1
|
Wang D, Cui M, Zhao W, Zhang J, Liu M, Chen S, Liu X, Li Y, Ma S, Wei XY. Selective Oxidation Cleavage of C α-C β Bonds between Lignin Aromatic Units via Phosphomolybdic Acid-Ionic Liquid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40371989 DOI: 10.1021/acs.jafc.4c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Lignin, the most abundant renewable resource of aromatics in nature, is recognized as an alternative to fossil-based fuels and chemicals. In this study, a phosphomolybdic acid-ionic liquid (PMA-IL) [BSHMIM]H2PMo12O40 was synthesized and used as a catalyst for further oxidative depolymerization of extracted lignin to prepare valuable chemicals. Under optimized conditions, the conversion of lignin reached 61.33%, and the total yield of target products (vanillin, vanillic acid, and methyl vanillate) was 28.00 mg·g-1, where the selectivity of methyl vanillate reached 56.43%. The liquid products and residues obtained under the optimum conditions were analyzed, further confirming the advantages of PMA-IL compared with single PMA. In addition, this method also has an excellent catalytic effect for other types of lignin and presents a good substrate applicability. Finally, based on the research results of model compounds, the possible reaction pathway of the formation of vanillin, vanillic acid, and methyl vanillate was proposed.
Collapse
Affiliation(s)
- Dingkai Wang
- School of Chemistry and Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, Shanxi 048000, China
| | - Mingyu Cui
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Jin Zhang
- School of Chemistry and Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, Shanxi 048000, China
| | - Meiling Liu
- School of Chemistry and Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, Shanxi 048000, China
| | - Shanglong Chen
- Jiangsu Key Construction Laboratory of Food Resources Development and Quality Safe, College of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Xutang Liu
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Yanjun Li
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Shangshang Ma
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Xian-Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Zhang N, Gong W, Xiong Y. Modern organic transformations: heterogeneous thermocatalysis or photocatalysis? Chem Soc Rev 2025. [PMID: 40326700 DOI: 10.1039/d2cs00097k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Organic transformation driven by heterogeneous catalysis is of crucial significance in both fundamental research and modern industrial production of fine chemicals. Thermocatalysis offers excellent applications due to its high activity and excellent scalability, yet still faces significant challenges toward the goals of high efficiency, energy-saving and sustainability. Recently, photocatalysis has emerged as a promising alternative for addressing these issues in a green and economical manner. In practice, the selection of an appropriate catalytic system is a critical factor that can influence the chemical process on multiple levels significantly. In this review, we aim to present a tutorial demonstration about the critical comparison between thermo- and photocatalytic terms for organic transformation. We begin by outlining the basic principles in thermo- and photocatalytic fundamentals, together with summarizing the general advantages and disadvantages of each. Subsequently, given the high sustainability and potentiality exhibited by the photocatalytic process, we present its representative applications including oxidation, reduction, coupling, and cleavage series. The general reaction conditions and activities observed in thermocatalysis for similar reactions are also introduced for comparison. The understanding of reaction mechanisms and the resulting regulations toward activity and selectivity are specifically discussed. Finally, future perspectives of heterogeneous photocatalytic terms for practical applications are elucidated.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Wanbing Gong
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
3
|
Bastanian M, Olad A, Ghorbani M. Sustainable chrome-free leather manufacturing through the aldehyde-vegetable combination tanning method based on biomass-derived dialdehyde carboxymethyl cellulose and mimosa tannin. Int J Biol Macromol 2025; 306:141554. [PMID: 40020822 DOI: 10.1016/j.ijbiomac.2025.141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The potential of dialdehyde polysaccharides as chrome-free tanning agents can be enhanced through the use of aldehyde-vegetable combination tanning technology. In this study, dialdehyde carboxymethyl cellulose was synthesized by oxidizing carboxymethyl cellulose with sodium periodate. Fourier transform infrared spectroscopy revealed two characteristic bands at 1738 cm-1 and 886 cm-1. Leather tanned solely with dialdehyde carboxymethyl cellulose exhibited a shrinkage temperature of 78 °C. To enhance the properties, mimosa tannin was combined with dialdehyde carboxymethyl cellulose. The combination of dialdehyde and mimosa tannin showed enhanced mechanical properties, including a tensile strength of 245.71 kg/cm2, tear strength of 44.63 kg/cm, and elongation at break of 45.23 %. Additionally, scanning electron microscopy revealed a well-dispersed arrangement of collagen fibers. The combination tanning resulted in a synergistic effect, increasing the shrinkage temperature to 85 °C due to additional hydrogen bonding. Furthermore, the excellent organoleptic properties, including fullness and softness were observed for combined-tanned leather resulting from the synergistic effect of dialdehyde carboxymethyl cellulose and mimosa tannin. Further studies showed that the wastewater generated by the aldehyde-vegetable combination tanning method is easily biodegradable. Based on the results, the combination tanning technology offers a green, chrome-free, and metal-free approach for the sustainable development of the leather industry.
Collapse
Affiliation(s)
- Maryam Bastanian
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, P.O. Box: 149665/115, Tehran, Iran
| |
Collapse
|
4
|
Zhu Y, Huang H, Gou H, Sun S, Liao Y. Reductive Catalytic Fractionation of Lignocellulosic Biomass: The Impact of Impurities in Catalyst. CHEMSUSCHEM 2025:e2500199. [PMID: 40257929 DOI: 10.1002/cssc.202500199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Catalytic fractionation of lignocellulosic biomass is a promising technology for obtaining different fractions and the valorization of lignin. Reductive catalytic fractionation (RCF) is one of these technologies in which catalysts play an essential role. In this work, the impact of impurities in catalysts on the output of RCF is investigated. It is found that the yield of phenolic monomers is almost not influenced by the residual chloride (Cl) ions in the commercially available Ru/C catalyst. However, the presence of Cl ions in the catalyst facilitated hemicellulose removal and delignification. Moreover, the enzymatic conversion rate of cellulose in the solid residue increases after RCF, attributed to the enhanced removal of lignin and hemicellulose in the presence of Cl ions. The impact of Cl ions can be eliminated by removing the Cl ions in the catalyst. This work provides an engineering perspective for upscaling RCF technology using large-scale synthesized catalysts.
Collapse
Affiliation(s)
- Yiping Zhu
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Haiyun Huang
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Haibin Gou
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Shuaihao Sun
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Yuhe Liao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Khandelwal N, Kumari S, Poduval S, Behera SK, Kumar A, Gedam VV. Life-cycle assessment of three biorefinery pathways across different generations. Sci Rep 2025; 15:13135. [PMID: 40240518 PMCID: PMC12003876 DOI: 10.1038/s41598-025-96474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluated the ecological impacts of three generations of biorefineries using an integrated circularity-life cycle assessment (LCA) approach. In this context, LCA of three distinct biorefinery scenarios was conducted utilising the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to compare their environmental impacts. Two third-generation scenarios, i.e., algae hydrothermal liquefaction (HTL)-pathway I and combined algae processing (CAP)-pathway II, and one second-generation scenario, i.e., palm fatty acid distillation (PFAD)-pathway III, were considered by following a well-to-wheel system framework. Pathway I and II exhibited very low emissions with negative net emissions in pathway I. On the contrary, pathway III had the highest emissions. Based on the results obtained from this study, exploitation of marine biomass (in the third-generation) might offer a sustainable solution to global energy demands with emerging green technologies, such as hydrothermal treatment, advanced fermentation, and green solvents that are essential for improving marine biorefineries. Policies must be formulated by setting standards prioritising renewable energy, resource efficiency, and waste reduction that are important in shaping the sustainability and efficiency of biorefineries across the globe.
Collapse
Affiliation(s)
- Nimish Khandelwal
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Sakshi Kumari
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Siddharth Poduval
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| | - Ashutosh Kumar
- Department of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147 004, India
| | - Vidyadhar V Gedam
- Sustainability Management Area, Indian Institute of Management (IIM), Mumbai, Maharashtra, 400 087, India
| |
Collapse
|
6
|
Zhou T, Zhang H, Shi J. Mechanistic insights and optimization of lignin depolymerization into aromatic monomers using vanadium-modified Dawson-type polyoxometalates. Int J Biol Macromol 2025; 299:139644. [PMID: 39842592 DOI: 10.1016/j.ijbiomac.2025.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Lignin, as the largest renewable aromatic resource, has significant opportunities for producing high-value products via catalytic depolymerization. However, its complex structure and stable chemical bonds present challenges to its transformation. This study explores the catalytic depolymerization of lignin to aromatic monomers by means of Dawson-type phosphomolybdovanadate polyoxometalates (POMs), understanding the underlying mechanisms. Furthermore, vanadium modification is employed to adjust the catalyst's oxidative and acidic properties, demonstrating that the vanadium content in Dawson-type POMs greatly influences monomer yield. The highest yield is achieved with H8P2Mo16V2O62 (V2). Optimal conditions include a reaction temperature of 150 °C, 4 h, an oxygen pressure of 1 MPa, a methanol-to-water ratio of 8:2, and a mass ratio of the catalyst to the wood powder being 1:1, which leads to a total yield of aromatic monomers at 24 %. POMs with high REDOX potential selectively oxidizes benzyl hydroxyl groups in lignin to benzyl carbonyl groups under the combined action of acidity and oxidation of polyacids. This weakens the βO4 bond and promotes CO bond cleavage. This approach, utilizing the tunable oxidative acidity of polyoxometalates to degrade lignin and produce various aromatic monomers, shows promising potential for lignin valorization and advancing a bio-economy based on lignocellulosic resources.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Hailin Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| |
Collapse
|
7
|
Wang H, Cui C, Wang J, Du Z, Wu K, Jiang X, Zheng Y, Zhao F, Jing B, Liu Y, Mei H, Zhang H. Fine mapping and functional characterization of SiLAC3 in regulating brown seed coat pigmentation, integrated transcriptomic and metabolomic analyses in sesame (Sesamum indicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109599. [PMID: 39923418 DOI: 10.1016/j.plaphy.2025.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The color of the seed coat in sesame is a critical breeding trait, with significant implications for seed quality and consumer preferences. However, the genetic foundation and regulatory mechanisms underlying seed coat colors remain largely unexplored. Earlier, we identified a quantitative trait locus (QTL), qBSCchr6, associated with brown-colored seed coats in sesame. Currently, we utilized a recombinant inbred line (RIL) G3010, which harbors qBSCchr6 and crossed it with the white-seeded cultivar (YZ8) to develop an F2 population for QTL fine mapping. Through detailed recombinant analysis, qBSCchr6 was fine mapped to a narrow 83.4 kb genomic interval, co-segregating with the molecular marker BSC_SNV23. Within this interval, we identified SIN_1023239 for the brown-colored seed coat, which we have designated as SiLAC3. SiLAC3 encodes a laccase enzyme with three putative multicopper oxidase domains essential for its function. Sequence analysis revealed that a single nucleotide variant in the multicopper oxidase_3 domain is critical for the expression of brown seed coat phenotype. To further elucidate the role of SiLAC3, we employed a combination of chemical staining, transcriptomics, and metabolomics analyses. Our results indicate that the lignin biosynthesis pathway is crucial for brown seed coat pigmentation, with SiLAC3 facilitating oxidative polymerization of coniferyl alcohol in the seed coat. These findings advance our understanding of genetic and molecular mechanisms underlying seed coat color in sesame and offer a foundation to improve this trait in breeding programs.
Collapse
Affiliation(s)
- Han Wang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengqi Cui
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Jingjing Wang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Zhenwei Du
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Ke Wu
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xiaolin Jiang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yongzhan Zheng
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Fengli Zhao
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanyang Liu
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Hongxian Mei
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
8
|
Mateo S, Fabbrizi G, Moya AJ. Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers (Basel) 2025; 17:952. [PMID: 40219341 PMCID: PMC11991304 DOI: 10.3390/polym17070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Lignin, the most abundant aromatic polymer in nature, plays a critical role in lignocellulosic biomasses by providing structural support. However, its presence complicates the industrial exploitation of these materials for biofuels, paper production and other high-value compounds. Annually, the industrial extraction of lignin reaches an estimated 225 million tons, yet only a fraction is recovered for reuse, with most incinerated as low-value fuel. The growing interest in lignin potential has sparked research into sustainable recovery methods from lignocellulosic agro-industrial wastes. This review examines the chemical, physical and physicochemical processes for isolating lignin, focusing on innovative, sustainable technologies that align with the principles of a circular economy. Key challenges include lignin structural complexity and heterogeneity, which hinder its efficient extraction and application. Nonetheless, its properties such as high thermal stability, biodegradability and abundant carbon content place lignin as a promising material for diverse industrial applications, including chemical synthesis and energy generation. A structured analysis of advancements in lignin extraction, characterization and valorization offers insights into transforming this undervalued by-product into a vital resource, reducing reliance on non-renewable materials while addressing environmental sustainability.
Collapse
Affiliation(s)
- Soledad Mateo
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| | - Giacomo Fabbrizi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06122 Perugia, Italy;
- CIRIAF-CRB (Biomass Research Centre), Department of Engineering, Università degli Studi di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy
| | - Alberto J. Moya
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| |
Collapse
|
9
|
Cui C, Zhu L, Shi Z, Zhou Z, Qi F. Guidelines for Identifying the Structure of Heavy Phenolics in Lignin Depolymerization by using High-Resolution Tandem Mass Spectrometry. CHEMSUSCHEM 2025; 18:e202401827. [PMID: 39388347 DOI: 10.1002/cssc.202401827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The efficient conversion of lignin contributes to reducing human reliance on fossil energy. As a complicated biopolymer, studies on the mechanism of lignin depolymerization is limited by inadequate structural identification of high molecular weight (MW) products like heavy phenolics. Up to now, no individual method can generate both MW and structural information in operando conditions. As a promising approach, tandem mass spectrometry (MS/MS) techniques can provide structural information via the dissociation of target ions. In this study, MS/MS technique was performed both in offline and in-situ mode during lignin depolymerization. The fundamental guidelines based on MS/MS dissociation principles for typical inter-unit linkages like β-O-4, 5-5, β-β, β-5, and β-1 were well established. Based on that, major phenolic dimers are successfully identified, including chemical formula and types of inter-unit linkages. More significantly, real-time monitoring of structural evolution was achieved by applying in-situ MS/MS analysis during lignin depolymerization. The results show the different evolution pathways of isomers with same chemical formula, confirming that structural changes during lignin depolymerization are common and obvious. Overall, this study develops an advanced strategy for the full-view analysis of lignin depolymerization, achieving the static analysis of composition and structure, both monitoring the dynamic evolution of structures.
Collapse
Affiliation(s)
- Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 4221 Xiang 'an Road, Xiamen Fujian, 361005, P.R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen Fujian, 361005, P.R. China
| | - Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Zaifa Shi
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 4221 Xiang 'an Road, Xiamen Fujian, 361005, P.R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen Fujian, 361005, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
10
|
Huda NU, Ul-Hamid A, Zaheer M. A silica-supported palladium oxide catalyst (PdO@MCM-41) selectively cleaves ether linkages in lignin model compounds and alkali lignin via intramolecular hydrogen transfer. RSC Adv 2025; 15:5989-5999. [PMID: 39995450 PMCID: PMC11848713 DOI: 10.1039/d4ra08934k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Lignin is a potential renewable feedstock for the production of aromatic chemicals but due to the recalcitrant nature of its aryl ether bonds (C-O), and recondensation of depolymerized products, it is challenging to produce aromatic compounds with selectivity in high yield. Here we present that a heterogeneous catalyst containing highly dispersed palladium oxide (PdO) particles supported on mesoporous silica (MCM-41) catalyzes oxidant-free oxidation (dehydrogenation) of hydroxyl group at α-carbon of β-O-4 linkage in lignin model compounds and alkali lignin. The catalyst was synthesized via a molecular approach utilizing molecular designed dispersion of palladium diketonate complex followed by calcination. The oxidized lignin models provide high individual yields of monomeric products such as phenol (97%) at moderate temperature (120 °C) through intramolecular hydrogen transfer in green solvents (ethanol and water). The process, therefore, doesn't require any external oxidant, or reductant for cleaving the most abundant β-O-4 linkage of lignin model compounds and tolerates electron donating or withdrawing substitutes at the benzene ring. The approach was successfully extended to alkali lignin where 89% of lignin oil was produced from alkali lignin containing high yield (26 wt%) of monomeric products such as vanillin (2 wt%), benzaldehyde (12 wt%) and benzoic acid (12 wt%).
Collapse
Affiliation(s)
- Noor Ul Huda
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS) Lahore 54792 Pakistan
| |
Collapse
|
11
|
Zhou Z, Cui C, Zhu L, Zhang J, Ren H, Xiao X, Qi F. Online Mass Spectrometric Characterization of Oligomeric Products in High-Pressure Liquid-Phase Lignin Depolymerization Reactions. ACS MEASUREMENT SCIENCE AU 2025; 5:9-18. [PMID: 39991037 PMCID: PMC11843499 DOI: 10.1021/acsmeasuresciau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 02/25/2025]
Abstract
Lignin depolymerization involves complex reactions that occur in heterogeneous environments, leading to the formation of a wide range of products with diverse molecular structures. The complexity of these products arises from the different bond strengths and locations within the lignin polymer, which makes it difficult to fully understand the reaction pathways. Conventional analytical techniques often fall short of providing a clear and comprehensive picture of the reaction mechanism. This highlights the need for more advanced methods that can offer real-time, in situ analysis to probe product evolutions and unravel the detailed mechanisms of lignin depolymerization. Herein, we present a concise perspective of the recent developments in online mass spectrometry, particularly its applications in probing heavy oligomeric products formed during lignindepolymerization. After introducing the current analytical technologies and analytical challenges, we focus on the development of online mass spectrometric method, especially those combined with batch and flow-through reactors, for the real-time characterization of lignin depolymerization products. Several key case studies are highlighted. Finally, we discuss the potential opportunities and remaining challenges in this field.
Collapse
Affiliation(s)
- Zhongyue Zhou
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Cunhao Cui
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, P.R. China
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P.R. China
| | - Linyu Zhu
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Jing Zhang
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Hairong Ren
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Xintong Xiao
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Fei Qi
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Yu Z, Kong W, Liang W, Guo Y, Cui J, Hu Y, Sun Z, Elangovan S, Xu F. Heterogeneously Catalyzed Reductive Depolymerization of Lignin to Value-Added Chemicals. CHEMSUSCHEM 2025; 18:e202401399. [PMID: 39193807 DOI: 10.1002/cssc.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Lignin is an abundant renewable source of aromatics, but its complex heterogeneous structure poses challenges for its depolymerization and valorization. Heterogeneously catalyzed reductive depolymerization (HCRD) has emerged as a promising approach, utilizing heterogeneous catalysts to facilitate selective bond cleavage in lignin and hydrogen transfer to stabilize the products under mild conditions. This review provides a comprehensive understanding of the hydrogen transfer mechanisms in HCRD, involving different hydrogen sources, including molecular hydrogen, alcohols, formic acid, etc., and the native hydrogen donor groups in lignin. The interaction between hydrogen sources and catalyst design is explored, emphasizing how catalyst characteristics must align with specific hydrogen transfer pathways to optimize efficiency and selectivity. Precious metal-based and non-precious metal-based catalysts are examined, highlighting advances that enhance hydrogen activation and transfer. Comparative analyses of hydrogen sources reveal distinct advantages and limitations. The significance of HCRD in lignin valorization and the development of integrated biorefineries is underscored, emphasizing its potential to contribute to a sustainable bioeconomy through improved process integration and economic viability.
Collapse
Affiliation(s)
- Zhaozhuo Yu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzhuo Kong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wen Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaping Guo
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiahao Cui
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yang Hu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhuohua Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Fuqing Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
13
|
Liu X, Shen Z, Guan Y, Jiang Z, Zhao W. Z-scheme H 5PMo 10V 2O 40/g-C 3N 4 heterojunction with strong photooxidative capacity for promoting efficient cleavage of C α-C β bond in lignin models and lignin. Int J Biol Macromol 2025; 288:138709. [PMID: 39672400 DOI: 10.1016/j.ijbiomac.2024.138709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The efficient photocatalytic breakage of Cα-Cβ bonds has great significance for the valorization of lignin into value-added aromatic chemicals, but remains challenging owing to their demanding depolymerization conditions and high bond dissociation energies. In this study, the Z-scheme heterojunction H5PMo10V2O40/g-C3N4 (HPA/CN) photocatalyst was elaborately developed for the selective and efficient cleaving of Cα-Cβ bonds in real lignin and its β-O-4 models under mild conditions. The construction of Z-scheme heterojunction with irregular sheet micromorphology not only enhanced the charge separation and redox abilities, but also broadened the light absorption range and promoted charge-to-surface transfer in two redox components. Notably, 35 % HPA/CN could completely convert the 2-phenoxy-1-phenylethanol with Cα-Cβ bond cleavage selectivity of 97.4 %, achieving approximately 50.0- and 2.2-times higher conversion rates compared to HPA and CN, respectively. Meanwhile, this strategy also offered a wide substrate scope containing various β-O-4 model compounds and native lignin, leading to the generation of corresponding aromatics. The mechanism experiments revealed that photoinduced holes and superoxide radicals synergistically triggered the oxidative cleavage of Cα-Cβ bond. This study could provide a reference for photocatalytic production of value-added aromatic monomers by exploiting both renewable feedstocks and solar energy.
Collapse
Affiliation(s)
- Xutang Liu
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Zhen Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yinshuang Guan
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Zhijie Jiang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Wei Zhao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
14
|
Ge F, Xia H, Wang Y, Yang X, Jiang J, Zhou M. Catalytic transfer hydrogenolysis of lignin derived aromatic ethers over MOF derived porous carbon spheres anchored by Ni species. Int J Biol Macromol 2025; 284:138125. [PMID: 39617223 DOI: 10.1016/j.ijbiomac.2024.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The efficient hydrogenolysis of CO ether bonds in lignin is the key for producing bio-oil and high-value chemicals. In this work, we synthesized a series of Ni-MOF-derived porous carbon spheres anchored Ni catalysts (Ni/C-x-T) with different metal/ligand molar ratios and calcination temperatures through solvothermal and carbothermal reduction method, and evaluated their catalytic transfer hydrogenolysis (CTH) performance for lignin model compounds using isopropanol as H-donor. The Ni/C-2-400 catalyst exhibited the excellent CTH performance, affording almost 100 % conversion of 2-phenoxy-1-phenylethanol even at a low reaction temperature of 120 °C. It was worth noting that the further hydrogenation of hydrogenolysis products phenol and ethylbenzene could be controlled by adjusting the reaction conditions, achieving phenol and ethylbenzene as main products at 120 °C, cyclohexanol and ethylbenzene at 140 °C, and cyclohexanol and ethylcyclohexane at 200 °C for 4 h. Based on the characterization results, the high catalytic activity of Ni/C-2-400 was attributed to the good dispersion and small particle size of metal Ni particles. Mechanistic studies showed that the cleavage of CO ether bonds was the main reaction pathway, and high temperature helped accelerate hydrogenolysis and subsequent hydrogenation. Moreover, the Ni/C-2-400 catalyst had good stability and applicability to other model compounds. This work could provide some help for the upgrading of lignin and its derivative.
Collapse
Affiliation(s)
- Fei Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haihong Xia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yanrong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaohui Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Minghao Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
15
|
Kaur H, Goyal D. Lignin extraction from lignocellulosic biomass and its valorization to therapeutic phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123334. [PMID: 39550950 DOI: 10.1016/j.jenvman.2024.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Lignocellulosic biomass is a sustainable alternative to finite petroleum resources, with lignin emerging as a major component of biomass for producing circular economy products. Maximizing extraction and valorization of lignin to platform chemicals, biofuels, and bioactive compounds is crucial. Unlocking lignin's full potential lies in exploring the therapeutic properties of lignin-derived phenolics, which can definitely boost the economic viability of integrated biorefineries. This review provides a broad vision of lignin valorization stages, covering various techniques of its extraction from lignocellulosic biomass with high yield and purity and its further depolymerization to phenolics. Therapeutic potential of lignin-derived phenols as antioxidants, antimicrobials, anti-inflammatory, and anticancer agents is comprehensively discussed. Lignin, with high phenolic hydroxyl content up to 97% purity, can be extracted using deep eutectic solvents (DES) and organosolv processes. Oxidative and reductive catalytic depolymerization methods efficiently break down lignin into valuable phenolic compounds like alkyl phenolics and vanillin, even at mild temperatures, making them a preferred choice for lignin valorization. Potential of lignin derived phenolics as versatile bioactive compounds with health promoting benefits is highlighted. Phenolics such as vanillin, ferulic acid, and syringic acid have demonstrated the ability to modulate cellular pathways involved in the pathogenesis of diseases like cancer and diabetes. The interplay between high purity lignin extraction and therapeutic potential of lignin-derived phenolics unveils a new frontier in sustainable healthcare solutions.
Collapse
Affiliation(s)
- Harmeet Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
16
|
Freitas Paiva M, Sadula S, Vlachos DG, Wojcieszak R, Vanhove G, Bellot Noronha F. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst-Enhanced Pretreatment for Sustainable Biorefineries. CHEMSUSCHEM 2024; 17:e202400396. [PMID: 38872421 DOI: 10.1002/cssc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented.
Collapse
Affiliation(s)
- Mateus Freitas Paiva
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- L2CM UMR 7053, Université de Lorraine and CNRS, F-5400, Nancy, France
| | - Guillaume Vanhove
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Fábio Bellot Noronha
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- National Institute of Technology, Catalysis, Biocatalysis and Chemical Processes Division, Rio de Janeiro, RJ 20081-312, Brazil
| |
Collapse
|
17
|
He Y, Zeng X, Lu Z, Mo S, An Q, Liu Q, Yang Y, Lan W, Wang S, Zou Y. Aqueous Electrocatalytic Hydrogenation Depolymerization of Lignin β-O-4 Linkage via Selective C aryl-O(C) Bond Cleavage: The Regulation of Adsorption. J Am Chem Soc 2024; 146:32022-32031. [PMID: 39498621 DOI: 10.1021/jacs.4c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The cleavage of the benzene-oxygen (Caryl-O(C)) bond of the lignin β-O-4 linkage is expected to relieve condensation of the degradation product and improve the product value. Nevertheless, the electrochemical breaking of the Caryl-O(C) bond has not been achieved yet due to the high dissociation energy (∼409 kJ mol-1) and the easy over-reduction of aromatic compounds. Here, we report an aqueous electrochemical reduction strategy for breaking Caryl-O(C) bonds via the regulation of molecular adsorption. The density functional theory (DFT) calculations and quartz crystal microbalance (QCM) measurements reveal that the residual Cu(I) in the CuO electrocatalyst enhances the adsorption of the 2-phenoxy-1-phenylethyl alcohol (PPE) by the Caryl-O(C) bond and lowers the energy barrier of the protons attacking the oxygen atom in the β-O-4 linkage. Thus, compared to the Cu electrocatalyst (with a hydroquinone yield of 47.4% and a benzyl alcohol yield of 24.8%), the CuO nanorod exhibits a much higher yield of hydroquinone (95.3%) and benzyl alcohol (88.6%) at a potential of -0.4 V vs reversible hydrogen electrode (RHE) in an undivided cell. Moreover, the reaction pathway and the cleavage of the Caryl-O(C) bond are identified through a combination of in situ synchrotron-radiation Fourier transformed infrared spectroscopy (SR-FTIR) and DFT calculations. This effective method is utilized for poplar lignin electrolysis, yielding 10.9 wt % of guaiacylglycerol, with an outstanding selectivity of >63.0%. This work provides an efficient and mild method of cleavage of Caryl-O(C) bonds in lignin valorization.
Collapse
Affiliation(s)
- Yuanqing He
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xu Zeng
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Zhuoran Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shiheng Mo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yulu Yang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Tiz DB, Tofani G, Vicente FA, Likozar B. Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants (Basel) 2024; 13:1387. [PMID: 39594529 PMCID: PMC11591419 DOI: 10.3390/antiox13111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Monolignols represent pivotal alcohol-based constituents in lignin synthesis, playing indispensable roles in plant growth and development with profound implications for industries reliant on wood and paper. Monolignols and their derivates have multiple applications in several industries. Monolignols exhibit antioxidant activity due to their ability to donate hydrogen atoms or electrons to neutralize free radicals, thus preventing oxidative stress and damage to cells. Characterized by their alcohol functionalities, monolignols present three main forms: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. In nature, particularly in plants, monolignols with geometry (E) predominate over their Z counterparts. The methods for obtaining the three canonical monolignols, two less-common monolignols, and a monolignol analogue are addressed to present an overview of these phenol-based compounds, particularly from a synthetic standpoint. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is used to explain the advantages and disadvantages of synthesizing monolignols, key alcohol-containing raw materials with enormous significance in both plant biology and industrial applications, using bench chemical methods. The uniqueness of this work is that it provides an overview of the synthetic pathways of monolignols to assist researchers in pharmaceutical and biological fields in selecting an appropriate procedure for the preparation of their lignin models. Moreover, we aim to inspire scientists, particularly chemists, to develop more sustainable synthetic protocols for monolignols.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Giorgio Tofani
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Filipa A. Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| |
Collapse
|
19
|
Qiu S, Liu X, Wu Y, Chao Y, Jiang Z, Luo Y, Lin B, Liu R, Xiao Z, Li C, Wu Z. Catalytic depolymerization of Camellia oleifera shell lignin to phenolic monomers: Insights into the effects of solvent, catalyst and atmosphere. BIORESOURCE TECHNOLOGY 2024; 412:131365. [PMID: 39209230 DOI: 10.1016/j.biortech.2024.131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Camellia oleifera shell (COS) is a renewable biomass resource abundant in lignin with significant potential for producing phenolic monomers. However, the dearth of research has led to considerable resource wastage and environmental pollution. Herein, reductive catalytic fractionation (RCF) of COS was performed using noble metal catalysts in different solvents. An 11.1 wt% yield of phenolic monomers was achieved with 91% selectivity toward propylene-substituted monomers in H2O/EtOH (3:7, v/v) cosolvent under N2 atmosphere. Notably, the highest phenolic monomer yield of 17.0 wt% was obtained with impressive selectivity (86.9%) toward propanol-substituted monomers in the presence of H2. The GPC analysis and 2D HSQC NMR spectra indicated the effective depolymerization of lignin oligomers with catalysts. Phenolic monomers with ethyl, propyl, or propanol side chain could be produced from lignin-derived oligomers through hydrogenolysis, hydrogenation, and decarboxylation reactions. Overall, this study has paved the way for the valorization of COS lignin through the RCF strategy.
Collapse
Affiliation(s)
- Shukun Qiu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China.
| | - Yiying Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yan Chao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yiping Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, PR China
| | - Baining Lin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhiping Wu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
20
|
Akmach D, Tran CC, Stevanovic T, El Kadib A, Kaliaguine S. Eugenol Hydrodeoxygenation Over Mixed Mo-W Carbides. CHEMSUSCHEM 2024; 17:e202301767. [PMID: 38728537 DOI: 10.1002/cssc.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
The modification of molybdenum carbide catalysts by another transition metal has raised an increasing research interest due to the significant improvement of catalyst activity in hydrodeoxygenation of lignin derivatives. At par with the commonly used Co and Ni that add a strong hydrogenation functionality, it was found that the addition of the more oxophilic W restricts ring hydrogenation while allowing the deoxygenation of oxygenated compounds and thus yielding higher selectivity toward the formation of non-oxygenated aromatic compounds. The coexistence of Mo2C with W2C along with metallic W altered the electronic properties of Mo2C which resulted in an increase of catalyst active site density and facilitated further total eugenol deoxygenation. Propyl-benzene selectivity of up to 83 % was reached at close to 100 % eugenol conversion. These findings will allow a better overview of the effect of different metal phases of mixed carbides on the catalyst performance and raise the prospect of optimizing catalyst design for a hydrodeoxygenation processing of lignin depolymerization products.
Collapse
Affiliation(s)
- Dahi Akmach
- Department of Chemical Engineering, Laval University, Québec, Québec, G1V 0A6, Canada
- Euromed University of Fes, UEMF, Morocco
| | - Chi-Cong Tran
- Department of Chemical Engineering, Laval University, Québec, Québec, G1V 0A6, Canada
| | - Tatjana Stevanovic
- Wood and Forest Science Department, Laval University, Quebec, Québec, G1V 0A6, Canada
| | | | - Serge Kaliaguine
- Department of Chemical Engineering, Laval University, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
21
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
22
|
Driscoll OJ, Van Hecke K, Vande Velde CML, Blockhuys F, Rubens M, Kuwaba T, van de Pas DJ, Eevers W, Vendamme R, Feghali E. Solid-State Structures and Properties of Lignin Hydrogenolysis Oil Compounds: Shedding a Unique Light on Lignin Valorization. Int J Mol Sci 2024; 25:10810. [PMID: 39409146 PMCID: PMC11477037 DOI: 10.3390/ijms251910810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.e., the methylene-bridging propyl-guaiacol dimer and propyl guaiacol and eugenol glycidyl ethers, which can be used as precursors in phenolic and epoxy resins, respectively, thus providing additional information on how the molecular packing is altered following chemical modifications. In addition to the expected H-bonding interactions, other interactions such as π-π stacking and C-H∙∙∙π were observed. This resulted in unexpected trends in the tendencies towards the crystallization of lignin compounds. This was further explored with the aid of DSC analysis and CLP intermolecular energy calculations, where the relationship between the major interactions observed in all the SCXRD solid-state structures and their physico-chemical properties were evaluated alongside other non-crystallizable lignin model compounds. Beyond lignin model compounds, our findings could also provide important insights into the solid-state structure and the molecular organization of more complex lignin fragments, paving the way to the more efficient design of lignin-based materials with improved properties for industrial applications or improving downstream processing of lignin oils in biorefining processes, such as in enhancing the separation and isolation of specific bioaromatic compounds).
Collapse
Affiliation(s)
- Oliver J. Driscoll
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- New Zealand Forest Research Institute (Scion), Private Bag 3020, Rotorua 3046, New Zealand;
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium;
| | | | - Frank Blockhuys
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Maarten Rubens
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Tatsuhiro Kuwaba
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Daniel J. van de Pas
- New Zealand Forest Research Institute (Scion), Private Bag 3020, Rotorua 3046, New Zealand;
| | - Walter Eevers
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Richard Vendamme
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
| | - Elias Feghali
- Sustainable Polymer Technologies Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium; (M.R.); (T.K.); (W.E.); (R.V.)
- Chemical Engineering Program, Notre Dame University–Louaize, Zouk Mosbeh 1211, Lebanon
| |
Collapse
|
23
|
Huang Z, Yu Z, Guo Z, Shi P, Hu J, Deng H, Huang Z. Selective Cleavage of C β-O-4 Bond for Lignin Depolymerization via Paired-Electrolysis in an Undivided Cell. Angew Chem Int Ed Engl 2024; 63:e202407750. [PMID: 38899860 DOI: 10.1002/anie.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H2 and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the Cβ-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of Cβ-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of Cβ-O-4 linkage.
Collapse
Affiliation(s)
- Zhenghui Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zihan Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, P. R. China
| | - Zhaogang Guo
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Pingsen Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zhiliang Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| |
Collapse
|
24
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
25
|
Jang JH, Callejón Álvarez J, Neuendorf QS, Román-Leshkov Y, Beckham GT. Reducing Solvent Consumption in Reductive Catalytic Fractionation through Lignin Oil Recycling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12919-12926. [PMID: 39211385 PMCID: PMC11351702 DOI: 10.1021/acssuschemeng.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Reductive catalytic fractionation (RCF) enables the simultaneous valorization of lignin and carbohydrates in lignocellulosic biomass through solvent-based lignin extraction, followed by depolymerization and catalytic stabilization of the extracted lignin. Process modeling has shown that the use of exogenous organic solvent in RCF is a challenge for economic and environmental feasibility, and previous works proposed that lignin oil, a mixture of lignin-derived monomers and oligomers produced by RCF, can be used as a cosolvent in RCF. Here, we further explore the potential of RCF solvent recycling with lignin oil, extending the feasible lignin oil concentration in the solvent to 100 wt %, relative to the previously demonstrated 0-19 wt % range. Solvents containing up to 80 wt % lignin oil exhibited 83-93% delignification, comparable to 83% delignification with a methanol-water mixture, and notably, using lignin oil solely as a solvent achieved 67% delignification in the absence of water. In additional experiments, applying the RCF solvent recycling approach to ten consecutive RCF reactions resulted in a final lignin oil concentration of 11 wt %, without detrimental impacts on lignin extraction, lignin oil molar mass distribution, aromatic monomer selectivity, and cellulose retention. Overall, this work further demonstrates the potential for using lignin oil as an effective cosolvent in RCF, which can reduce the burden on downstream solvent recovery.
Collapse
Affiliation(s)
- Jun Hee Jang
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Júlia Callejón Álvarez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Quinn S. Neuendorf
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
26
|
Phillips EV, Tricker AW, Stavitski E, Hatzell M, Sievers C. Mechanocatalytic Hydrogenolysis of the Lignin Model Dimer Benzyl Phenyl Ether over Supported Palladium Catalysts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12306-12312. [PMID: 39175605 PMCID: PMC11337168 DOI: 10.1021/acssuschemeng.4c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
This work demonstrates the mechanocatalytic hydrogenolysis of the ether bond in the lignin model compound benzyl phenyl ether (BPE) and hardwood lignin isolated by hydrolysis with supercritical water. Pd catalysts with 4 wt % loading on Al2O3 and SiO2 supports achieve 100% conversion of BPE with a toluene production rate of (2.6-2.9) × 10-5 mol·min-1. The formation of palladium hydrides under H2 gas flow contributes to an increase in the turnover frequency by a factor of up to 300 compared to Ni on silica-alumina. While a near-quantitative toluene yield is obtained, some of the phenolic products remain adsorbed on the catalyst.
Collapse
Affiliation(s)
- Erin V. Phillips
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | | | - Eli Stavitski
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marta Hatzell
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Atlanta, Georgia 30318, United States
| | - Carsten Sievers
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Okabe Y, Ohgitani E, Mazda O, Watanabe T. Anti-SARS-CoV-2 activity of microwave solvolysis lignin from woody biomass. Int J Biol Macromol 2024; 275:133556. [PMID: 38955295 DOI: 10.1016/j.ijbiomac.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The global pandemic caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had profoundly detrimental effects on our society. To combat this highly pathogenic virus, we turned our attention to an abundant renewable natural aromatic polymer found in wood. Through a chemical modification of Eucalyptus and Japanese cedar wood via acidic microwave solvolysis in equivolume mixture of 2 % (w/w) aqueous H2SO4, ethylene glycol, and toluene at 190 °C. Subsequently, we separated the resulting solvolysis products through extractions with toluene, ethyl acetate, and ethanol. Among these products, the ethyl acetate extract from Eucalyptus wood (eEAE) demonstrated the highest inhibition effects against the novel SARS-CoV-2. We further divided eEAE into four fractions, and a hexane extract from the ethanol-soluble portion, termed eEAE3, exhibited the most substantial inhibitory rate at 93.0 % when tested at a concentration of 0.5 mg/mL. Analyzing eEAE3 using pyrolysis gas chromatography-mass spectrometry revealed that its primary components are derived from lignin. Additionally, 1H-13C edited-heteronuclear single quantum coherence nuclear magnetic resonance analysis showed that the solvolysis process cleaved major lignin interunit linkages. Considering the abundance and renewability of lignin, the lignin-derived anti-SARS-CoV-2 agent presents a promising potential for application in suppressing infections within our everyday environment.
Collapse
Affiliation(s)
- Yumi Okabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
28
|
Subbotina E, Souza LR, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nat Commun 2024; 15:5892. [PMID: 39003256 PMCID: PMC11246530 DOI: 10.1038/s41467-024-49812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Lignin is the largest source of renewable aromatics on earth. Despite numerous techniques for lignin depolymerization into mixtures of valuable monomers, methods for their upgrading into final products are scarce. The state of the art upgrading methods generally rely on catalytic funneling, requiring high temperatures, catalyst loadings and hydrogen pressure, and lead to the loss of functionality and bio-based carbon content. Here an alternative approach is presented, whereby the target monomers are selectively converted in unpurified mixtures into easily separable final products under mild conditions. We use reductive catalytic fractionation of wood to convert lignin into iso-eugenol and propenyl syringol enriched oil followed by an olefin metathesis to yield bisphenols and butene-2, thus, valorizing all bio-based carbons. To further demonstrate the synthetic utility of the obtained bisphenols we converted them into polyesters with a high glass transition temperature (Tg = 140.3 °C) and thermal stability (Td50% = 330 °C).
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
| | - Layra Rodrigues Souza
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
| | - Julie Zimmerman
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Paul Anastas
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA.
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA.
- Yale School of Public Health, 60 College St, New Haven, CT, USA.
| |
Collapse
|
29
|
Ewuzie RN, Genza JR, Abdullah AZ. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Int J Biol Macromol 2024; 265:131084. [PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
Collapse
Affiliation(s)
| | - Jackson Robinson Genza
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
30
|
Carkner A, Tageldin I, Han J, Seifitokaldani A, Kopyscinski J. Impact of Temperature an Order of Magnitude Larger Than Electrical Potential in Lignin Electrolysis with Nickel. CHEMSUSCHEM 2024; 17:e202300795. [PMID: 37870894 DOI: 10.1002/cssc.202300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lignin, a major component of plant biomass, is a promising sustainable alternative carbon-based feedstock to petroleum as a source of valuable aromatic compounds such as vanillin. However, lignin upgrading reactions are poorly understood due to its complex and variable molecular structure. This work focuses on electrocatalytic lignin upgrading, which is efficient and sustainable at moderate temperatures and pressures and does not require stoichiometric reagents. We used a meta-analysis of published lignin conversion and product yield data to define the operating range, to select the catalyst, and then performed electrocatalytic experiments. We quantified the impact of temperature and electrical potential on the formation rate of valuable products (vanillic acid, acetovanillone, guaiacol, vanillin, and syringaldehyde). We found that increasing temperature increases their formation rate by an order of magnitude more than increasing electrical potential. For example, increasing temperature from 21 to 180 °C increases the vanillin formation rate by +16.5 mg⋅L-1 ⋅h-1 ±1.7 mg⋅L-1 ⋅h-1 , while increasing electrical potential from 0 to 2 V increases the vanillin formation rate by -0.6 mg⋅L-1 ⋅h-1 ±1.4 mg⋅L-1 ⋅h-1 .
Collapse
Affiliation(s)
- Andrew Carkner
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Ingy Tageldin
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Jiashuai Han
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Jan Kopyscinski
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| |
Collapse
|
31
|
Kramarenko A, Uslu A, Etit D, D'Angelo FN. 2-step lignin-first catalytic fractionation with bifunctional Pd/ß-zeolite catalyst in a flow-through reactor. CHEMSUSCHEM 2024:e202301404. [PMID: 38193653 DOI: 10.1002/cssc.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
This work demonstrates an additive and hydrogen-free 2-step lignin-first fractionation in flow-through. First, solvolytic delignification renders lignin liquors with its native chemical structure largely intact; and second, ß-zeolite catalytic depolymerization of these liquors leads to similar monomer yields as the corresponding 1-step fractionation process. Higher delignification temperatures lead to slightly lower ß-O-4 content in the solvated lignin, but does not affect significantly the monomer yield, so a higher temperature was overall preferred as it promotes faster delignification. Deposition of Pd on ß-zeolite resulted in a bifunctional hydrogenation/dehydration catalyst, tested during the catalytic depolymerization of solvated lignin with and without hydrogen addition. Pd/ß-zeolite displays synergistic effects (compared to the Pd/γ-Al2 O3 and ß-zeolite tested individually and as a mixed bed), resulting in higher monomer yield. This is likely caused by increased acidity and the proximity between the metallic and acid active sites. Furthermore, different ß-zeolite with varying SAR and textural properties were studied to shed light onto the effect of acidity and porosity in the stabilization of lignin monomers. While some of the catalysts showed stable performance, characterization of the spent catalyst reveals Al leaching (causing acidity loss and changes in textural properties), and some degree of coking and Pd sintering.
Collapse
Affiliation(s)
- A Kramarenko
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| | - A Uslu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| | - D Etit
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
- Department of Chemical Engineering, Imperial college, London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - F Neira D'Angelo
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| |
Collapse
|
32
|
Shen Z, Shi C, Liu F, Wang W, Ai M, Huang Z, Zhang X, Pan L, Zou J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306693. [PMID: 37964410 PMCID: PMC10767463 DOI: 10.1002/advs.202306693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.
Collapse
Affiliation(s)
- Zhensheng Shen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhenfeng Huang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
33
|
Zhang B, Meng Q, Liu H, Han B. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains. Acc Chem Res 2023; 56:3558-3571. [PMID: 38029298 DOI: 10.1021/acs.accounts.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
ConspectusIn recent years, significant efforts have been directed toward achieving efficient and mild lignocellulosic biomass conversion into valuable chemicals and fuels, aiming to address energy and environmental concerns and realize the goal of carbon neutrality. Lignin is one of the three primary building blocks of lignocellulose and the only aromatic renewable feedstock. However, the complex and diverse nature of lignin feedstocks, characterized by their three-dimensional, highly branched polymeric structure and intricate C-O/C-C chemical bonds, results in substantial challenges. To tackle these challenges, we carried out extensive research on selectively activating and transforming chemical bonds in lignin for chemical synthesis. In this Account, we discuss our recent progress in catalytic lignin conversion.Our work is focused on two main objectives: (i) achieving precise and selective transformation of C-O/C-C bonds in lignin (and its model compounds) and (ii) fully utilizing the aromatic nuclei and side chains present in lignin to produce valuable chemicals. Lignin consists of interconnected phenylpropanoid subunits linked by interlaced C-C/C-O bonds. To unlock the full potential of lignin, we propose the concept of "the full utilization of lignin", which encompasses both the aromatic nuclei and the side chains (e.g., methoxyl and polyhydroxypropyl groups).For the conversion of aromatic nuclei, selective activation of C-O and/or C-C bonds is crucial in synthesizing targeted aromatic products. We begin with model compounds (such as anisole, phenol, guaiacol, etc.) and then transition to protolignin feedstocks. Various reaction routes are developed, including self-supported hydrogenolysis, direct Caryl-Csp3 cleavage, coupled Caryl-Csp3 cleavage and Caryl-O hydrogenolysis, and tandem selective hydrogenation and hydrolysis processes. These tailored pathways enable high-yield and sustainable production of a wide range of aromatic (and derived) products, including arenes (benzene, toluene, alkylbenzenes), phenols, ketones, and acids.In terms of side chain utilization, we have developed innovative strategies such as selective methyl transfer, coupling depolymerization-methyl shift, selective acetyl utilization, and new activation methods such as amine-assisted prefunctionalization. These strategies enable the direct synthesis of methyl-/alkyl-derived products, such as acetic acid, 4-ethyltoluene, dimethylethylamine, and amides. Additionally, aromatic residues can be transformed into chemicals or functionalized ingredients that can serve as catalysts or functional biopolymer materials. These findings highlight promising opportunities for harnessing both the aromatic nuclei and side chains of lignin in a creative manner, thereby improving the overall atom economy of lignin upgrading.Through innovative catalyst engineering and reaction route strategies, our work achieves the sustainable and efficient production of various valuable chemicals from lignin. By integrating side chains and aromatic rings, we have successfully synthesized methyl-/alkyl-derived and aromatic-derived products with high yields. The full utilization of lignin not only minimizes waste but also opens up new possibilities for generating chemical products from lignin. These novel approaches unlock the untapped potential of lignin, expand the boundaries of lignin upgrading, and enhance the efficiency and economic viability of lignin biorefining.
Collapse
Affiliation(s)
- Bin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Ver Elst C, Vroemans R, Bal M, Sergeyev S, Mensch C, Maes BUW. Synthesis of Levulinic Acids From Muconic Acids in Hot Water. Angew Chem Int Ed Engl 2023; 62:e202309597. [PMID: 37579251 DOI: 10.1002/anie.202309597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Levulinic acid is a key biorenewable platform molecule. Its current chemical production from sugars is plagued by limited yields, char formation and difficult separations. An alternative and selective route starting from muconic acid via simple heating in water at high temperature (180 °C) has been developed. Muconic acid can be obtained from sugars or catechol fermentation. Chemical oxidation of catechol is another possibility which advantageously can also be applied on substituted catechols, hereby providing substituted muconic acids. When applying the disclosed hydrothermal protocol on these substrates hitherto unknown substituted levulinic acids were accessed. In particular, 3-propyllevulinic acid has been synthesized from 4-propylcatechol, prepared from pine wood. This propylated derivative has been used for the synthesis of a 3-propyllevulinate diester, i.e. butane-1,4-diyl bis(4-oxo-3-propylpentanoate), via esterification with 1,4-butanediol. The diester showed superior performance as plasticizer in comparison to the corresponding levulinate diester in both PVC (polyvinyl chloride) and PLA (polylactic acid). It plasticizes equally effective as the notorious commercial phthalate-based benchmark DEHP (di-2-ethylhexyl phthalate) in PVC.
Collapse
Affiliation(s)
- Céderic Ver Elst
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Robby Vroemans
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Mathias Bal
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sergey Sergeyev
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Carl Mensch
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
35
|
Lavrencic L, Dhawa U, Blumenstein A, Hu X. Copper-Catalyzed Benzylic Functionalization of Lignin-Derived Monomers. CHEMSUSCHEM 2023; 16:e202300703. [PMID: 37432646 DOI: 10.1002/cssc.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Within the field of lignin biorefining, significant research effort has been dedicated to the advancement of catalytic methods for lignocellulose depolymerization. However, another key challenge in lignin valorization is the conversion of the obtained monomers into higher value-added products. To address this challenge, new catalytic methods that can fully embrace the inherent complexity of their target substrates are needed. Here, we describe copper-catalyzed reactions for benzylic functionalization of lignin-derived phenolics via intermediate formation of hexafluoroisopropoxy-masked para-quinone methides (p-QMs). By controlling the rates of copper catalyst turnover and p-QM release, we have developed copper-catalyzed allylation and alkynylation reactions of lignin-derived monomers to install various unsaturated fragments amenable to further synthetic applications.
Collapse
Affiliation(s)
- Lara Lavrencic
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Uttam Dhawa
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Arthur Blumenstein
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
36
|
Rouf H, Ramli A, Anuar NASIK, Yunus NM. Ce-Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin. BIORESOUR BIOPROCESS 2023; 10:76. [PMID: 38647992 PMCID: PMC10991948 DOI: 10.1186/s40643-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Since petroleum became depleted, rapid attention has been devoted to renewable energy sources such as lignocellulosic biomass to produce useful chemicals for industry (for instance vanillin). Three primary components of lignocellulose are lignin, cellulose, and hemicellulose. This paper uses microwave-assisted technology to oxidize the kenaf stalk (lignocellulosic biomass) and extract lignin to produce vanillin. Catalysts with variable acid-base and redox properties are essential for the mentioned effective conversion, for this reason, CeO2-CA, ZrO2-CA, and CeZrO2-CA catalysts were synthesized. The citrate complexation method was used for the catalyst synthesis and the physicochemical characteristics were analyzed by XRD, FTIR, FE-SEM, TEM, BET, and TPO. The characterization results demonstrated that CeZrO2-CA shows the smallest sized crystallites with a large specific surface area among the other chosen catalysts. For vanillin production, the effect of reaction temperature, reaction time, and catalyst loading was studied. It was observed that compared to other catalysts, CeZrO2-CA produced the highest vanillin yield of 9.90% for kenaf stalk for 5 wt% of CeZrO2-CA at 160 °C for 30 min. Furthermore, vanillin production using extracted lignin is studied keeping CeZrO2-CA as a catalyst and with the same operating parameters, which yielded 14.3% of vanillin. Afterward, the change in yield with respect to pH is also presented. Finally, the recyclability of catalyst is also studied, which showed that it has a strong metal support and greater stability which may give industrial applications a significant boost.
Collapse
Affiliation(s)
- Hifza Rouf
- HICoE Centre of Biofuels and Biochemicals Research, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Anita Ramli
- HICoE Centre of Biofuels and Biochemicals Research, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Nur Akila Syakida Idayu Khairul Anuar
- HICoE Centre of Biofuels and Biochemicals Research, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Normawati Mohamad Yunus
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management for Oil and Gas, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| |
Collapse
|
37
|
Guadix-Montero S, Sainna MA, Jin J, Reynolds J, Forsythe WG, Sheldrake GN, Willock D, Sankar M. Ruthenium ion catalysed C-C bond activation in lignin model compounds - towards lignin depolymerisation. Catal Sci Technol 2023; 13:5912-5923. [PMID: 38013724 PMCID: PMC10577544 DOI: 10.1039/d3cy00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/16/2023] [Indexed: 11/29/2023]
Abstract
Lignin is the most abundant renewable feedstock to produce aromatic chemicals, however its depolymerisation involves the breaking of several C-O and C-C inter-unit linkages that connect smaller aromatic units that are present in lignin. Several strategies have been reported for the cleavage of the C-O inter-unit linkages in lignin. However, till today, only a few methodologies have been reported for the effective breaking or the conversion of the recalcitrant C-C inter unit linkages in lignin. Here we report the ruthenium ion catalysed oxidative methodology as an effective system to activate or convert the most recalcitrant inter unit linkages such as β-5 and 5-5' present in lignin. Initially, we used biphenyl as a model compound to study the effectiveness of the RICO methodology to activate the 5-5' C-C linkage. After 4 h reaction at 22 °C, we achieved a 30% conversion with 75% selectivity towards benzoic acid and phenyl glyoxal as the minor product. To the best of our knowledge this is the first ever oxidative activation of the C-C bond that connects the two phenyl rings in biphenyl. DFT calculation revealed that the RuO4 forms a [3 + 2] adduct with one of the aromatic C-C bonds resulting in the opening of the phenyl ring. Biphenyl conversion could be increased by increasing the amount of oxidant; however, this is accompanied by a reduction in the carbon balance because of the formation of CO2 and other unknown products. We extended this RICO methodology for the oxidative depolymerisation of lignin model hexamer containing β-5, 5-5' and β-O-4 linkages. Qualitative and quantitative analyses of the reaction mixture were done using 1H, 13C NMR spectroscopy methods along with GC-MS and Gel Permeation Chromatographic (GPC) methods. Advanced 2D NMR spectroscopic methods such as HSQC, HMBC and 31P NMR spectroscopy after phosphitylation of the mixture were employed to quantitatively analyse the conversion of the β-5, 5-5' and β-O-4 linkages and to identify the products. After 30 min, >90% of the 5-5' and linkages and >80% of the β-5' are converted with this methodology. This is the first report on the conversion of the 5-5' linkage in lignin model hexamer.
Collapse
Affiliation(s)
- Susana Guadix-Montero
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| | - Mala A Sainna
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| | - Jiangpeiyun Jin
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| | - Jack Reynolds
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| | - W Graham Forsythe
- School of Chemistry and Chemical Engineering, Queens University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Gary N Sheldrake
- School of Chemistry and Chemical Engineering, Queens University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - David Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| | - Meenakshisundaram Sankar
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK +44 (0)2920 874 030 +44 (0)29 2087 5748
| |
Collapse
|
38
|
Ratier A, Moulandou-Koumba RD, Anizan M, Behloul S, Guegan F, Frapper G, Remaury QB, De Oliveira Vigier K, Zheng J, Jérôme F. Catalytic synthesis of renewable phenol derivatives from biobased furanic derivatives. RSC Adv 2023; 13:30369-30377. [PMID: 37849695 PMCID: PMC10578459 DOI: 10.1039/d3ra06461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Here, we study a sequence Diels-Alder/aromatization reaction between biobased furanic derivatives and alkynes, paving the way to renewable phenols. Guided by DFT calculations, we revealed that, in the case of dimethylfuran, the methyl group can migrate during the aromatization step, making this substrate also eligible to access renewable phenols. This reaction has been then successfully transposed to furfural and furfuryl alcohol, allowing molecular diversity and complexity to be created on phenol ring starting from two cheap biobased furanic derivatives available on large scale.
Collapse
Affiliation(s)
- Adrien Ratier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Richail D Moulandou-Koumba
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Mélanie Anizan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Sarah Behloul
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Fréderic Guegan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Gilles Frapper
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Quentin Blancart Remaury
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Jianxia Zheng
- Eco-Efficient Products and Process Laboratory SOLVAY/CNRS 3966 Jin Du Rd., Xin Zhuang Industrial Zone Shanghai 201108 China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| |
Collapse
|
39
|
Jindal M, Uniyal P, Thallada B. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2023; 385:129396. [PMID: 37369316 DOI: 10.1016/j.biortech.2023.129396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Presently, the use of lignocellulosic biomass is mainly focused on creating pulp/paper, energy, sugars and bioethanol from the holocellulose component, leaving behind lignin to be discarded or burned as waste despite of its highest aromatic carbon and energy content (22-29 KJ/g). During the pulping process, lignin undergoes significant structural changes to yield technical lignin. For a circular bioeconomy, there is an urgent need to enhance the use of native lignin for generating more valuable products. Over the last few years, a new method called 'lignin-first', or 'reductive catalytic fractionation' (RCF), has been devised to achieve selective phenolic monomers under mild reaction conditions. This involves deconstructing lignin before capitalizing on carbohydrates. The objective of this study is to record the recent developments of the 'lignin-first' process. This review also underlines the contribution of RCF biorefinery towards achieving sustainable development goals (SDGs) and concludes with an overview of challenges and upcoming opportunities.
Collapse
Affiliation(s)
- Meenu Jindal
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Priyanka Uniyal
- Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Bhaksar Thallada
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India.
| |
Collapse
|
40
|
Wu X, De Bruyn M, Barta K. Deriving high value products from depolymerized lignin oil, aided by (bio)catalytic funneling strategies. Chem Commun (Camb) 2023; 59:9929-9951. [PMID: 37526604 DOI: 10.1039/d3cc01555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
| | - Mario De Bruyn
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| | - Katalin Barta
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| |
Collapse
|
41
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
42
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Wang X, Zhang D, Li X, Xu W, Shi J. Fabrication and application of amphiphilic polyoxometalate catalyst (CTA) nH 5-nPMo 10V 2O 40 for transformation of lignin into aromatic chemicals. Int J Biol Macromol 2023; 242:124970. [PMID: 37210062 DOI: 10.1016/j.ijbiomac.2023.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Conversion of renewable lignin into bio-aromatic chemicals offers a sustainable pathway to increase biorefinery profitability. However, the catalytic transformation of lignin into monomers remains a highly challenging task due to the complexity and stability of the lignin structure. In this study, a series of micellar molybdovanadophosphoric polyoxometalate (POM) catalysts, (CTA)nH5-nPMo10V2O40 (n = 1-5), were prepared by the ion exchange method and applied as oxidative catalysts for birch lignin depolymerization. These catalysts showed efficient cleavage of C-O/C-C bonds in lignin, and the introduction of an amphiphilic structure facilitated the generation of monomer products. The best catalytic activity was observed at 150 °C within 150 min under a 1.5 MPa oxygen atmosphere over (CTA)1H4PMo10V2O40, which yielded a maximum lignin oil yield of 48.7 % and lignin monomer yield of 13.5 %. We also employed phenolic and nonphenolic lignin dimer model compounds to explore the reaction pathway and demonstrated the selective cleavage of CC and/or CO lignin bonds. Moreover, these micellar catalysts have excellent recyclability and stability as heterogeneous catalysts, which can be used up to five times. The application of amphiphilic polyoxometalate catalysts facilitates the valorization of lignin, and we expect to develop a novel and practical strategy for harvesting aromatic compounds.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| |
Collapse
|
44
|
Ariyanta HA, Sari FP, Sohail A, Restu WK, Septiyanti M, Aryana N, Fatriasari W, Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int J Biol Macromol 2023; 240:124523. [PMID: 37080401 DOI: 10.1016/j.ijbiomac.2023.124523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Lignin has the potential to be used as an additive, coating agent, fertilizer, plant growth stimulator, and packaging material in the agroindustry due to its functional aromatic structure. The quantitative measurement of functional groups is a significant element of the research for lignin structure since they directly impact their optical, dispersion, and chemical properties. These physical and chemical properties of lignin strongly depend on its type and source and its isolation procedure. Thus, lignin provides numerous opportunities for the circular economy in the agroindustry; however, studying and resolving the challenges associated with its separation, purification, and modification is required. This review discusses the most recent findings on lignin use in agroindustry and historical facts about lignin. The properties of lignin and its roles as coating agents, pesticide carriers, plant growth stimulators, and soil-improving agents have been summarized. The emerging challenges in the field of lignin-based agroindustry are considered, and potential future steps to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Harits Atika Ariyanta
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Department of Pharmacy, Universitas Gunadarma, Depok, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Fahriya Puspita Sari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Asma Sohail
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Witta Kartika Restu
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Melati Septiyanti
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Nurhani Aryana
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Widya Fatriasari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Adarsh Kumar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|
45
|
Patterson SBH, Wong R, Barker G, Vilela F. Advances in continuous polymer analysis in flow with application towards biopolymers. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractBiopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.
Graphical abstract
Collapse
|
46
|
Ding W, Remón J, Gao M, Li S, Liu H, Jiang Z, Ding Z. A novel synergistic covalence and complexation bridging strategy based on multi-functional biomass-derived aldehydes and Al(III) for engineering high-quality eco-leather. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160713. [PMID: 36509278 DOI: 10.1016/j.scitotenv.2022.160713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
To get rid of the chrome pollution faced by the leather industry, we explored a novel engineering high-quality eco-leather technology based on the synergistic interactions between biomass-based aldehydes and Al(III). Firstly, dialdehyde xanthan gum (DXG) was prepared to covalently crosslink with the collagen fibers (CFs) via Schiff-base linkages under alkaline conditions, endowing the leather with a shrinkage temperature (Ts) of 80 °C and opening channels for the subsequent penetration of Al species (AL). Secondly, and for this latter purpose, the DXG-tanned leather was acidified to release part of the DXG from the leather according to the dynamic nature of the Schiff-base. Containing suitable oxygen-containing groups (OGs) with excellent complexation capabilities, the released DXG served as masking agents for AL, facilitating the penetration of AL into the inner CFs network for further complexation crosslinking. Consequently, a denser crosslinking network was constructed in the leather, and the crust leather exhibited higher Ts (82.2 °C), improved mechanical (tensile strength: 13.4 N/mm2, tear strength: 53.3 N/mm) and organoleptic properties than those of the DXG crust or AL crust leathers. This demonstrates that this synergistic covalence and complexation bridging strategy is a sustainable option to substitute highly restricted chrome tanning agent for eco-leather production.
Collapse
Affiliation(s)
- Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| | - Javier Remón
- Instituto de Carboquímica, CSIC, Zaragoza 50018, Spain
| | - Mi Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shuolin Li
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Zhiwen Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| |
Collapse
|
47
|
Wang D, Cui M, Zhao W, Li Y, Ma S, Jiang Z, Liu X, Liang C, Li R, Ma L, Song Y, Wei XY. Production of Diethyl Maleate via Oxidative Depolymerization of Organosolv Lignin from Wheat Stalk over the Cooperative Acidic Ionic Liquid Pair. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3800-3812. [PMID: 36802600 DOI: 10.1021/acs.jafc.2c07478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lignin, the second largest component of biomass, is considered as an important alternative source of fossil reserves for the production of fuels and chemicals. Here, we developed a novel method to oxidatively degrade organosolv lignin into value-added four-carbon esters, particularly diethyl maleate (DEM), with the cooperative catalyst consisting of 1-(3-sulfobutyl) triethylammonium hydrogen sulfate ([BSTEA]HSO4) and 1-butyl-3-methylimidazolium ferric chloride ([BMIM]Fe2Cl7). Under optimized conditions (1.00 MPa initial O2 pressure, 160 °C, 5 h), the lignin aromatic ring was effectively cleaved by oxidation to form DEM with a yield of 15.85% and a selectivity of 44.25% in the presence of the synergistic catalyst of [BMIM]Fe2Cl7-[BSMIM]HSO4 (1/3, mol/mol). The structure and composition analysis of lignin residues and liquid products confirmed that the aromatic units in lignin were effectively and selectively oxidized. Furthermore, the catalytic oxidation of lignin model compounds was explored for obtaining a possible reaction pathway of oxidative cleavage of lignin aromatic units to DEM. This study provides a promising alternative method for the production of traditional petroleum-based chemicals.
Collapse
Affiliation(s)
- Dingkai Wang
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Mingyu Cui
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Wei Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Yanjun Li
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
- Shannxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shannxi, China
| | - Shangshang Ma
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Zhijie Jiang
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Xutang Liu
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Chong Liang
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Rujuan Li
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Long Ma
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Yanmin Song
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xian-Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
48
|
Catalytic conversion of biomass-derived compoUnds to various amino acids: status and perspectives. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
49
|
Shao L, Wan H, Wang L, Wang J, Liu Z, Wu Z, Zhan P, Zhang L, Ma X, Huang J. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
50
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|