1
|
Long H, Lei J, Liu K, Hu G, Chen F, Liu X, Liu W, Xiong Q. Comprehensive investigation of the interactions between natural rubber and lignin by molecular dynamics simulation. Int J Biol Macromol 2025; 310:143252. [PMID: 40250660 DOI: 10.1016/j.ijbiomac.2025.143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Currently, the interaction behavior of natural rubber-lignin (NR-L) remains unclear. In this study, we successfully replicated the density, glass transition temperature, and mechanical properties of NR-L using molecular dynamics coupled with GAFF. Using these models, we rigorously investigated the interaction behavior of these systems, which revealed that when the ambient temperature was lower than the thermal decomposition temperature, there was almost no impact on system properties, including density, structure, interaction forces, radial pair distribution function, free volume, radius of gyration, and lignin hydrogen bonding, as no significant enthalpy change occurred. The influence of hardwood lignin and softwood lignin on NR strength varied according to the concentration of lignin. At low concentration, the electron density cloud between highly branched hardwood lignin and NR is lower, leading to smaller interactions. However, at higher concentrations, the van der Waals term between the less polar and larger number of atoms of hardwood lignin and NR becomes stronger, resulting in the opposite trend being observed. Furthermore, NR-L is governed primarily by van der Waals forces, while lignin-lignin is governed primarily by electrostatic interactions. These detailed characterizations offered valuable insight for future research endeavors aimed at designing and synthesizing green NR-L composites at the atomic scale.
Collapse
Affiliation(s)
- Hua Long
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junjie Lei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kunfeng Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guoxiang Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fangjun Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaowen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qingang Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Maršík D, Danda M, Otta J, Thoresen PP, Mat́átková O, Rova U, Christakopoulos P, Matsakas L, Masák J. Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles. ACS OMEGA 2024; 9:47765-47787. [PMID: 39651097 PMCID: PMC11618447 DOI: 10.1021/acsomega.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Collapse
Affiliation(s)
- Dominik Maršík
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Matěj Danda
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Otta
- Department
of Physics and Measurements, University
of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Petter P. Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Olga Mat́átková
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Jan Masák
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
3
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
4
|
Wang X, Gao W, Kong F, Fatehi P. Purification Processes for Generating Cationic Lignin-Acrylamide Polymers. ACS OMEGA 2024; 9:43864-43874. [PMID: 39493992 PMCID: PMC11525501 DOI: 10.1021/acsomega.4c06904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Purification is an essential step in many polymerization processes for fabricating highly pure polymers. This study considered various purification methods for purifying the product of lignin, acrylamide (AM), and diallyl dimethylammonium chloride (DADMAC) copolymerization reactions at a laboratory scale. The charge density, yield, molecular weight, and solubility analyses confirmed that ethanol extraction and membrane filtration were the most effective processes for producing lignin-p(AM)-p(DADMAC). The 1H NMR analysis revealed that the membrane dialysis effectively removed unreacted AM and DADMAC monomers from the reaction medium. The produced samples of the ethanol-extraction and dialysis processes had higher solubility and yield compared to the product of the acidification process. Thermogravimetric studies confirmed that the ethanol-extracted and dialyzed samples had a degradation temperature (220 °C) higher than that of the acidified samples (160 °C). The rheological studies confirmed that the viscosities of the polymer solutions were influenced more by the solubility than by the molecular weight of the generated polymers within the molecular weight range examined in this study. The flocculation studies confirmed that the ethanol-extracted and dialyzed polymers were more effective flocculants than the acidified samples for the particles of a kaolinite suspension. Based on the above results, membrane filtration with a larger pore size could be an environmentally friendly method for effectively purifying lignin-p(AM)-p(DADMAC).
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department
of Chemical Engineering and Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder
Bay, Ontario P7B5E1, Canada
| | - Weijue Gao
- Department
of Chemical Engineering and Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder
Bay, Ontario P7B5E1, Canada
| | - Fangong Kong
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| | - Pedram Fatehi
- Department
of Chemical Engineering and Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder
Bay, Ontario P7B5E1, Canada
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Chen J, Tian J, Feng N, Ning L, Wang D, Zhao B, Guo T, Song J, Rojas OJ. Monodispersed Renewable Particles by Cascade and Density Gradient Size Fractionation to Advance Lignin Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309756. [PMID: 38602191 DOI: 10.1002/smll.202309756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Control over particle size and shape heterogeneity is highly relevant to the design of photonic coatings and supracolloidal assemblies. Most developments in the area have relied on mineral and petroleum-derived polymers that achieve well-defined chemical and dimensional characteristics. Unfortunately, it is challenging to attain such control when considering renewable nanoparticles. Herein, a pathway toward selectable biobased particle size and physicochemical profiles is proposed. Specifically, lignin is fractionated, a widely available heterogeneous polymer that can be dissolved in aqueous solution, to obtain a variety of monodispersed particle fractions. A two-stage cascade and density gradient centrifugation that relieves the need for solvent pre-extraction or other pretreatments but achieves particle bins of uniform size (~60 to 860 nm and polydispersity, PDI<0.06, dynamic light scattering) along with characteristic surface chemical features is introduced. It is found that the properties and associated colloidal behavior of the particles are suitably classified in distinctive size populations, namely, i) nanoscale (50-100 nm), ii) photonic (100-300 nm) and iii) near-micron (300-1000 nm). The strong correlation that exists between size and physicochemical characteristics (molar mass, surface charge, bonding and functional groups, among others) is introduced as a powerful pathway to identify nanotechnological uses that benefit from the functionality and cost-effectiveness of biogenic particles.
Collapse
Affiliation(s)
- Jingqian Chen
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jing Tian
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Nianjie Feng
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- School of Material Science and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Like Ning
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Department of Neurosurgery, the affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 211166, China
| | - Dong Wang
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Bin Zhao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-02150, Finland
| | - Tianyu Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Maršík D, Thoresen PP, Maťátková O, Masák J, Sialini P, Rova U, Tsikourkitoudi V, Christakopoulos P, Matsakas L, Jarošová Kolouchová I. Synthesis and Characterization of Lignin-Silver Nanoparticles. Molecules 2024; 29:2360. [PMID: 38792221 PMCID: PMC11123738 DOI: 10.3390/molecules29102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Metal nanoparticle synthesis via environmentally friendly methods is gaining interest for their potential advantages over conventional physico-chemical approaches. Herein, we propose a robust green synthesis route for lignin-modified silver nanoparticles, utilizing the recovery of lignin as a renewable raw material and exploring its application in valuable areas. Through a systematic approach combining UV-Vis spectroscopy with AAS and DLS, we identified repeatable and scalable reaction conditions in an aqueous solution at pH 11 for homogeneous silver nanoparticles with high uniformity. The TEM median sizes ranged from 12 to 15 nm with circularity between 0.985 and 0.993. The silver nanoparticles yield exceeded 0.010 mol L-1, comparable with traditional physico-chemical methods, with a minimal loss of silver precursor ranging between 0.5 and 3.9%. Characterization by XRD and XPS revealed the presence of Ag-O bonding involving lignin functional groups on the pure face-centered cubic structure of metallic silver. Moreover, the lignin-modified silver nanoparticles generated a localized thermal effect upon near-infrared laser irradiation (808 nm), potentially allowing for targeted applications in the biomedical field. Our study showcases the potential of lignin as a renewable reducing and capping agent for silver nanoparticle synthesis, addressing some shortcomings of green synthesis approaches and contributing to the development of suitable nanomaterials.
Collapse
Affiliation(s)
- Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (D.M.); (O.M.); (J.M.)
| | - Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources, Luleå University of Technology, 971 87 Luleå, Sweden; (P.P.T.); (U.R.); (P.C.)
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (D.M.); (O.M.); (J.M.)
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (D.M.); (O.M.); (J.M.)
| | - Pavel Sialini
- Central Laboratories, University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources, Luleå University of Technology, 971 87 Luleå, Sweden; (P.P.T.); (U.R.); (P.C.)
| | - Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources, Luleå University of Technology, 971 87 Luleå, Sweden; (P.P.T.); (U.R.); (P.C.)
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources, Luleå University of Technology, 971 87 Luleå, Sweden; (P.P.T.); (U.R.); (P.C.)
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (D.M.); (O.M.); (J.M.)
| |
Collapse
|
7
|
Romanowska B, Różańska W, Zimniewska M. The Influence of the Chemical Composition of Flax and Hemp Fibers on the Value of Surface Free Energy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1104. [PMID: 38473574 DOI: 10.3390/ma17051104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The article presents the exploration of flax and hemp fibers' surface free energy depending on the chemical composition of the fiber, which is closely related to the plant variety and the method of extracting the fiber. For this purpose, tests of the surface free energy (SFE), evaluation of the percentage content of individual fiber components and FTIR analyses were conducted. The research was carried out with the use of fibrous materials prepared in three different ways: 1. To analyze the effect of subsequent stages of flax fibers refining process on chemical composition and SFE, 2. to explore the dependence of fiber SFE on hemp variety, the water-retting hemp fibers were used, 3. To evaluate the influence of the retting method of hemp fibers BIAŁOBRZESKIE variety on SFE, the fibers extracted with the use of dew and water retting were used as the research material. The study confirmed that the content of individual components in the fiber influenced its sorption capacity and therefore determined its hydrophilic properties. The values of Pearson's linear correlation coefficients determined in the statistical analysis proved that the surface free energy was strongly correlated with the content of individual components in the fibers. Understanding the wettability characteristics of bast fibers will allow modeling the properties of products made of these fibers and designing surface modification processes in order to obtain specific functionality of textile products, depending on their intended utilization.
Collapse
Affiliation(s)
- Barbara Romanowska
- Institute of Natural Fibers and Medicinal Plants National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| | - Wanda Różańska
- Institute of Natural Fibers and Medicinal Plants National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| | - Małgorzata Zimniewska
- Institute of Natural Fibers and Medicinal Plants National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| |
Collapse
|
8
|
Rucker G, Zhang L. Comparison of the Interaction and Structure of Lignin in Pure Systems and in Asphalt Media by Molecular Dynamics Simulations. Biomacromolecules 2024; 25:626-643. [PMID: 38157476 DOI: 10.1021/acs.biomac.3c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Lignin is a class of organic aromatic polymers contributing to the rigidity and strength of plants and has been proposed as a modifier to improve asphalt performance on road pavement. However, contradicting experimental results on the lignin miscibility in asphalt were found from different studies, and lignin has been found to self-assemble in different solutions. Thus, investigating the interaction and microstructure of lignin in asphalt media in molecular detail is necessary. Molecular dynamics (MD) simulations using both the LAMMPS program with the OPLS-aa force field and the NAMD program with the CHARMM force field have been conducted on pure lignin (including lignin monomer, dimer, and polymer with 17 and 31 units) and their mixtures with model asphalt molecules at different temperatures. Consistent results were observed from both programs and force fields in terms of density, hydrogen bonds, diffusion coefficient, radius of gyration, and radial distribution function. Glass transition was observed in the pure lignin systems based on density and diffusion coefficient calculations at different temperatures. Lignin can form intramolecular hydrogen bonds and intermolecular hydrogen bonds with other lignin and 1,7-dimethylnapthalene in the asphalt mixture, which has dependence on temperature and lignin chain length. Correlating the lignin size and chain length using the power-law relationship showed that lignin polymers in pure systems are in quasi-relaxed structures at different temperatures; lignin molecules stay in quasi-relaxed structures in asphalt mixtures at high temperatures but in collapsed structures at low temperatures. Implementing lignin monomer, dimer, and polymer into the model asphalt mixture can improve its density. Although lignin in different chain lengths aggregates in asphalt, lignin can modify the packing between different components in asphalt media at different temperatures. The work suggests that temperature can significantly influence the miscibility of lignin polymer in asphalt and that lignin can function as both a modifier and a resin in asphalt.
Collapse
Affiliation(s)
- George Rucker
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
9
|
Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, Li B. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091489. [PMID: 37177034 PMCID: PMC10179792 DOI: 10.3390/nano13091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wangfang Deng
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
10
|
Diaz-Baca JA, Salaghi A, Fatehi P. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant. Biomacromolecules 2023; 24:1400-1416. [PMID: 36802502 DOI: 10.1021/acs.biomac.2c01437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Ayyoub Salaghi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| |
Collapse
|
11
|
Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020687. [PMID: 36677747 PMCID: PMC9867506 DOI: 10.3390/molecules28020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Lignin is an underutilized high-potential biopolymer that has been extensively studied over the past few decades. However, lignin still has drawbacks when compared with well-known petroleum-based equivalents, and the production of tailored lignin fractions is highly in demand. In this work, a new method for the fractionation of Lignoboost Kraft Lignin (LKL) is proposed by using two different hydrotropes: sodium xylenesulfonate (SXS) and sodium cumenesulfonate (SCS). The different fractions are obtained by sequentially decreasing the hydrotropic concentration with the addition of water. Four and three different fractions were retrieved from the use of SXS and SCS, respectively. The LKL and respective fractions were analysed, and compared by GPC, FTIR-ATR, 1H-NMR, 13C-NMR, 31P NMR, 2D HSQC and SEM. The fractions showed different molecular weights, polydispersity, and amount of functional groups. Our water-based lignin fractionation platform can potentially be combined with different lignin extraction and processing technologies, with the advantage of hydrotrope recycling.
Collapse
|
12
|
Jahan N, Huda MM, Tran QX, Rai N. Effect of Solvent Quality on Structure and Dynamics of Lignin in Solution. J Phys Chem B 2022; 126:5752-5764. [PMID: 35915516 DOI: 10.1021/acs.jpcb.2c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to its significant aromatic content, lignin is an attractive source of valuable organic chemicals. As most of the proposed lignin depolymerization processes are expected to be liquid-phase, it is necessary to understand the effect of solvent quality on the structure and dynamics of lignin. Here we use all-atom molecular dynamics simulations to understand the evolution of lignin structure as a function of methanol concentration in methanol/water solution at different temperatures. We utilize two different lignin models: softwood consisting of guaiacyl (G) monomer and hardwood consisting of heteropolymer containing guaiacyl/syringyl (S) with a 1.35:1 ratio. The presence of additional methoxy groups in the hardwood lignin leads to a more extended configuration than softwood lignin with increasing methanol concentration. Structural features (radius of gyration and solvent accessible surface area) of lignin correlate with the strength of intermolecular forces quantified using cohesive energy density. We find that methanol preferentially solvates the nonpolar segments of the lignin polymer while water molecules solvate the polar functional groups. Thus, as the methanol concentration increases, methanol can better solvate lignin polymer, leading to a more extended configuration suitable for catalytic transformation to value-added chemicals.
Collapse
Affiliation(s)
- Nusrat Jahan
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Quyen Xuan Tran
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
13
|
Hydrodynamic alignment and self-assembly of cationic lignin polymers made of architecturally altered monomers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Yang X, Biswas SK, Han J, Tanpichai S, Li M, Chen C, Zhu S, Das AK, Yano H. Surface and Interface Engineering for Nanocellulosic Advanced Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002264. [PMID: 32902018 PMCID: PMC11468146 DOI: 10.1002/adma.202002264] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
How do trees support their upright massive bodies? The support comes from the incredibly strong and stiff, and highly crystalline nanoscale fibrils of extended cellulose chains, called cellulose nanofibers. Cellulose nanofibers and their crystalline parts-cellulose nanocrystals, collectively nanocelluloses, are therefore the recent hot materials to incorporate in man-made sustainable, environmentally sound, and mechanically strong materials. Nanocelluloses are generally obtained through a top-down process, during or after which the original surface chemistry and interface interactions can be dramatically changed. Therefore, surface and interface engineering are extremely important when nanocellulosic materials with a bottom-up process are fabricated. Herein, the main focus is on promising chemical modification and nonmodification approaches, aiming to prospect this hot topic from novel aspects, including nanocellulose-, chemistry-, and process-oriented surface and interface engineering for advanced nanocellulosic materials. The reinforcement of nanocelluloses in some functional materials, such as structural materials, films, filaments, aerogels, and foams, is discussed, relating to tailored surface and/or interface engineering. Although some of the nanocellulosic products have already reached the industrial arena, it is hoped that more and more nanocellulose-based products will become available in everyday life in the next few years.
Collapse
Affiliation(s)
- Xianpeng Yang
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| | - Subir Kumar Biswas
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| | - Jingquan Han
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Supachok Tanpichai
- Learning InstituteKing Mongkut's University of Technology ThonburiBangkok10140Thailand
| | - Mei‐Chun Li
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Chuchu Chen
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Sailing Zhu
- College of Materials science and EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Atanu Kumar Das
- Department of Forest Biomaterials and TechnologySwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Hiroyuki Yano
- Laboratory of Active Bio‐Based MaterialsResearch Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
16
|
Diaz-Baca JA, Fatehi P. Process development for tall oil lignin production. BIORESOURCE TECHNOLOGY 2021; 329:124891. [PMID: 33676355 DOI: 10.1016/j.biortech.2021.124891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the production and characterization of tall oil lignin (TOL) from tall oil soap (TOS) of the kraft pulping process following a new process (i.e., LignoTall). Also, the properties of the TOL and kraft lignin (KL) produced via LignoForce technology were compared. Although TOL and KL were generated from the same black liquor and softwood species, they had remarkably different characteristics, confirming the impact of the production methods on the physicochemical properties of the isolated lignin. TOL had higher molecular weight, O/C elemental ratio, sulfur content, and carboxylate-OH content but lower methoxy group content than did KL. The high sulfur group content (7.3%) of TOL can be very useful for the vulcanization process. Moreover, the high carboxylate-OH content of TOL (0.56 mmol/g) is desirable for its utilization in epoxy resin production.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
17
|
Guerras L, Sengupta D, Martín M, El-Halwagi MM. Multilayer Approach for Product Portfolio Optimization: Waste to Added-Value Products. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6410-6426. [PMID: 34796044 PMCID: PMC8592024 DOI: 10.1021/acssuschemeng.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A multistage multilayer systematic procedure has been developed for the selection of the optimal product portfolio from waste biomass as feedstock for systems involving water-energy-food nexus. It consists of a hybrid heuristic, metric-based, and optimization methodology that evaluates the economic and environmental performance of added-value products from a particular raw material. The first stage preselects the promising products. Next, a superstructure optimization problem is formulated to valorize or transform waste into the optimal set of products. The methodology has been applied within the waste to power and chemicals initiative to evaluate the best use of the biomass residue from the olive oil industry toward food, chemicals, and energy. The heuristic stage is based on the literature review to analyze the feasible products and techniques. Next, simple metrics have been developed and used to preselect products that are promising. Finally, a superstructure optimization approach is used to design the facility that processes leaves, wood chips, and olives into final products. The best technique to recover phenols from "alperujo", a wet solid waste/byproduct of the process, consists of the use of membranes, while the adsorption technique is used for the recovery of phenols from olive leaves and branches. The investment required to process waste adds up to €110.2 million for a 100 kt/yr for the olive production facility, while the profit depends on the level of integration. If the facility is attached to an olive oil production, the generated profit ranges between 14.5 MM €/yr (when the waste is purchased at prices of €249 per ton of alperujo and €6 per ton of olive leaves and branches) and 34.3 MM €/yr when the waste material is obtained for free.
Collapse
Affiliation(s)
- Lidia
S. Guerras
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Debalina Sengupta
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Mahmoud M. El-Halwagi
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, 100 Spence Street, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Teh KC, Foo ML, Ooi CW, Leng Chew IM. Sustainable and cost-effective approach for the synthesis of lignin-containing cellulose nanocrystals from oil palm empty fruit bunch. CHEMOSPHERE 2021; 267:129277. [PMID: 33385850 DOI: 10.1016/j.chemosphere.2020.129277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Cellulose nanocrystals (CNC) have received great research attention since the last few decades due to their extraordinary properties and wide range of applications. In this study, a sustainable and cost-effective method for the synthesis of lignin-containing cellulose nanocrystals (LCNC) from oil palm empty fruit bunch (EFB) is presented. This method is able to retain the lignin in EFB and manifest the properties of lignin. The proposed synthesis process is simpler than the conventional method of producing lignin-coated CNC by first removing the lignin to synthesize CNC followed by the re-coating of lignin on the structure. The samples of LCNC were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and water contact angle analysis. In addition, by altering the acid concentration during acid hydrolysis process (53% - 60% H2SO4), both surface hydrophobicity (66.0° - 75.1°) and length of LCNC (467 nm-177 nm) can be altered wherein a higher concentration of acid resulted in a greater contact angle and a shorter length of LCNC. Cost and energy analysis deduced that the proposed synthesis method saved about 62% of the total material cost and 80% less energy as compared to the synthesis of lignin-coated CNC.
Collapse
Affiliation(s)
- Khai Chyi Teh
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mei Ling Foo
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Irene Mei Leng Chew
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
19
|
Aguilera-Segura SM, Di Renzo F, Mineva T. Molecular Insight into the Cosolvent Effect on Lignin-Cellulose Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14403-14416. [PMID: 33202139 DOI: 10.1021/acs.langmuir.0c02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and controlling the physical adsorption of lignin compounds on cellulose pulp are key parameters in the successful optimization of organosolv processes. The effect of binary organic-aqueous solvents on the coordination of lignin to cellulose was studied with molecular dynamics simulations, considering ethanol and acetonitrile to be organic cosolvents in aqueous solutions in comparison to their monocomponent counterparts. The structures of the solvation shells around cellulose and lignin and the energetics of lignin-cellulose adhesion indicate a more effective disruption of lignin-cellulose binding by binary solvents. The synergic effect between solvent components is explained by their preferential interactions with lignin-cellulose complexes. In the presence of pure water, long-lasting H-bonds in the lignin-cellulose complex are observed, promoted by the nonfavorable interactions of lignin with water. Ethanol and acetonitrile compete with water and lignin for cellulose oxygen binding sites, causing a nonlinear decrease in the lignin-cellulose interactions with the amount of the organic component. This effect is modulated by the water exclusion from the cellulose solvation shell by the organic solvent component. The amount and rate of water exclusion depend on the type of organic cosolvent and its concentration.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
20
|
Thornburg NE, Pecha MB, Brandner DG, Reed ML, Vermaas JV, Michener WE, Katahira R, Vinzant TB, Foust TD, Donohoe BS, Román-Leshkov Y, Ciesielski PN, Beckham GT. Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation. CHEMSUSCHEM 2020; 13:4495-4509. [PMID: 32246557 DOI: 10.1002/cssc.202000558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 05/21/2023]
Abstract
Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.
Collapse
Affiliation(s)
- Nicholas E Thornburg
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - M Brennan Pecha
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - David G Brandner
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Michelle L Reed
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Josh V Vermaas
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - William E Michener
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Rui Katahira
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Todd B Vinzant
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Thomas D Foust
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Peter N Ciesielski
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
21
|
Sabaghi S, Fatehi P. Polarity of Cationic Lignin Polymers: Physicochemical Behavior in Aqueous Solutions and Suspensions. CHEMSUSCHEM 2020; 13:4722-4734. [PMID: 33448658 DOI: 10.1002/cssc.202000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The structure of cationic monomers can significantly impact the polarity of lignin after polymerization. Cationic hydrolysis lignin (CHL) polymers were produced by polymerizing hydrolysis lignin (HL) with [3-(methacryloylamino)propyl] trimethylammonium chloride (MAPTAC) or [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (METAC). The METAC monomer has an oxygen atom, with larger electronegativity, in its molecular structure, whereas the MAPTAC monomer contains a nitrogen atom, as well as an extra nonpolar CH2 group, facilitating investigation into the effects of the polarity of CHLs on their physicochemical performance in an aqueous system. CHL polymers are analyzed and their interactions with clay particles are determined in colloidal systems. CHLs are designed to have similar charge densities (2.1-2.2 mmol g-1) and molecular weights (55000-60000 g mol-1 ). The hydrodynamic radius (Hy) and radius of gyration, (Rg) of HL-METAC are larger than those of HL-MAPTAC, implying a more 3-dimensional structure of HL-METAC in aqueous solution. The stability ratio of kaolin particles affirms the better performance of HL-METAC in comparison to HL-MAPTAC, which reflects the better flocculation efficiency of HL-METAC. The results also reveal that salt and urea aqueous solutions affect the Hy, Rg, and configuration of CHL polymers, which alters the flocculation efficiency of HL-METAC and HL-MAPTAC polymers in kaolin suspensions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
22
|
Yan Z, Liao G, Zou X, Zhao M, Wu T, Chen Y, Fang G. Size-Controlled and Super Long-Term Stable Lignin Nanospheres through a Facile Self-Assembly Strategy from Kraft Lignin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8341-8349. [PMID: 32662998 DOI: 10.1021/acs.jafc.0c01262] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In diverse fields, much attention has been concentrated on the preparation of lignin nanospheres with various structures. Here we report a facile self-assembly strategy for preparing super long-term stable hollow and solid nanospheres based on lignin fractionation. We found that different lignins obtained at different pHs during fractionation can form nanospheres with different particle sizes and structures. The self-assembled and formation mechanisms of the nanospheres were surveyed by dynamic light scattering (DLS), elemental analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The analysis results showed that the phenolic hydroxyl groups and the intermolecular π-π interaction play a decisive effect in the formation of nanospheres. This study can not only facilitate the advance of lignin-based nanotechnologies but also provide a broad prospect for the use of black liquor.
Collapse
Affiliation(s)
- Zhenyu Yan
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu, China
| | - Guangfu Liao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Laboratory of High-Performance Polymer Composites, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xiuxiu Zou
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu, China
| | - Mengke Zhao
- College of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xian 710000, Shanxi, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu, China
| | - Yuanhang Chen
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu, China
- College of Light Industry and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
23
|
Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proc Natl Acad Sci U S A 2020; 117:16776-16781. [PMID: 32636260 PMCID: PMC7382264 DOI: 10.1073/pnas.1922883117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of plant biomass for the production of fuels and chemicals is of critical economic and environmental importance, but has posed a formidable challenge, due to the recalcitrance of biomass to deconstruction. We report direct experimental and computational evidence of a simple physical chemical principle that explains the success of mixing an organic cosolvent, tetrahydrofuran, with water to overcome this recalcitrance. The hydrophilic and hydrophobic biomass surfaces are solvated by single-component nanoclusters of complementary polarity. This principle can serve as a guide for designing even more effective technologies for solubilizing and fractionating biomass. The results further highlight the role of nanoscale fluctuations of molecular solvents in driving changes in the structure of the solutes. A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.
Collapse
|
24
|
Rawal TB, Zahran M, Dhital B, Akbilgic O, Petridis L. The relation between lignin sequence and its 3D structure. Biochim Biophys Acta Gen Subj 2020; 1864:129547. [DOI: 10.1016/j.bbagen.2020.129547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
|
25
|
Sabaghi S, Fatehi P. Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles. Biomacromolecules 2019; 20:3940-3951. [PMID: 31498610 DOI: 10.1021/acs.biomac.9b01016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic kraft lignin (CKL) macromolecules were produced via polymerizing kraft lignin (KL) with [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATAC) or [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM). Despite slightly different charge densities (2.3-2.5 mmol/g) of CKL, lignin-METAM (KL-METAM) had a significantly larger molecular weight and radius of gyration. A correlation was observed between the structure of CKLs and their impacts on the surface hydrophilicity of kaolin particles. In interacting with kaolin particles, KL-METAM generated larger and stronger flocs with looser structures than did KL-ATAC. Compared to ATAC, METAM had one additional methyl substituent on its structure, which provided fundamental evidence on how a small group (i.e., a methyl group) on the structure of a cationic monomer can have a substantial influence on its polymerization with lignin and subsequently on the efficiency of the induced macromolecule as a flocculant in a kaolin suspension system.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| |
Collapse
|
26
|
Wood–Moisture Relationships Studied with Molecular Simulations: Methodological Guidelines. FORESTS 2019. [DOI: 10.3390/f10080628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper aims at providing a methodological framework for investigating wood polymers using atomistic modeling, namely, molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations. Atomistic simulations are used to mimic water adsorption and desorption in amorphous polymers, make observations on swelling, mechanical softening, and on hysteresis. This hygromechanical behavior, as observed in particular from the breaking and reforming of hydrogen bonds, is related to the behavior of more complex polymeric composites. Wood is a hierarchical material, where the origin of wood-moisture relationships lies at the nanoporous material scale. As water molecules are adsorbed into the hydrophilic matrix in the cell walls, the induced fluid–solid interaction forces result in swelling of these cell walls. The interaction of the composite polymeric material, that is the layer S2 of the wood cell wall, with water is known to rearrange its internal material structure, which makes it moisture sensitive, influencing its physical properties. In-depth studies of the coupled effects of water sorption on hygric and mechanical properties of different polymeric components can be performed with atomistic modeling. The paper covers the main components of knowledge and good practice for such simulations.
Collapse
|
27
|
Ganewatta MS, Lokupitiya HN, Tang C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers (Basel) 2019; 11:E1176. [PMID: 31336845 PMCID: PMC6680560 DOI: 10.3390/polym11071176] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Polymers made from natural biomass are gaining interest due to the rising environmental concerns and depletion of petrochemical resources. Lignin isolated from lignocellulosic biomass is the second most abundant natural polymer next to cellulose. The paper pulp process produces industrial lignin as a byproduct that is mostly used for energy and has less significant utility in materials applications. High abundance, rich chemical functionalities, CO2 neutrality, reinforcing properties, antioxidant and UV blocking abilities, as well as environmental friendliness, make lignin an interesting substrate for materials and chemical development. However, poor processability, low reactivity, and intrinsic structural heterogeneity limit lignins' polymeric applications in high-performance advanced materials. With the advent of controlled polymerization methods such as ATRP, RAFT, and ADMET, there has been a great interest in academia and industry to make value-added polymeric materials from lignin. This review focuses on recent investigations that utilize controlled polymerization methods to generate novel lignin-based polymeric materials. Polymers developed from lignin-based monomers, various polymer grafting technologies, copolymer properties, and their applications are discussed.
Collapse
Affiliation(s)
- Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
- Ingevity Corporation, 5255 Virginia Avenue, North Charleston, SC 29406, USA.
| | - Hasala N Lokupitiya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
28
|
|
29
|
Cave G, Fatehi P. Adsorption optimization of a biomass-based fly ash for treating thermomechanical pulping (TMP) pressate using definitive screening design (DSD). CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Germaine Cave
- Chemical Engineering Department; Lakehead University; 955 Oliver Road, Thunder Bay, ON, P7B5E1, Canada
| | - Pedram Fatehi
- Chemical Engineering Department; Lakehead University; 955 Oliver Road, Thunder Bay, ON, P7B5E1, Canada
| |
Collapse
|