1
|
Yang X, Li S, Ding B, Zhao J, Yu Y. Nanoarchitecture tailoring of biomass-derived bowl-shaped carbon superstructures-based LiOH-LiCl composite for low-grade solar heat harvesting. J Colloid Interface Sci 2025; 691:137415. [PMID: 40138807 DOI: 10.1016/j.jcis.2025.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The fussy and toxic building process of 3D carbon superstructures with expensive precursors has critically encumbered their topological versatility and application territory broadening. Herein, an innovative bowl-shaped carbon superstructure was fabricated via a straightforward and eco-friendly double-template methodology in the aqueous environments using naturally available and cost-effective biomass. And its carbonaceous derivative (BBAC) served as the skeleton matrix for thermochemical adsorption heat storage (TAHS) material for the first time. At low ambient humidity, LiOC3/BBAC2 composites present prospective hydratability and heat storage capacity (HSC) up to 1379.6 kJ kg-1 empowered by the collaborative effort between BBAC2 features exquisite 3D bowl-shaped architecture, delicately engineered hierarchical porosity stretching cross-scale pores, exceptionally approachable surface area and hygroscopic salt hybrids of LiOH-LiCl. Meanwhile, the LiOC3/BBAC2-60 could hold 96.1 % of the initial HSC after 20 thermal storage cycles while showing impressive solar-heat conversion properties arising from the fine thermal conductivity of BBAC2, manifesting its superb cycling consistency. And the numerical simulation findings endorse its great heat transfer properties. This work not only delivers concise and green inspirational approaches to the exploration of anisotropic 3D carbon superstructures with well-orchestrated morphologies and desirable functionalities but may also provide a favorable option for the productive transformation and storage of low-grade energy.
Collapse
Affiliation(s)
- Xiangyu Yang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China; Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shijie Li
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.
| | - Yisong Yu
- Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025; 9:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
3
|
Gong Y, Zhang H, Lu M, Sun J, Jia Y, Yang Y, Liu X, Yin B, Zhou Y, Ling Y. Tuning the Fe-Gd nanoparticles co-functionalized mesoporous carbon from sphere to nanobowl for advanced bioapplications. J Colloid Interface Sci 2025; 679:412-421. [PMID: 39461130 DOI: 10.1016/j.jcis.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Studies on the function-integrated nanocomposites with well-tuned morphologies have received considerable interest. Here, we reported the preparation of mesoporous carbon nanobowl integrated with stoichiometric γ-Fe2O3 and GdPO4 nanoparticles (Fe-Gd/MCN-B) for morphological advantage exploration. Followed by (i) emulsion-induced interface anisotropic assembly of polydopamine, (ii) solvent evaporation-induced sorption of Wells-Dawson-like heterometallic cluster of {Fe6Gd6P6} and (iii) temperature-programmed carbonization, Fe-Gd/MCN-B with the size around 200 nm was isolated. Our in-vitro studies revealed that Fe-Gd/MCN-B showed a 63.0 % amplified photoacoustic (PA) signal intensity as compared with its nanospherical analogue of Fe-Gd/MCN-S owing to the enhanced light harvesting and photothermal conversion on the interface of its nanobowl morphology. Furthermore, the combined magnetic resonance (MR) imagining, drug delivery and photothermal treatment efficacy in Fe-Gd/MCN-B were also validated in-vitro. These results demonstrated that the delicate design of the morphology of function-integrated nanocomposites is an available way for enhanced imaging performance.
Collapse
Affiliation(s)
- Yimin Gong
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hui Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiayu Sun
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Yu Jia
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China; South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Cui X, Ma F, Lei G, Jiang W, Yang X, Liu Z, Wan J, Liu Y. Trisodium Citrate as a Double-Edged Sword: Selective Etching Prussian Blue Analog Nanocubes into Orthogonal Frustums and Their Derivatives for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403732. [PMID: 38963164 DOI: 10.1002/smll.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The construction of novel structured Prussian blue analogs (PBAs) by chemical etching has attracted the most attention to PBA derivatives with outstanding performance. In this work, the unprecedented PBA orthogonal frustums are first prepared from nanocubes through a selective chemical etching approach using trisodium citrate as an etchant. The citrate ions can chelate with nickel species from the edges/corners of NiCo-PBA nanocubes and then disintegrate NiCo-PBAs resulting in the generation of NiCo-PBA orthogonal frustums. The derived CoNi2S4/Co0.91S composites still inherit the original orthogonal frustum structure and possess outstanding supercapacitor performance. This study develops a popularized method to construct novel structured PBAs and brings inspiration for designing PBA-based electrodes with advanced electrochemical performance.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Fangwei Ma
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Guangping Lei
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Wei Jiang
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaoyang Yang
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Zeyi Liu
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Jiafeng Wan
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Yifu Liu
- Key Laboratory of Chemical Engineering Processes &Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
5
|
Zhao W, Ma X, Wang X, Zhou H, He X, Yao Y, Ren Y, Luo Y, Zheng D, Sun S, Liu Q, Li L, Chu W, Wang Y, Sun X. Synergistically Coupling Atomic-Level Defect-Manipulation and Nanoscopic-Level Interfacial Engineering Enables Fast and Durable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311055. [PMID: 38295001 DOI: 10.1002/smll.202311055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.
Collapse
Affiliation(s)
- Wenxi Zhao
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoqing Ma
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Hao Zhou
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
6
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
7
|
Wang X, Wang J, Li J, Du Y, Wu J, He H. Fabrication of Nitrogen-Doped Carbon@Magnesium Silicate Composite by One-Step Hydrothermal Method and Its High-Efficiency Adsorption of As(V) and Tetracycline. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5338. [PMID: 37570044 PMCID: PMC10420030 DOI: 10.3390/ma16155338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Tetracycline (TC) and arsenic contaminants are two main pollutants in aquaculture and livestock husbandry, and they have drawn worldwide attention. To address this issue, a novel N-doped carbon@magnesium silicate (CMS) was fabricated via a facile and low-cost hydrothermal route, adopting glucose and ammonia as C and N sources, respectively. The synergetic combination of carbon and magnesium silicate makes CMS possess a high surface area of 201 m2/g and abundant functional groups. Due to the abundant C- and N-containing functional groups and Mg-containing adsorptive sites, the maximum adsorption capacity values of CMS towards As(V) and TC are 498.75 mg/g and 1228.5 mg/g, respectively. The type of adsorption of As(V) and TC onto CMS is monolayer adsorption. An adsorption kinetic study revealed that the mass transfer and intraparticle process dominates the sorption rate of As(V) and TC adsorption onto CMS, respectively. Various functional groups synthetically participate in the adsorption process through complexion, π-π EDA interactions, and hydrogen bonds. This work provides a one-step, low-cost route to fabricate a N-doped carbonaceous adsorbent with a high surface area and abundant functional groups, which has great potential in the application of practical sewage treatment.
Collapse
Affiliation(s)
- Xuekai Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Jianjun Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yucheng Du
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Junshu Wu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Heng He
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| |
Collapse
|
8
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
9
|
Liu Y, Liu S, Tian Y, Wang X. Dual/Triple Template-Induced Evolved Emulsion for Controllable Construction of Anisotropic Carbon Nanoparticles from Concave to Convex. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210963. [PMID: 36591699 DOI: 10.1002/adma.202210963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Anisotropic mesoporous carbon (AMC) nanoparticles with asymmetric external morphologies, topological internal structure, and superior performance of carbon species are attracting great attention because of their seductive features differentiating them from symmetric nanoparticles. However, a bewildering challenge but crucial desire remains to endow them with flexibly tunable morphology and pore structure. Herein, a dual/triple-templating evolved emulsion strategy for tunable fabrication of AMC nanoparticles with distinctive defined structure by interface-energy-induced self-assembly is first reported based on a brand-new mechanism. It describes the possible formation process of the concave-cavity structure and allows for manipulation of the longitudinal and lateral sizes systematically by adjusting emulsion polarity and sodium oleate dosage, respectively. Interestingly, the internal pore structure can be rearranged into radial channels and the external morphology can realize structural transformation from concave to convex by innovatively introducing the third template n-hexanol, which is unprecedented at nanoscale. Remarkably, due to the excellent properties of carbon species and unique structural characteristics, AMC nanoparticles not only demonstrate good biocompatibility but also exhibit splendid performance in improving the dissolution and release rates of insoluble drug and enhancing the enzyme catalytic efficiency. Generally, this approach provides new inspiration and insights for expanding exquisite anisotropic nanomaterials for many potential applications.
Collapse
Affiliation(s)
- Yujie Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shilong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yong Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiufang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|
11
|
Zhang Y, Cui Y, Sun M, Wang T, Liu T, Dai X, Zou P, Zhao Y, Wang X, Wang Y, Zhou M, Su G, Wu C, Yin H, Rao H, Lu Z. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide. Biosens Bioelectron 2022; 209:114262. [DOI: 10.1016/j.bios.2022.114262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
12
|
Xu Y, Wang C, Wu T, Ran G, Song Q. Template-Free Synthesis of Porous Fluorescent Carbon Nanomaterials with Gluten for Intracellular Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21310-21318. [PMID: 35476911 DOI: 10.1021/acsami.2c00941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of carbon nanomaterials, including carbon dots, carbon nanorings (CNRs), and porous carbon nanoballs, were facilely prepared by a template-free hydrothermal treatment of gluten as the sole carbon source. Driven by the hydrophobicity interaction, a concentration-dependent self-assembly of gluten was observed in an aqueous solution, leading to the subsequent formation of different morphologies of carbon nanomaterials in a hydrothermal treatment. Among these carbon nanomaterials, the CNRs exhibit bright photoluminescence with a quantum yield of 47.0%. Furthermore, CNRs also have a large surface area and low toxicity, making them an excellent drug carrier for chemotherapeutics. A model drug molecule doxorubicin (DOX) was successfully loaded on the CNRs, and the CNRs-DOX complexes exhibit a pH-dependent DOX release behavior. Compared with free DOX, the CNRs-DOX complexes can induce a higher level of apoptosis and lower level of necrosis, showing promise as anticancer agents.
Collapse
Affiliation(s)
- Yalan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tao Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Liu S, Han Q, Yang C, Li H, Xia H, Zhou J, Liu X. High mass load of oxygen-enriched microporous hollow carbon spheres as electrode for supercapacitor with solar charging station application. J Colloid Interface Sci 2022; 608:1514-1525. [PMID: 34742070 DOI: 10.1016/j.jcis.2021.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 01/24/2023]
Abstract
Carbon materials modified with pores and heteroatoms have been pursued as promising electrode for supercapacitors due to the synergic storage of electric double-layer capacitance (EDLC) and pseudocapacitance. A vital problem that the actual effect of pores and heteroatoms on energy storage varies with the carbon matrix used presents in numerous carbon electrodes, but is ignored greatly, which limits their sufficient utilization. Moreover, most of modified carbon electrodes still suffer from severe capacitance degeneration under high mass load caused by the blocked surface and inaccessible bulk phase. Here, we shape an interconnected hollow carbon sphere (HCS) as the matrix by regulating and selectively-etching low molecular weight component in the inhomogeneous precursors, accompanied with the decoration of rich oxygen groups (15.9at%) and micropores (centering at 0.6-1.4 nm). Finite-element calculation and energy storage kinetics reveal the modified HCS electrode exposes accessible dual active surface with highly-matched electrons and ions for pores and oxygen groups to improve both EDLC and pseudocapacitance. Under a commercial-level load of 11.2 mg cm-2, the HCS exhibits a high specific capacitance of 288.3 F g-1 at 0.5 A g-1, performing a retention of 91.8% relative to 314 F g-1 under 2.8 mg cm-2 load, applicable for solar charging station to efficiently drive portable electronics.
Collapse
Affiliation(s)
- Shaobo Liu
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Qiang Han
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Chenggang Yang
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Hongjian Li
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Hui Xia
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Jianfei Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Xiaoliang Liu
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China.
| |
Collapse
|
14
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
15
|
Xie L, Liu J, Bao X, Chen J, Zheng X, He Y, Zhang W, Zeng J, Wang Y, Kong B. Interfacial Assembly of Nanowire Arrays toward Carbonaceous Mesoporous Nanorods and Superstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104477. [PMID: 34738718 DOI: 10.1002/smll.202104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of anisotropic carbonaceous nano- and micro-materials with well-ordered mesoporous structures has attracted increasing attention for a broad scope of applications. Although hard-templating method has been widely employed, overcoming the viscous forces to prepare anisotropic mesoporous materials is particularly challenging via the universal soft-templating method, especially from sustainable biomass as a carbon resource. Herein, the synthesis of biomass-derived nanowire-arrays based mesoporous nanorods and teeth-like superstructures is reported, through a simple and straightforward polyelectrolyte assisted soft-templating hydrothermal carbonization (HTC) approach. A surface energy induced interfacial assembly mechanism with the synergetic interactions between micelles, nanowire, nanorods, and polyelectrolyte is proposed. The polyelectrolyte acts not only as a stabilizer to decrease the surface energy of cylindrical micelles, nanowires and nanorods, but also as a structure-directing agent to regulate the oriented attachment and anisotropic assembly of micelles, nanowires, and nanorods. After a calcination treatment, the carbon nanorod and teeth-like superstructure are successfully coupled with Ru to directly produce supported catalysts for the hydrogen evolution reaction, exhibiting much better performance than the isotropic nanospheres based catalyst. This HTC approach will open up new avenues for the synthesis of anisotropic materials with various morphologies and dimensions, expanding the palette of materials selection for many applications.
Collapse
Affiliation(s)
- Lei Xie
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jinrong Liu
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Xiaobing Bao
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Jiadong Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Xiaozhong Zheng
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wei Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
Generation of Cobalt-Containing Nanoparticles on Carbon via Pyrolysis of a Cobalt Corrole and Its Application in the Hydrogenation of Nitroarenes. Catalysts 2021. [DOI: 10.3390/catal12010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report on the manufacture of a state-of-the-art heterogeneous non-noble metal catalyst, which is based on a molecularly well-defined phosphine-tagged cobalt corrole complex. This precursor compound is readily synthesized from convenient starting materials while the active material is obtained through wet-impregnation of the pertinent metalliferous macrocycle onto carbon black followed by controlled pyrolysis of the loaded carrier material under an inert gas atmosphere. Thus, the obtained composite was then applied in the heterogeneous hydrogenation of various nitroarenes to yield a vast array of valuable aniline derivatives that were conveniently isolated as their hydrochloride salts. The introduced catalytic protocol is robust and user-friendly with the entire assembly of the reaction set-up enabling the conduction of the experiments on the laboratory bench without any protection from air.
Collapse
|
17
|
Gao XJ, Zhang JF, Song FE, Wang XX, Zhang T, Jiang QK, Zhang QD, Han YZ, Tan YS. Biomass-Based Carbon-Supported Sulfate Catalyst for Efficient Synthesis of Dimethoxymethane from Direct Oxidation of Dimethyl Ether. J Phys Chem Lett 2021; 12:11795-11801. [PMID: 34860528 DOI: 10.1021/acs.jpclett.1c03205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synthesis of dimethoxymethane (DMM) from direct oxidation of dimethyl ether (DME) is a green and competitive route with good atomic economy and low carbon emission and is also an urgent need. In this work, biomass-based carbon-supported sulfate catalysts were designed and prepared for the efficient synthesis of DMM from DME oxidation. The prepared carbon support from cellulose displayed much larger specific surface area and a developed microporous structure, which effectively benefited a high dispersion of sulfate components, leading to mainly weak acid sites and more oxygen functional groups on the catalyst surface. The Ti(SO4)2/PC-H2SO4 catalyst exhibits excellent performance for DME oxidation with DMM1-2 selectivity up to 96.7%, and DMM selectivity reaches 89.1%, notably higher than that of previously reported results. The distinctive surface structure and chemical properties of the carbon support have important impacts on the dispersion state of sulfate species, affecting the acidic and redox properties of the catalysts.
Collapse
Affiliation(s)
- Xiu-Juan Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Feng Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Fa-En Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xiao-Xing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Tao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qi-Ke Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-De Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| | - Yi-Zhuo Han
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yi-Sheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
18
|
Synthesis of non-spherical polymer particles using the activated swelling method. J Colloid Interface Sci 2021; 611:377-389. [PMID: 34971960 DOI: 10.1016/j.jcis.2021.11.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The preparation of particles with non-spherical shapes is a challenging endeavor, often requiring a significant ingenuity, complex experimental procedures and difficulties to obtain reproducible results. In this work we prove that monodisperse non-spherical polymer particles possessing asymmetric Janus structure can be easily produced by using an activated swelling method in combination with a control of the rate of free radical polymerization through the addition of the inhibitors 4-methoxyphenol (MEHQ) and O2. Monodisperse non cross-linked polystyrene particles, used as seeds, are activated by the addition of an initiator, which promotes their swelling ability, and then swollen with a monomers mixture (methyl methacrylate, glycidyl methacrylate and ethylene glycol dimethacrylate), before being polymerized in presence of both MEHQ and O2. Our results show that only when both MEHQ and O2 are present during the course of the polymerization, the particles shape can be controlled, from spherical to asymmetrical. A variety of particles shapes can be obtained, ranging from dimpled spheres, flattened spheres and Janus particles by varying the swelling ratio, always with excellent monodispersity and reproducibility. Finally, to provide even more complex functionalities to these non-spherical polymer particles, iron oxide nanocrystals were grown within the polymer matrix resulting in superparamagnetic particles.
Collapse
|
19
|
Chen C, Wang Y. The Precise Engineering of Nanostructured Carbon Materials. ACS CENTRAL SCIENCE 2021; 7:1470-1472. [PMID: 34584947 PMCID: PMC8461631 DOI: 10.1021/acscentsci.1c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Chunhong Chen
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yong Wang
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
20
|
Hou L, Li WC, Liu CY, Zhang Y, Qiao WH, Wang J, Wang DQ, Jin CH, Lu AH. Selective Synthesis of Carbon Nanorings via Asymmetric Intramicellar Phase-Transition-Induced Tip-to-Tip Assembly. ACS CENTRAL SCIENCE 2021; 7:1493-1499. [PMID: 34584950 PMCID: PMC8461765 DOI: 10.1021/acscentsci.1c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 05/21/2023]
Abstract
The selective synthesis of energetically less favorable ring-shaped nanostructures by liquid phase synthetic chemistry is a huge challenge. Herein, we report a precise synthesis of carbon nanorings with a well-defined morphology and tunable thickness based on asymmetric intramicellar phase-transition-induced tip-to-tip assembly via mixing hydrophobic long-chain octadecanol and block copolymer F127. This orientational self-assembly depends on the hydrophobicity difference of the intermediate's surface, which triggers directional interactions that surpass the entropy cost of undesired connections and help assemble intermediates into defined ringlike structures. Based on a ringlike template, carbon nanorings with adjustable sizes can be attained by changing synthetic variables. More importantly, diverse units including crescentlike, podlike, and garlandlike nanostructures can also be created through controlling the kinetics of the self-assembly process. This discovery lays a solid foundation for the challenging construction of such a precise configuration on the nanoscale, which would not only promote fundamental studies but also pave the way for the development of advanced nanodevices with unique properties.
Collapse
Affiliation(s)
- Lu Hou
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Cui Li
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen-Yu Liu
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei-Hong Qiao
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jia Wang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dong-Qi Wang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chuan-Hong Jin
- State
Key Laboratory of Silicon Materials, School of Materials Science and
Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Hunan
Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R.
China
| | - An-Hui Lu
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- E-mail:
| |
Collapse
|
21
|
Xu F, Jing W, Chen G, Zhang Z. Polymerization in Shear Flow: From Bowl-Shaped Glyco-Microcarriers to Self-Propelled Micromotors. ACS Macro Lett 2021; 10:9-13. [PMID: 35548979 DOI: 10.1021/acsmacrolett.0c00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a simple and effective method to synthesize composite bowl-shaped colloidal particles composed of a magnetic bottom and polymer wall. The bowl-shape is determined by the stirring and the resulting centrifugal force acting on the components during the synthesis. By systematically varying the stirring speed, we have found the lower and upper bounds for the bowl formation. Moreover, the size and thickness of the bowl can be tuned by changing the amount of the TPM monomer during synthesis. Functional groups can be easily introduced in the solidifying step through the polymerization of TPM by adding initiators and functional monomers. For example, by copolymerization of glycomonomer with TPM, bowl-shaped particles with biological activity can be obtained. In addition, such composite particles can be further modified to produce micromotors with well-controlled motions.
Collapse
Affiliation(s)
- Fei Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Wenhua Jing
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zexin Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| |
Collapse
|
22
|
Cao Y, Ding L, Qiu Z, Zhang H. Biomass-derived N-doped porous two-dimensional carbon nanosheets supported ruthenium as effective catalysts for the selective hydrogenation of quinolines under mild conditions. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Yu R, Huang X, Liu Y, Kong Y, Gu Z, Yang Y, Wang Y, Ban W, Song H, Yu C. Shaping Nanoparticles for Interface Catalysis: Concave Hollow Spheres via Deflation-Inflation Asymmetric Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000393. [PMID: 32670764 PMCID: PMC7341089 DOI: 10.1002/advs.202000393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Indexed: 05/25/2023]
Abstract
Hollow spheres are charming objects in nature. In this work, an unexpected deflation-inflation asymmetric growth (DIAG) strategy is reported, generating hollow nanoparticles with tailored concave geometry for interface catalysis. Starting from aminophenol-formaldehyde (APF) nanospheres where the interior crosslinking degree is low, fully deflated nanobowls are obtained after etching by acetone. Due to APF etching and repolymerization reactions occuring asymmetrically within a single particle, an autonomous inflation process is observed similar to a deflated basketball that inflates back to a "normal" ball, which is rare at the nanoscale. A nucleophilic addition reaction between acetone and APF is elucidated to explain the chemistry origin of the DIAG process. Interestingly, the deflated APF hollow spheres enable preferential immobilization of lipase in the concave domain, which facilitates the stabilization of Pickering emulsion droplets for enhanced enzymatic catalysis at the oil-water interface. The study provides new understandings in the designable synthesis of hollow nanoparticles and paves the way toward a wide range of applications of asymmetric architectures.
Collapse
Affiliation(s)
- Rongtai Yu
- School of Materials Science and EngineeringJingdezhen Ceramic InstituteJingdezhenJiangxi333403P. R. China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Xiaodan Huang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Yang Liu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| | - Yueqi Kong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| | - Yang Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Yue Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Wenhuang Ban
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Hao Song
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
24
|
Xiang X, Chen Z, Ren D, Xu J, Li X, Ye Z, Chen N, Chen Q, Ma S. Shape engineering of polystyrene particles from spherical to raspberry-like to hollow flower-like via one-step non-surfactant self-templating polymerization of styrene in ethanol-water mixtures. RSC Adv 2020; 10:11535-11542. [PMID: 35495350 PMCID: PMC9050510 DOI: 10.1039/d0ra00005a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/27/2020] [Indexed: 01/22/2023] Open
Abstract
We report a facile method for preparation of polystyrene (PS) particles with spherical, raspberry-like, and hollow flower-like structures by single-step non-surfactant self-templating polymerization of styrene in ethanol-water mixtures. PS particles with diverse morphologies could be easily obtained by simply adjusting the volume ratios of the styrene/water/ethanol mixture and initiator-ethanol-water mixture. By decreasing this ratio, the particles with spherical, raspberry-like, and hollow flower-like structures were obtained in sequence. The wettability of the coatings changing from hydrophilicity to hydrophobicity was easily tuned by the PS particles with different roughnesses. A competitive mechanism of interfacial polymerization and exudation was proposed to interpret the formation of PS particles with diverse morphologies.
Collapse
Affiliation(s)
- Xuechen Xiang
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Zhe Chen
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Dongfang Ren
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Jiaqiong Xu
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Xiaofeng Li
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Zixin Ye
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Ning Chen
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Qiming Chen
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| | - Shiyu Ma
- Research Center of Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University No. 500, Dongchuan Rd. Shanghai 200241 P. R. China
| |
Collapse
|