on VCZ-C min, while CYP2C19 phenotype, CRP, and body weight significantly impacted VCZ maintenance dose. A feasible predictive formula for VCZ stable maintenance dose was derived from the regression equation as a maintenance dose (mg) =282.774-0.735×age (year)+2.946×body weight(Kg)-19.402×CYP2C19 phenotype (UM/RM/NM:0, IM:1, PM:2)-0.316×CRP (mg/L) (p < 0.001). Discussion DiThis formula may serve as a valuable supplement to the Clinical Pharmacogenetics Implementation Consortium (CPIC®) guideline for CYP2C19 and VCZ therapy, especially for IFI patients with highly variable inflammatory cytokines during VCZ therapy.
Collapse
Affiliation(s)
- Lijuan Zhou
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Huihong Li
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiqiang Guo
- Department of Hematology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqiu Gao
- Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Zhang
- Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Fuli Qin
- Department of Hematology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Sang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children’s Hospital, Fudan University, Shanghai, China
| | - Long Cheng
- College of Nursing, Chifeng University, Chifeng, Inner Mongolia, China
| | - Wei Cao
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Liu J, Zhang C, Song J, Zhang Q, Zhang R, Zhang M, Han D, Tan W. Unlocking Genetic Profiles with a Programmable DNA-Powered Decoding Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206343. [PMID: 37116171 PMCID: PMC10369254 DOI: 10.1002/advs.202206343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Human genetic architecture provides remarkable insights into disease risk prediction and personalized medication. Advances in genomics have boosted the fine-mapping of disease-associated genetic variants across human genome. In healthcare practice, interpreting intricate genetic profiles into actionable medical decisions can improve health outcomes but remains challenging. Here an intelligent genetic decoder is engineered with programmable DNA computation to automate clinical analyses and interpretations. The DNA-based decoder recognizes multiplex genetic information by one-pot ligase-dependent reactions and interprets implicit genetic profiles into explicit decision reports. It is shown that the DNA decoder implements intended computation on genetic profiles and outputs a corresponding answer within hours. Effectiveness in 30 human genomic samples is validated and it is shown that it achieves desirable performance on the interpretation of CYP2C19 genetic profiles into drug responses, with accuracy equivalent to that of Sanger sequencing. Circuit modules of the DNA decoder can also be readily reprogrammed to interpret another pharmacogenetics genes, provide drug dosing recommendations, and implement reliable molecular calculation of polygenic risk score (PRS) and PRS-informed cancer risk assessment. The DNA-powered intelligent decoder provides a general solution to the translation of complex genetic profiles into actionable healthcare decisions and will facilitate personalized healthcare in primary care.
Collapse
Affiliation(s)
- Junlan Liu
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Chao Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jinxing Song
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Qing Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Rongjun Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Mingzhi Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Da Han
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| |
Collapse
|
38
|
Khoza N, Twesigomwe D, Othman H. Characterizing the combined effects of cytochrome P450 missense variation within star allele definitions. Pharmacogenomics 2023; 24:561-578. [PMID: 37503750 DOI: 10.2217/pgs-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Cytochrome P450 (CYP) genetic variation largely impacts drug response. However, many CYP star alleles (haplotypes) lack functional annotation, impeding our understanding of drug metabolism mechanisms. We aimed to investigate the impact of missense variant combinations on CYP protein structures. Methods: Normal mode analysis was conducted on 261 missense variants within 91 CYP haplotypes. CYP2D6*2 and CYP2D6*17 were prioritized for molecular dynamics simulation. Results: Normal mode analysis and molecular dynamics highlight the effects of known CYP missense variants on protein stability and conformational dynamics. Missense variants within haplotypes may have intermodulating effects on protein structure and function. Conclusion: This study highlights the utility of multiscale modeling in interpreting CYP missense variants and particularly their combinations within various star alleles.
Collapse
Affiliation(s)
- Nhlamulo Khoza
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, 4000, Tunisia
| |
Collapse
|
39
|
Bousman CA, Stevenson JM, Ramsey LB, Sangkuhl K, Kevin Hicks J, Strawn JR, Singh AB, Ruaño G, Mueller DJ, Tsermpini EE, Brown JT, Bell GC, Steven Leeder J, Gaedigk A, Scott SA, Klein TE, Caudle KE, Bishop JR. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin Pharmacol Ther 2023; 114:51-68. [PMID: 37032427 PMCID: PMC10564324 DOI: 10.1002/cpt.2903] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Serotonin reuptake inhibitor antidepressants, including selective serotonin reuptake inhibitors (SSRIs; i.e., citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline), serotonin and norepinephrine reuptake inhibitors (i.e., desvenlafaxine, duloxetine, levomilnacipran, milnacipran, and venlafaxine), and serotonin modulators with SSRI-like properties (i.e., vilazodone and vortioxetine) are primary pharmacologic treatments for major depressive and anxiety disorders. Genetic variation in CYP2D6, CYP2C19, and CYP2B6 influences the metabolism of many of these antidepressants, which may potentially affect dosing, efficacy, and tolerability. In addition, the pharmacodynamic genes SLC6A4 (serotonin transporter) and HTR2A (serotonin-2A receptor) have been examined in relation to efficacy and side effect profiles of these drugs. This guideline updates and expands the 2015 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and SSRI dosing and summarizes the impact of CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A genotypes on antidepressant dosing, efficacy, and tolerability. We provide recommendations for using CYP2D6, CYP2C19, and CYP2B6 genotype results to help inform prescribing these antidepressants and describe the existing data for SLC6A4 and HTR2A, which do not support their clinical use in antidepressant prescribing.
Collapse
Affiliation(s)
- Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, and Community Health Sciences, University of Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - James M. Stevenson
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura B. Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
- Divisions of Child & Adolescent Psychiatry and Clinical Pharmacology Cincinnati, Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ajeet B. Singh
- School of Medicine, IMPACT Institute, Deakin University, Australia
| | - Gualberto Ruaño
- Institute of Living at Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Daniel J. Mueller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jacob T. Brown
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN, USA
| | | | - J. Steven Leeder
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Stuart A. Scott
- Department of Pathology, Stanford University, Palo Alto, CA, USA
- Stanford Medicine Clinical Genomics Program, Stanford Medicine, Stanford, CA, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kelly E. Caudle
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
40
|
Li S, Xie L, Yang L, Jiang L, Yang Y, Zhi H, Liu X, Yang H, Liu L. Prediction of Omeprazole Pharmacokinetics and its Inhibition on Gastric Acid Secretion in Humans Using Physiologically Based Pharmacokinetic-Pharmacodynamic Model Characterizing CYP2C19 Polymorphisms. Pharm Res 2023; 40:1735-1750. [PMID: 37226024 DOI: 10.1007/s11095-023-03531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE To develop a whole physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model to describe the pharmacokinetics and anti-gastric acid secretion of omeprazole in CYP2C19 extensive metabolizers (EMs), intermediate metabolizers (IMs), poor metabolizers (PMs) and ultrarapid metabolizers (UMs) following oral or intravenous administration. METHODS A PBPK/PD model was built using Phoenix WinNolin software. Omeprazole was mainly metabolized by CYP2C19 and CYP3A4 and the CYP2C19 polymorphism was incorporated using in vitro data. We described the PD by using a turn-over model with parameter estimates from dogs and the effect of a meal on the acid secretion was also implemented. The model predictions were compared to 53 sets of clinical data. RESULTS Predictions of omeprazole plasma concentration (72.2%) and 24 h stomach pH after administration (85%) were within 0.5-2.0-fold of the observed values, indicating that the PBPK-PD model was successfully developed. Sensitivity analysis demonstrated that the contributions of the tested factors to the plasma concentration of omeprazole were Vmax,2C19 ≈ Papp > Vmax,3A4 > Kti, and contributions to its pharmacodynamic were Vmax,2C19 > kome > kms > Papp > Vmax,3A4. The simulations showed that while the initial omeprazole dose in UMs, EMs, and IMs increased 7.5-, 3- and 1.25-fold compared to those of PMs, the therapeutic effect was similar. CONCLUSIONS The successful establishment of this PBPK-PD model highlights that pharmacokinetic and pharmacodynamic profiles of drugs can be predicted using preclinical data. The PBPK-PD model also provided a feasible alternative to empirical guidance for the recommended doses of omeprazole.
Collapse
Affiliation(s)
- Shuai Li
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Xie
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Jiang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiting Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhi
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
41
|
Bertholim-Nasciben L, Scliar MO, Debortoli G, Thiruvahindrapuram B, Scherer SW, Duarte YAO, Zatz M, Suarez-Kurtz G, Parra EJ, Naslavsky MS. Characterization of pharmacogenomic variants in a Brazilian admixed cohort of elderly individuals based on whole-genome sequencing data. Front Pharmacol 2023; 14:1178715. [PMID: 37234706 PMCID: PMC10206227 DOI: 10.3389/fphar.2023.1178715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Research in the field of pharmacogenomics (PGx) aims to identify genetic variants that modulate response to drugs, through alterations in their pharmacokinetics (PK) or pharmacodynamics (PD). The distribution of PGx variants differs considerably among populations, and whole-genome sequencing (WGS) plays a major role as a comprehensive approach to detect both common and rare variants. This study evaluated the frequency of PGx markers in the context of the Brazilian population, using data from a population-based admixed cohort from Sao Paulo, Brazil, which includes variants from WGS of 1,171 unrelated, elderly individuals. Methods: The Stargazer tool was used to call star alleles and structural variants (SVs) from 38 pharmacogenes. Clinically relevant variants were investigated, and the predicted drug response phenotype was analyzed in combination with the medication record to assess individuals potentially at high-risk of gene-drug interaction. Results: In total, 352 unique star alleles or haplotypes were observed, of which 255 and 199 had a frequency < 0.05 and < 0.01, respectively. For star alleles with frequency > 5% (n = 97), decreased, loss-of-function and unknown function accounted for 13.4%, 8.2% and 27.8% of alleles or haplotypes, respectively. Structural variants (SVs) were identified in 35 genes for at least one individual, and occurred with frequencies >5% for CYP2D6, CYP2A6, GSTM1, and UGT2B17. Overall 98.0% of the individuals carried at least one high risk genotype-predicted phenotype in pharmacogenes with PharmGKB level of evidence 1A for drug interaction. The Electronic Health Record (EHR) Priority Result Notation and the cohort medication registry were combined to assess high-risk gene-drug interactions. In general, 42.0% of the cohort used at least one PharmGKB evidence level 1A drug, and 18.9% of individuals who used PharmGKB evidence level 1A drugs had a genotype-predicted phenotype of high-risk gene-drug interaction. Conclusion: This study described the applicability of next-generation sequencing (NGS) techniques for translating PGx variants into clinically relevant phenotypes on a large scale in the Brazilian population and explores the feasibility of systematic adoption of PGx testing in Brazil.
Collapse
Affiliation(s)
- Luciana Bertholim-Nasciben
- School of Public Health, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | | | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yeda A. O. Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
42
|
Sanz-Solas A, Labrador J, Alcaraz R, Cuevas B, Vinuesa R, Cuevas MV, Saiz-Rodríguez M. Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives. J Pers Med 2023; 13:jpm13040695. [PMID: 37109081 PMCID: PMC10145990 DOI: 10.3390/jpm13040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple myeloma (MM) is a hematological neoplasm for which different chemotherapy treatments are used with several drugs in combination. One of the most frequently used drugs for the treatment of MM is the proteasome inhibitor bortezomib. Patients treated with bortezomib are at increased risk for thrombocytopenia, neutropenia, gastrointestinal toxicities, peripheral neuropathy, infection, and fatigue. This drug is almost entirely metabolized by cytochrome CYP450 isoenzymes and transported by the efflux pump P-glycoprotein. Genes encoding both enzymes and transporters involved in the bortezomib pharmacokinetic pathway are highly polymorphic. The response to bortezomib and the incidence of adverse drug reactions (ADRs) vary among patients, which could be due to interindividual variations in these possible pharmacogenetic biomarkers. In this review, we compiled all pharmacogenetic information relevant to the treatment of MM with bortezomib. In addition, we discuss possible future perspectives and the analysis of potential pharmacogenetic markers that could influence the incidence of ADR and the toxicity of bortezomib. It would be a milestone in the field of targeted therapy for MM to relate potential biomarkers to the various effects of bortezomib on patients.
Collapse
Affiliation(s)
- Antonio Sanz-Solas
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Facultad de Medicina, Campus de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Jorge Labrador
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Beatriz Cuevas
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Raquel Vinuesa
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | | | - Miriam Saiz-Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Department of Health Sciences, Health Sciences Faculty, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
43
|
Ramsey LB, Gong L, Lee SB, Wagner JB, Zhou X, Sangkuhl K, Adams SM, Straka RJ, Empey PE, Boone EC, Klein TE, Niemi M, Gaedigk A. PharmVar GeneFocus: SLCO1B1. Clin Pharmacol Ther 2023; 113:782-793. [PMID: 35797228 PMCID: PMC10900141 DOI: 10.1002/cpt.2705] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) is now providing star (*) allele nomenclature for the highly polymorphic human SLCO1B1 gene encoding the organic anion transporting polypeptide 1B1 (OATP1B1) drug transporter. Genetic variation within the SLCO1B1 gene locus impacts drug transport, which can lead to altered pharmacokinetic profiles of several commonly prescribed drugs. Variable OATP1B1 function is of particular importance regarding hepatic uptake of statins and the risk of statin-associated musculoskeletal symptoms. To introduce this important drug transporter gene into the PharmVar database and serve as a unified reference of haplotype variation moving forward, an international group of gene experts has performed an extensive review of all published SLCO1B1 star alleles. Previously published star alleles were self-assigned by authors and only loosely followed the star nomenclature system that was first developed for cytochrome P450 genes. This nomenclature system has been standardized by PharmVar and is now applied to other important pharmacogenes such as SLCO1B1. In addition, data from the 1000 Genomes Project and investigator-submitted data were utilized to confirm existing haplotypes, fill knowledge gaps, and/or define novel star alleles. The PharmVar-developed SLCO1B1 nomenclature has been incorporated by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 2022 guideline on statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Laura B Ramsey
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Korea
| | - Jonathan B Wagner
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Solomon M Adams
- School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip E Empey
- School of Pharmacy and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
44
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
45
|
Relevance of Pharmacogenomics to the Safe Use of Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12030425. [PMID: 36978292 PMCID: PMC10044203 DOI: 10.3390/antibiotics12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
There has been widespread implementation of pharmacogenomic testing to inform drug prescribing in medical specialties such as oncology and cardiology. Progress in using pharmacogenomic tests when prescribing antimicrobials has been more limited, though a relatively large number of pharmacogenomic studies on aspects such as idiosyncratic adverse drug reactions have now been performed for this drug class. Currently, there are recommendations in place from either National Regulatory Agencies and/or specialist Pharmacogenomics Advisory Groups concerning genotyping for specific variants in MT-RNR1 and CYP2C19 before prescribing aminoglycosides and voriconazole, respectively. Numerous additional pharmacogenomic associations have been reported concerning antimicrobial-related idiosyncratic adverse drug reactions, particularly involving specific HLA alleles, but, to date, the cost-effectiveness of genotyping prior to prescription has not been confirmed. Polygenic risk score determination has been investigated to a more limited extent but currently suffers from important limitations. Despite limited progress to date, the future widespread adoption of preemptive genotyping and genome sequencing may provide pharmacogenomic data to prescribers that can be used to inform prescribing and increase the safe use of antimicrobials.
Collapse
|
46
|
Ho TT, Noble M, Tran BA, Sunjic K, Gupta SV, Turgeon J, Crutchley RD. Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. J Pers Med 2023; 13:jpm13020285. [PMID: 36836519 PMCID: PMC9961427 DOI: 10.3390/jpm13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Diazepam is a benzodiazepine widely prescribed for the management of patients with severe alcohol withdrawal syndrome to prevent agitation, withdrawal seizures, and delirium tremens. Despite standard dosing of diazepam, a subset of patients experience refractory withdrawal syndromes or adverse drug reactions, such as impaired motor coordination, dizziness, and slurred speech. The CYP2C19 and CYP3A4 enzymes play a key role in the biotransformation of diazepam. Given the highly polymorphic nature of the CYP2C19 gene, we reviewed the clinical impact of variants in the CYP2C19 gene on both the pharmacokinetics of diazepam and treatment outcomes related to the management of alcohol withdrawal syndrome.
Collapse
Affiliation(s)
- Teresa T. Ho
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
- Correspondence:
| | - Melissa Noble
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Bao Anh Tran
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Katlynd Sunjic
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, University of South Florida College of Pharmacy, Tampa, FL 33612, USA
| | - Jacques Turgeon
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Moorestown, NJ 08057, USA
| | - Rustin D. Crutchley
- Department of Pharmacotherapy, Washington State University, College of Pharmacy and Pharmaceutical Sciences, Yakima, WA 98901, USA
| |
Collapse
|
47
|
Chitosan and HPMCAS double-coating as protective systems for alginate microparticles loaded with Ctx(Ile 21)-Ha antimicrobial peptide to prevent intestinal infections. Biomaterials 2023; 293:121978. [PMID: 36580719 DOI: 10.1016/j.biomaterials.2022.121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile21)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria. However, gastrointestinal degradation does not allow its direct oral application. In this research, double-coating systems using alginate microparticles loaded with Ctx(Ile21)-Ha peptide were designed, and in vitro release assays simulating the gastrointestinal tract were evaluated. Also, the AA against Salmonella spp. and Escherichia coli was examined. The results showed the physicochemical stability of Ctx(Ile21)-Ha peptide in the system and its potent antimicrobial activity. In addition, the combination of HPMCAS and chitosan as a gastric protection system can be promising for peptide carriers or other low pH-sensitive molecules, adequately released in the intestine. In conclusion, the coated systems employed in this study can improve the formulation of new foods or biopharmaceutical products for specific application against intestinal pathogens in animal production or, possibly, in the near future, in human health.
Collapse
|
48
|
Thomas CD, Williams AK, Lee CR, Cavallari LH. Pharmacogenetics of P2Y 12 receptor inhibitors. Pharmacotherapy 2023; 43:158-175. [PMID: 36588476 PMCID: PMC9931684 DOI: 10.1002/phar.2758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023]
Abstract
Oral P2Y12 inhibitors are commonly prescribed for cardiovascular disease and include clopidogrel, prasugrel, and ticagrelor. Each of these drugs has its strengths and weaknesses. Prasugrel and ticagrelor are more potent inhibitors of platelet aggregation and were shown to be superior to clopidogrel in preventing major adverse cardiovascular events after an acute coronary syndrome and percutaneous coronary intervention (PCI) in the absence of genotyping. However, both are associated with an increased risk for non-coronary artery bypass-related bleeding. Clopidogrel is a prodrug requiring bioactivation, primarily via the CYP2C19 enzyme. Approximately 30% of individuals have a CYP2C19 no function allele and decreased or no CYP2C19 enzyme activity. Clopidogrel-treated carriers of a CYP2C19 no function allele have decreased exposure to the clopidogrel active metabolite and lesser inhibition of platelet aggregation, which likely contributed to reduced clopidogrel efficacy in clinical trials. The pharmacogenetic data for clopidogrel are most robust in the setting of PCI, but evidence is accumulating for other indications. Guidance is available from expert consensus groups and regulatory agencies to assist with integrating genetic information into P2Y12 inhibitor prescribing decisions, and CYP2C19 genotype-guided antiplatelet therapy after PCI is one of the most common examples of clinical pharmacogenetic implementation. Herein, we review the evidence for pharmacogenetic associations with clopidogrel response and outcomes with genotype-guided P2Y12 inhibitor selection and describe guidance to assist with pharmacogenetic implementation. We also describe processes for applying genotype data for P2Y12 inhibitor therapy selection and remaining gaps in the field. Ultimately, consideration of both clinical and genetic factors may guide selection of P2Y12 inhibitor therapy that optimally balances the atherothrombotic and bleeding risks.
Collapse
Affiliation(s)
- Cameron D Thomas
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Alexis K Williams
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, Shi L, Guo L, Yu Y. PAnno: A pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol 2023; 14:1008330. [PMID: 36778023 PMCID: PMC9909284 DOI: 10.3389/fphar.2023.1008330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Next-generation sequencing (NGS) technologies have been widely used in clinical genomic testing for drug response phenotypes. However, the inherent limitations of short reads make accurate inference of diplotypes still challenging, which may reduce the effectiveness of genotype-guided drug therapy. Methods: An automated Pharmacogenomics Annotation tool (PAnno) was implemented, which reports prescribing recommendations and phenotypes by parsing the germline variant call format (VCF) file from NGS and the population to which the individual belongs. Results: A ranking model dedicated to inferring diplotypes, developed based on the allele (haplotype) definition and population allele frequency, was introduced in PAnno. The predictive performance was validated in comparison with four similar tools using the consensus diplotype data of the Genetic Testing Reference Materials Coordination Program (GeT-RM) as ground truth. An annotation method was proposed to summarize prescribing recommendations and classify drugs into avoid use, use with caution, and routine use, following the recommendations of the Clinical Pharmacogenetics Implementation Consortium (CPIC), etc. It further predicts phenotypes of specific drugs in terms of toxicity, dosage, efficacy, and metabolism by integrating the high-confidence clinical annotations in the Pharmacogenomics Knowledgebase (PharmGKB). PAnno is available at https://github.com/PreMedKB/PAnno. Discussion: PAnno provides an end-to-end clinical pharmacogenomics decision support solution by resolving, annotating, and reporting germline variants.
Collapse
Affiliation(s)
- Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zipeng Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qiaochu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leqing Sang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yunjin Wang
- Department of Breast Surgery, Precision Cancer Medicine Center, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Li Guo, ; Ying Yu,
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China,*Correspondence: Li Guo, ; Ying Yu,
| |
Collapse
|
50
|
Abstract
Antiplatelet therapy is used in the treatment of patients with acute coronary syndromes, stroke, and those undergoing percutaneous coronary intervention. Clopidogrel is the most widely used antiplatelet P2Y12 inhibitor in clinical practice. Genetic variation in CYP2C19 may influence its enzymatic activity, resulting in individuals who are carriers of loss-of-function CYP2C19 alleles and thus have reduced active clopidogrel metabolites, high on-treatment platelet reactivity, and increased ischemic risk. Prospective studies have examined the utility of CYP2C19 genetic testing to guide antiplatelet therapy, and more recently published meta-analyses suggest that pharmacogenetics represents a key treatment strategy to individualize antiplatelet therapy. Rapid genetic tests, including bedside genotyping platforms that are validated and have high reproducibility, are available to guide selection of P2Y12 inhibitors in clinical practice. The aim of this review is to provide an overview of the background and rationale for the role of a guided antiplatelet approach to enhance patient care.
Collapse
Affiliation(s)
- Matteo Castrichini
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - Naveen Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| |
Collapse
|