1
|
Chakma R, Hossain MK, Paramasivam P, Bousbih R, Amami M, Toki GFI, Haldhar R, Karmaker AK. Recent Applications, Challenges, and Future Prospects of Microbial Fuel Cells: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2500004. [PMID: 40352631 PMCID: PMC12065106 DOI: 10.1002/gch2.202500004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/18/2025] [Indexed: 05/14/2025]
Abstract
Microbial fuel cell (MFC), a clean and promising technology that has the potential to tackle both environmental degradation and the global energy crisis, receives tremendous attention from researchers over recent years. The performance of each system component, including the membrane and electrode utilized in MFCs, has a great effect on the efficiency of converting chemical energy found in organic waste to power generation through bacterial metabolism. The MFCs have diverse applications that are growing day by day in developed countries. This review discusses recently available various potential applications including wastewater treatment, biohydrogen production, hazardous waste removal, generation of bioelectricity, robotics, biosensors, etc. There are still several challenges (e.g., system complexity, economic, commercialization, and other operational factors) for large-scale practical applications, particularly for relatively low power output and delayed start-up time, which is also reported in this review article. Moreover, the operational factors (e.g., electrode materials, proton exchange system, substrate, electron transfer mechanism, pH, temperature, external resistance, and shear stress and feed rate) that affect the performance of MFCs, are discussed in detail. To resolve these issues, optimizations of various parameters are also presented. In the previously published studies, this paper indicates that MFCs have demonstrated power densities ranging from 2.44 to 3.31 W m- 2, with Coulombic efficiencies reaching up to 55.6% under optimized conditions. It is also reported that MFCs have achieved the removal efficiency of chemical oxygen demand (COD), total organic carbon (TOC), and antibiotics up to 93.7%, 70%, and 98%, respectively. Finally, this paper highlights the future perspective of MFCs for full-scale applications.
Collapse
Affiliation(s)
- Ripel Chakma
- Department of Electrical and Electronic EngineeringDhaka University of Engineering & TechnologyGazipur1707Bangladesh
| | - M. Khalid Hossain
- Institute of ElectronicsAtomic Energy Research EstablishmentBangladesh Atomic Energy CommissionDhaka1349Bangladesh
- Department of Advanced Energy Engineering ScienceInterdisciplinary Graduate School of Engineering SciencesKyushu UniversityFukuoka816‐8580Japan
| | - Prabhu Paramasivam
- Department of Research and InnovationSaveetha School of EngineeringSIMATSChennaiTamil Nadu602105India
- Department of Mechanical EngineeringMattu UniversityMettu318Ethiopia
| | - R. Bousbih
- Department of PhysicsFaculty of ScienceUniversity of TabukTabuk71491Saudi Arabia
| | - Mongi Amami
- Department of ChemistryCollege of ScienceKing Khalid UniversityP.O. Box 9004Abha62217Saudi Arabia
| | - G. F. Ishraque Toki
- Nanotechnology CenterSchool of Fashion and TextilesThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Rajesh Haldhar
- School of Chemical EngineeringYeungnam UniversityGyeongsan38541Republic of Korea
| | - Ashish Kumar Karmaker
- School of Engineering and Information TechnologyThe University of New South WalesCanberraAustralia
| |
Collapse
|
2
|
Ibáñez-López ME, Díaz-Domínguez E, Fernández-Morales FJ, García-Morales JL. Enhancing dark fermentative biohydrogen and VFA production via ozone pre-treatment. BIORESOURCE TECHNOLOGY 2025; 419:132107. [PMID: 39855573 DOI: 10.1016/j.biortech.2025.132107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4. Based on these findings, the impact of ozonation on subsequent dark fermentation Biochemical Hydrogen Potential (BHP) was assessed for SS. The results, modeled for an ozone dose of 0.018 g O3/g TS, indicated a substantial enhancement in bio-hydrogen production by approximately 160% and VFA production by about 350%. In conclusion, ozone pre-treatment shows significant potential to enhance dark fermentation of particulate substrates like secondary sludge, supporting sustainable waste valorization strategies.
Collapse
Affiliation(s)
- M Eugenia Ibáñez-López
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Encarnación Díaz-Domínguez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Francisco J Fernández-Morales
- Department of Chemical Engineering, University of Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain.
| | - José L García-Morales
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
3
|
Potrykus S, Nieznański J, Kutt F, Fernandez-Morales FJ. Modeling the effect of external load variations on single, serie and parallel connected microbial fuel cells. BIORESOURCE TECHNOLOGY 2025; 416:131761. [PMID: 39515435 DOI: 10.1016/j.biortech.2024.131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This paper presents a microbial fuel cell (MFC) model designed to analyze the effect of the external load on MFC performance. The model takes into account the voltage and the chemical oxygen demand (COD) dependence on the external load. The value of the model parameters were calibrated by means of the voltage relaxation method tests using a controlled load current. Laboratory measurements and MATLAB Simulink model computations were used to validate the proposed model. The tests results demonstrated that the proposed model accurately predicts the voltage and COD evolution during the batch cycle of the MFC. The root mean square error (RMSE) was used to assess the fitting goodness of the model. The RMSE of COD and voltage generation was in all the cases lower than 4%, predicting accurately the behaviour of single MFC as well as MFC connected in series or parallel.
Collapse
Affiliation(s)
- S Potrykus
- Chemical Engineering Department, ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain; Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gdansk, Poland
| | - J Nieznański
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gdansk, Poland
| | - F Kutt
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gdansk, Poland
| | - F J Fernandez-Morales
- Chemical Engineering Department, ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Delgado Y, Tapia N, Muñoz-Morales M, Ramirez Á, Llanos J, Vargas I, Fernández-Morales FJ. Effect of hydrochar-doping on the performance of carbon felt as anodic electrode in microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33338-2. [PMID: 38653895 DOI: 10.1007/s11356-024-33338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
In this study, the feasibility of using hydrochars as anodic doping materials in microbial fuel cells (MFCs) was investigated. The feedstock used for hydrochar synthesis was metal-polluted plant biomass from an abandoned mining site. The hydrochar obtained was activated by pyrolysis at 500 °C in N2 atmosphere. Under steady state conditions, the current exerted by the MFCs, as well as the cyclic voltammetry and polarization curves, showed that the activated hydrochar-doped anodes exhibited the best performance in terms of power and current density generation, 0.055 mW/cm2 and 0.15 mA/cm2, respectively. These values were approximately 30% higher than those achieved with non-doped or doped with non-activated hydrochar anodes which can be explained by the highly graphitic carbonaceous structures obtained during the hydrochar activation that reduced the internal resistance of the system. These results suggest that the activated hydrochar materials could significantly enhance the electrochemical performance of bioelectrochemical systems. Moreover, this integration will not only enhance the energy generated by MFCs, but also valorize metal polluted plant biomass within the frame of the circular economy.
Collapse
Affiliation(s)
- Yelitza Delgado
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Natalia Tapia
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Martín Muñoz-Morales
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Álvaro Ramirez
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Javier Llanos
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain
| | - Ignacio Vargas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Francisco Jesús Fernández-Morales
- Department of Chemical Engineering, ITQUIMA, University of Castilla La Mancha, Campus Universitario S/N., 13071, Ciudad Real, Spain.
| |
Collapse
|
5
|
Abadikhah M, Persson F, Farewell A, Wilén BM, Modin O. Viral diversity and host associations in microbial electrolysis cells. ISME COMMUNICATIONS 2024; 4:ycae143. [PMID: 39660013 PMCID: PMC11629682 DOI: 10.1093/ismeco/ycae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
In microbial electrolysis cells (MECs), microbial communities catalyze conversions between dissolved organic compounds, electrical energy, and energy carriers such as hydrogen and methane. Bacteria and archaea, which catalyze reactions on the anode and cathode of MECs, interact with phages; however, phage communities have previously not been examined in MECs. In this study, we used metagenomic sequencing to study prokaryotes and phages in nine MECs. A total of 852 prokaryotic draft genomes representing 278 species, and 1476 phage contigs representing 873 phage species were assembled. Among high quality prokaryotic genomes (>95% completion), 55% carried a prophage, and the three Desulfobacterota spp. that dominated the anode communities all carried prophages. Geobacter anodireducens, one of the bacteria dominating the anode communities, carried a CRISPR spacer showing evidence of a previous infection by a Peduoviridae phage present in the liquid of some MECs. Methanobacteriaceae spp. and an Acetobacterium sp., which dominated the cathodes, had several associations with Straboviridae spp. The results of this study show that phage communities in MECs are diverse and interact with functional microorganisms on both the anode and cathode.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Anne Farewell
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Abadikhah M, Liu M, Persson F, Wilén BM, Farewell A, Sun J, Modin O. Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells. Biofilm 2023; 6:100161. [PMID: 37859795 PMCID: PMC10582064 DOI: 10.1016/j.bioflm.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.
Collapse
Affiliation(s)
- Marie Abadikhah
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ming Liu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Beijing, 100124, China
| | - Frank Persson
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Jie Sun
- College of Physics and Information Engineering, Fuzhou University, and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Oskar Modin
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Torres-Rojas F, Muñoz D, Pía Canales C, Hevia SA, Leyton F, Veloso N, Isaacs M, Vargas IT. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. ENVIRONMENTAL RESEARCH 2023; 233:116442. [PMID: 37343755 DOI: 10.1016/j.envres.2023.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107, Reykjavík, Iceland
| | - Samuel A Hevia
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile; Instituto de Física, Pontificia Universidad Católica de, Chile
| | - Felipe Leyton
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Nicolás Veloso
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile
| | - Mauricio Isaacs
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia. Pontificia Universidad Católica de, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile CIEN-UC, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
8
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Effect of Electrode Spacing on the Performance of a Membrane-Less Microbial Fuel Cell with Magnetite as an Additive. Molecules 2023; 28:molecules28062853. [PMID: 36985825 PMCID: PMC10058918 DOI: 10.3390/molecules28062853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A microbial fuel cell (MFC) is a bioelectrochemical system that can be employed for the generation of electrical energy under microbial activity during wastewater treatment practices. The optimization of electrode spacing is perhaps key to enhancing the performance of an MFC. In this study, electrode spacing was evaluated to determine its effect on the performance of MFCs. The experimental work was conducted utilizing batch digesters with electrode spacings of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm. The results demonstrate that the performance of the MFC improved when the electrode spacing increased from 2.0 to 6.0 cm. However, the efficiency decreased after 6.0 cm. The digester with an electrode spacing of 6.0 cm enhanced the efficiency of the MFC, which led to smaller internal resistance and greater biogas production of 662.4 mL/g VSfed. The electrochemical efficiency analysis demonstrated higher coulombic efficiency (68.7%) and electrical conductivity (177.9 µS/cm) for the 6.0 cm, which was evident from the enrichment of electrochemically active microorganisms. With regards to toxic contaminant removal, the same digester also performed well, revealing removals of over 83% for chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS), and volatile solids (VS). Therefore, these results indicate that electrode spacing is a factor affecting the performance of an MFC, with an electrode spacing of 6.0 cm revealing the greatest potential to maximize biogas generation and the degradability of wastewater biochemical matter.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
9
|
Wang Z, Hu Y, Dong Y, Shi L, Jiang Y. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Microb Biotechnol 2023; 16:534-545. [PMID: 36815664 PMCID: PMC9948223 DOI: 10.1111/1751-7915.14128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Protein nanowires are critical electroactive components for electron transfer of Geobacter sulfurreducens biofilm. To determine the applicability of the nanowire proteins in improving bioelectricity production, their genes including pilA, omcZ, omcS and omcT were overexpressed in G. sulfurreducens. The voltage outputs of the constructed strains were higher than that of the control strain with the empty vector (0.470-0.578 vs. 0.355 V) in microbial fuel cells (MFCs). As a result, the power density of the constructed strains (i.e. 1.39-1.58 W m-2 ) also increased by 2.62- to 2.97-fold as compared to that of the control strain. Overexpression of nanowire proteins also improved biofilm formation on electrodes with increased protein amount and thickness of biofilms. The normalized power outputs of the constructed strains were 0.18-0.20 W g-1 that increased by 74% to 93% from that of the control strain. Bioelectrochemical analyses further revealed that the biofilms and MFCs with the constructed strains had stronger electroactivity and smaller internal resistance, respectively. Collectively, these results demonstrate for the first time that overexpression of nanowire proteins increases the biomass and electroactivity of anode-attached microbial biofilms. Moreover, this study provides a new way for enhancing the electrical outputs of MFCs.
Collapse
Affiliation(s)
- Zhigao Wang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Wetland Evolution and Eco-Restoration, Wuhan, Hubei, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Wetland Evolution and Eco-Restoration, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Wetland Evolution and Eco-Restoration, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhang J, Wu D, Zhao Y, Liu D, Guo X, Chen Y, Zhang C, Sun X, Guo J, Yuan D, Xiao D, Li F, Song H. Engineering Shewanella oneidensis to efficiently harvest electricity power by co-utilizing glucose and lactate in thin stillage of liquor industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158696. [PMID: 36108833 DOI: 10.1016/j.scitotenv.2022.158696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Thin stillage, rich in glucose and lactate, can seriously pollute water resources when directly discharged into the natural environment. Microbial fuel cells (MFC), as a green and sustainable technology, could utilize exoelectrogens to break down organics in wastewater and harvest electricity. Nevertheless, Shewanella oneidensis MR-1, cannot utilize thin stillage for efficient power generation. Here, to enable S. oneidensis to co-utilize glucose and lactate from thin stillage, an engineered S. oneidensis G7∆RSL1 was first created by constructing glucose metabolism pathway, promoting glucose and lactate co-utilization, and enhancing biofilm formation. Then, to enhance biofilm conductivity, we constructed a 3D self-assembled G7∆RSL1-rGO/CNT biohybrid with maximum power density of 560.4 mW m-2 and 373.7 mW m-2 in artificial and actual thin stillage, respectively, the highest among the reported genetically engineered S. oneidensis with thin stillage as carbon source. This study provides a new strategy to facilitate practical applications of MFC in wastewater remediation and efficient power recovery.
Collapse
Affiliation(s)
- Junqi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China; Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Yakun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Qingdao Institute of Ocean Engineering, Tianjin University, Qingdao 266200, Shandong, China
| | - Dingyuan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Ju Guo
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Dezhi Yuan
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Feng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Qingdao Institute of Ocean Engineering, Tianjin University, Qingdao 266200, Shandong, China.
| |
Collapse
|
11
|
Abadikhah M, Rodriguez MDC, Persson F, Wilén BM, Farewell A, Modin O. Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells. Front Microbiol 2022; 13:959211. [PMID: 36590422 PMCID: PMC9800620 DOI: 10.3389/fmicb.2022.959211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Marie Abadikhah, ✉
| | - Miguel de Celis Rodriguez
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Institute of Chemistry and Molecular Biology and the Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Jadhav DA, Chendake AD, Vinayak V, Atabani A, Ali Abdelkareem M, Chae KJ. Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. BIORESOURCE TECHNOLOGY 2022; 363:127935. [PMID: 36100187 DOI: 10.1016/j.biortech.2022.127935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Electrochemists and ecological engineers find environmental bioelectrochemistry appealing; however, there is a big gap between expectations and actual progress in bioelectrochemical system (BES). Implementing such technology opens new opportunities for novel electrochemical reactions for resource recovery and effective wastewater treatment. Loopholes of BES exist in its scaling-up applications, and numerous attempts toward practical applications (200, 1000, and 1500 L) are key successive indicators toward its commercialization. This review emphasized the critical rethinking of standardization of performance indices i.e. current generation (A/m2), net energy recovery (kWh/kg·COD), product/resource yield (mM), and economic feasibility ($/kWh) to make fair comparison with the existing treatment system. Therefore, directional perspectives, including modularity, energy-cost balance, energy and resource recovery, have been proposed for the sustainable market of BES. The current state of the art and up-gradation in resource recovery and contaminant removal warrants a systematic rethinking of functional worth and niches of BES for practical applications.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ashvini D Chendake
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Abdulaziz Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Erciyes University, Turkey
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, AlMinya, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
13
|
Impact of wastewater volume on cathode environment of the multi-anode shared cathode and standard single anode/cathode microbial fuel cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
15
|
Abstract
Microbial fuel cell (MFC) technology has attracted a great amount of attention due to its potential for organic and inorganic waste treatment concomitant with power generation. It is thus seen as a clean energy alternative. Modifications and innovations have been conducted on standalone and hybrid/coupled MFC systems to improve the power output to meet the end goal, namely, commercialization and implementation into existing wastewater treatment plants. As the energy generated is inversely proportional to the size of the reactor, the stacking method has been proven to boost the power output from MFC. In recent years, stacked or scale-up MFCs have also been used as a power source to provide off-grid energy, as well as for in situ assessments. These scale-up studies, however, encountered various challenges, such as cell voltage reversal. This review paper explores recent scale-up studies, identifies trends and challenges, and provides a framework for current and future research.
Collapse
|
16
|
Vassilev I, Averesch NJH, Ledezma P, Kokko M. Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnol Adv 2021; 48:107728. [PMID: 33705913 DOI: 10.1016/j.biotechadv.2021.107728] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
In nature as well as in industrial microbiology, all microorganisms need to achieve redox balance. Their redox state and energy conservation highly depend on the availability of a terminal electron acceptor, for example oxygen in aerobic production processes. Under anaerobic conditions in the absence of an electron acceptor, redox balance is achieved via the production of reduced carbon-compounds (fermentation). An alternative strategy to artificially stabilize microbial redox and energy state is the use of anodic electro-fermentation (AEF). This emerging biotechnology empowers respiration under anaerobic conditions using the anode of a bioelectrochemical system as an undepletable terminal electron acceptor. Electrochemical control of redox metabolism and energy conservation via AEF can steer the carbon metabolism towards a product of interest and avoid the need for continuous and cost-inefficient supply of oxygen as well as the production of mixed reduced by-products, as is the case in aerobic production and fermentation processes, respectively. The great challenge for AEF is to establish efficient extracellular electron transfer (EET) from the microbe to the anode and link it to central carbon metabolism to enhance the synthesis of a target product. This article reviews the advantages and challenges of AEF, EET mechanisms, microbial energy gain, and discusses the rational choice of substrate-product couple as well as the choice of microbial catalyst. Besides, it discusses the potential of the industrial model-organism Bacillus subtilis as a promising candidate for AEF, which has not been yet considered for such an application. This prospective review contributes to a better understanding of how industrial microbiology can benefit from AEF and analyses key-factors required to successfully implement AEF processes. Overall, this work aims to advance the young research field especially by critically revisiting the fundamental aspects of AEF.
Collapse
Affiliation(s)
- Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Nils J H Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
17
|
Abstract
In this work, the effect of the external load on the current and power generation, as well as on the pollutant removal by microbial fuel cells (MFCs), has been studied by step-wise modifying the external load. The load changes included a direct scan, in which the external resistance was increased from 120 Ω to 3300 Ω, and a subsequent reverse scan, in which the external resistance was decreased back to 120 Ω. The reduction in the current, experienced when increasing the external resistance, was maintained even in the reverse scan when the external resistance was step-wise decreased. Regarding the power exerted, when the external resistance was increased below the value of the internal resistance, an enhancement in the power exerted was observed. However, when operating near the value of the internal resistance, a stable power exerted of about 1.6 µW was reached. These current and power responses can be explained by the change in population distribution, which shifts to a more fermentative than electrogenic culture, as was confirmed by the population analyses. Regarding the pollutant removal, the effluent chemical oxygen demand (COD) decreased when the external resistance increased up to the internal resistance value. However, the effluent COD increased when the external resistance was higher than the internal resistance. This behavior was maintained in the reverse scan, which confirmed the modification in the microbial population of the MFC.
Collapse
|
18
|
Verma R, Chakraborty I, Chowdhury S, Ghangrekar MM, Balasubramanian R. Nitrogen and Sulfur Codoped Graphene Macroassemblies as High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:16591-16599. [DOI: 10.1021/acssuschemeng.0c05909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rajneesh Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Makarand M. Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| |
Collapse
|
19
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model. ENERGIES 2020. [DOI: 10.3390/en13184735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The energy contained in wastewaters has been identified as a promising sustainable energy resource that could be harvested by using microbial fuel cells (MFC). When dealing with real wastewaters, the MFCs should be able to manage high flow rates and flow rates fluctuations. In this work, the short-term effects of the influent flow rate variations on the performance of a microbial fuel cell has been studied. With this aim, the influent flow rate was stepwise increased from 0.72 to 7.2 L/d and then stepwise decreased. The obtained results indicate that, on the one hand, an increase in the influent flow rate leads to higher chemical oxygen demand removal rates up to 396 g/(L/d) and higher electric power generation almost 18 mW/m2, but to lower coulombic efficiencies. On the other hand, the reduction of the flow rate increases the coulombic efficiencies, as well as the percentage of chemical oxygen demand removed, but decreases electric power generation. In the short-term, the exposition to higher influent flow rates causes the growth of the microbial population of the MFC, the growth of the non-electrogenic microorganisms being higher than that of the electrogenic ones. The higher growth of non-electrogenic microorganisms may lead to lower coulombic efficiencies.
Collapse
|
21
|
Gadkari S, Sadhukhan J. A robust correlation based on dimensional analysis to characterize microbial fuel cells. Sci Rep 2020; 10:8407. [PMID: 32439969 PMCID: PMC7242356 DOI: 10.1038/s41598-020-65375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
We present a correlation for determining the power density of microbial fuel cells based on dimensional analysis. Important operational, design and biological parameters are non-dimensionalized using a selection of scaling variables. Experimental data from various microbial fuel cell studies operating over a wide range of system parameters are analyzed to attest accuracy of the model in predicting power output. The correlation predicts nonlinear dependencies between power density, substrate concentration, solution conductivity, external resistance, and electrode spacing. The straightforward applicability without the need for any significant computational resources, while preserving good level of accuracy; makes this correlation useful in focusing the experimental effort for the design and optimization of microbial fuel cells.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom. .,Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| | - Jhuma Sadhukhan
- Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.,Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
22
|
Bhowmick GD, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Käärik M, Leis J, Sammelselg V, Ghangrekar MM, Tammeveski K. Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. SUSTAINABLE ENERGY & FUELS 2019; 3:3525-3537. [DOI: 10.1039/c9se00574a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal phthalocyanine (CoPc and FePc) modified MWCNT or CDC materials were explored as superior cathode catalysts for MFC technology.
Collapse
Affiliation(s)
- G. D. Bhowmick
- Department of Agricultural and Food Engineering
- Indian Institute of Technology Kharagpur
- India
| | | | - L. Matisen
- Institute of Physics
- University of Tartu
- 50411 Tartu
- Estonia
| | - M. Merisalu
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
- Institute of Physics
| | - M. Kook
- Institute of Physics
- University of Tartu
- 50411 Tartu
- Estonia
| | - M. Käärik
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - J. Leis
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - V. Sammelselg
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
- Institute of Physics
| | - M. M. Ghangrekar
- Department of Civil Engineering
- Indian Institute of Technology Kharagpur
- India
| | - K. Tammeveski
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| |
Collapse
|