1
|
Li M, Zhou Y, Lin L, Li W. Legume root nodule derived porous carbon materials through the in situ ZIF-8 activation strategy. RSC Adv 2025; 15:16267-16275. [PMID: 40385655 PMCID: PMC12079776 DOI: 10.1039/d5ra01675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
The utilization of harsh chemicals is obligatory during the preparation of biomass-derived carbon materials. ZIF-8 serves as a zinc-based metal-organic framework (MOF), in which the internal zinc ions (Zn2+) are reduced to metallic Zn during high-temperature pyrolysis, which then evaporates and etches the carbon skeleton, significantly increasing the specific surface area and porosity of the material. In the current work, the ZIF-8 and the legume root nodules were used as an activator and biomass precursors to develop a more atom-economical and eco-friendly strategy for the preparation of porous carbon materials. The roles the ZIF-8 and the species of legume root nodules play in the structure and performance of the final carbon materials were well explored and discussed. The specific surface area of our optimal carbon RW@Z8(5) is up to 1459.27 m2 g-1. The catalyst RW@Z8(5) was employed in fuel cells for the oxygen reduction reaction (ORR) and demonstrated a half-wave potential (E 1/2) of 0.720 V (vs. RHE) in 0.1 M HClO4, which is only 88 mV lower than that of the Pt/C catalyst. Our results prove the possibility of the metal-organic framework (MOF) activation strategy for the development of biomass-derived porous carbon materials.
Collapse
Affiliation(s)
- Minyu Li
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of New Energy and Materials, Ningde Normal University Fujian 352100 China
| | - Yifan Zhou
- College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of New Energy and Materials, Ningde Normal University Fujian 352100 China
| | - Lingling Lin
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of New Energy and Materials, Ningde Normal University Fujian 352100 China
| | - Wenmu Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences China
| |
Collapse
|
2
|
Nguyen DTC, Jalil AA, Nguyen LM, Nguyen DH. A comprehensive review on the adsorption of dyes onto activated carbons derived from harmful invasive plants. ENVIRONMENTAL RESEARCH 2025; 279:121807. [PMID: 40348260 DOI: 10.1016/j.envres.2025.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The proliferation of invasive plant species such as Ailanthus altissima, Reynoutria japonica, and Alternanthera philoxeroides pose a significant ecological and economic challenge, including adverse impacts on native biodiversity, agriculture, and infrastructure. The production of activated carbons from these invasive plants offers a sustainable approach to addressing environmental pollution in the context of wastewater treatment. Activated carbons are renowned for high adsorbability and porous structure, hence, they may be highly effective in removing contaminants including dyes. Here, we review the conversion of invasive plant biomass into activated carbons production for dye removal by the adsorption technique. Influential factors, optimization conditions, adsorption models, mechanisms, and regeneration studies were systematically discussed. Remarkably, the efficacy of activated carbons derived from invasive plants such as Leucaena leucocephala pods cactus fruit peels achieved exceptionally high adsorption capacities of 584.3-806.4 mg/g for organic dyes. We also analyzed dual benefits of transforming invasive plant biomass into high-value activated carbons for wastewater treatment and managing invasive plants. It is, therefore, suggested that this approach can satisfy the sustainable development goals and solve the current global environmental challenges.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Aishah Abdul Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - Luan Minh Nguyen
- Institute of Advanced Technology, Vietnam Academy of Science and Technology, 1B TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, 100000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Advanced Technology, Vietnam Academy of Science and Technology, 1B TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
3
|
Xia Y, Zhang F, Wang S, Wei S, Zhang X, Dong W, Shen D, Tang S, Liu F, Chen Y, Yang S. Synergistic Enhancement of Capacitive Performance in Porous Carbon by Phenolic Resin and Boric Acid. Molecules 2025; 30:1228. [PMID: 40142005 PMCID: PMC11946533 DOI: 10.3390/molecules30061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The study of pore structure regulation methods has always been a central focus in enhancing the capacitance performance of porous carbon electrodes in lithium-ion capacitors (LICs). This study proposes a novel approach for the synergistic regulation of the pore structure in porous carbon using phenol-formaldehyde (PF) resin and boric acid (BA). PF and BA are initially dissolved and adsorbed onto porous carbon, followed by hydrothermal treatment and subsequent heat treatment in a N2 atmosphere to obtain the porous carbon materials. The results reveal that adding BA alone has almost no influence on the pore structure, whereas adding PF alone significantly increases the micropores. Furthermore, the simultaneous addition of PF and BA demonstrates a clear synergistic effect. The CO2 and H2O released during the PF pyrolysis contribute to the development of ultramicropores. At the same time, BA facilitates the N2 activation reaction of carbon, enlarging the small mesopores and aiding their transformation into bottlenecked structures. The resulting porous carbon demonstrates an impressive capacitance of 144 F·g-1 at 1 A·g-1 and a capacity retention of 19.44% at 20 A·g-1. This mechanism of B-catalyzed N2-enhanced mesopore formation provides a new avenue for preparing porous carbon materials. This type of porous carbon exhibits promising potential for applications in Li-S battery cathode materials and as catalyst supports.
Collapse
Affiliation(s)
- Yingkai Xia
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.X.); (S.W.)
| | - Fengzhi Zhang
- Chengxi (Taizhou) Equipment Technology Co., Ltd., Jingjiang 214500, China;
| | - Shuo Wang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Shuang Wei
- School of Mining, Liaoning Technical University, Fuxin 123000, China; (Y.X.); (S.W.)
| | - Xu Zhang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Wei Dong
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Ding Shen
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Shuwei Tang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Fengxia Liu
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| | - Yuehui Chen
- College of Science, Liaoning Technical University, Fuxin 123000, China;
| | - Shaobin Yang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (S.W.); (F.L.); (X.Z.); (W.D.); (D.S.); (S.T.)
| |
Collapse
|
4
|
Rashidi NA, Lai YJ, Lakadir MSA. Mechanochemical activation of palm kernel shell using the L 9 Taguchi orthogonal array for carbon dioxide adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3475-3484. [PMID: 37930571 DOI: 10.1007/s11356-023-30703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The problem faced during bio-based activated carbon synthesis is related to its low yield production, which is plausibly due to intricate conventional activation processes, along with utilization of corrosive chemical activator. Therefore, in this study, the activated carbon synthesis from palm kernel shell as starting material has been carried out via a facile solid-solid mixing (mechanochemical) activation. The feasibility and optimization of the high-yielded palm kernel shell activated carbon production has been done via the L9 Taguchi orthogonal array, whereby the larger-the-better signal to noise (S/N) ratio has been applied to determine the optimum operating conditions. Four parameters have been studied including the activation temperature (600-800 °C), impregnation ratio (1-3:1), activation time (60-120 min), and nitrogen flow rate (300-900 mL/min). Depending on the operating conditions, the activated carbon yield is ranging from 10 to 50 wt.%. Upon optimization, both the pristine precursor and activated carbon at the optimal conditions are characterized in terms of their surface morphology, porosity, and the surface functionalities. In context of carbon dioxide adsorption, the adsorption capacity at an ambient condition is found to be approximately 1.65 mmol/g, which is comparable to the values reported in the literatures.
Collapse
Affiliation(s)
- Nor Adilla Rashidi
- HICoE - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Yee Jack Lai
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Mhd Syukri Atika Lakadir
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
5
|
Ma J, Liang S, Yang X, Wang Y, Wang B, Gao W, Ye K, Maihaiti M, Iqbal J, Abdukayum A, Pan F. Design of Carbon Materials with Selective Ion Separation in Capacitive Deionisation and Their Applications. CHEMSUSCHEM 2025:e202402563. [PMID: 39853953 DOI: 10.1002/cssc.202402563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Capacitive deionization (CDI) is a novel, cost-effective and environmentally friendly desalination technology that has garnered significant attention in recent years. Carbon materials, owing to their excellent properties, have become the preferred electrode materials for CDI. Given the significant differences between different ions, ion-selective performance has emerged as a critical aspect of CDI applications. However, comprehensive reviews on the selective ion separation capabilities of carbon materials for CDI remain scarce. This review examines the progress in developing carbon materials for ion-selective separation in CDI, focusing on regulatory mechanisms and representative materials. It also discusses the applications of selective CDI carbon materials in areas such as heavy metal removal, nutrient recovery, seawater desalination resourcing, and water softening. Furthermore, the challenges and future prospects for advancing carbon materials in CDI are explored. This review aims to provide theoretical insights and practical guidance for utilising carbon materials in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Jie Ma
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuzhen Liang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Xue Yang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Yabo Wang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Bingzheng Wang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Wei Gao
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Kang Ye
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Mairemu Maihaiti
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Javed Iqbal
- Bahrain & Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abdukader Abdukayum
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
| | - Fanghui Pan
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| |
Collapse
|
6
|
Su R, Xue R, Ma X, Zeng Z, Li L, Wang S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J Colloid Interface Sci 2024; 671:770-778. [PMID: 38830289 DOI: 10.1016/j.jcis.2024.05.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Porous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge. Here, nitrogen-doped hydrothermal carbon was prepared using urea-assisted hydrothermal method, and then porous carbon (PUC800) was prepared by KOH activation. The resulting material had 180 % higher pore volume and 179 % higher surface area compared to non-nitrogen activation methods. Then, using mechanochemical (mechanical compaction and KOH activation) approach to produce PUC800-3T, which had a 30 % increase in pore volume and a 33 % increase in surface area compared to PUC800. PUC800-3T showed benzene adsorption capacity of 4.2 mmol g-1 at 1 Pa and 5.8 mmol g-1 at 5 Pa. Experimental and molecular simulation indicate that the benzene adsorption at 1 and 5 Pa is determined by pore volume of less than 0.8 and 0.9 nm, respectively. Density functional theory calculations provided insight into the CH⋯X (X = N/O) interactions drive benzene adsorption on the carbon framework. This work provides valuable theoretical and experimental support for designing, preparing, and applying adsorbents for trace removal of benzene vapor.
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410083, Hunan, China
| | - Ruiqi Xue
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiancheng Ma
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 108 King William Street, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Pham VH, Wang C, Gao Y, Weidman J, Kim KJ, Matranga C. Synthesis of Microscopic 3D Graphene for High-Performance Supercapacitors with Ultra-High Areal Capacitance. SMALL METHODS 2024; 8:e2301426. [PMID: 38678532 DOI: 10.1002/smtd.202301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Despite graphene being considered an ideal supercapacitor electrode material, its use in commercial devices is limited because few methods exist to produce high-quality graphene at a large scale and low cost. A simple method is reported to synthesize 3D graphene by graphenization of coal tar pitch with a K2CO3 catalyst. This produces 3D graphenes with high specific surface areas up to 2113 m2 g-1 and exceptional crystallinity (Raman ID/IG as low as ≈0.15). The material has an outstanding specific capacitance of 182.6 F g-1 at a current density of 1.0 A g-1. This occurs at a mass loading of 30 mg cm-2 which is 3 times higher than commercial requirements, yielding an ultra-high areal capacitance of 5.48 F cm-2. The K2CO3 is recycled and reused over 10 cycles with material quality and electrocapacitive performance of 3D graphene retained and verified after each cycle. The synthesis method and resulting electrocapacitive performance properties create new opportunities for using 3D graphene more broadly in practical supercapacitor devices.
Collapse
Affiliation(s)
- Viet Hung Pham
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Congjun Wang
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Yuan Gao
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Jennifer Weidman
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Ki-Joong Kim
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| | - Christopher Matranga
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA, 15236, USA
| |
Collapse
|
8
|
Jiang M, Sun N, Li T, Yu J, Somoro RA, Jia M, Xu B. Revealing the Charge Storage Mechanism in Porous Carbon to Achieve Efficient K Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401478. [PMID: 38528390 DOI: 10.1002/smll.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Constructing a porous structure is considered an appealing strategy to improve the electrochemical properties of carbon anodes for potassium-ion batteries (PIBs). Nevertheless, the correlation between electrochemical K-storage performance and pore structure has not been well elucidated, which hinders the development of high-performance carbon anodes. Herein, various porous carbons are synthesized with porosity structures ranging from micropores to micro/mesopores and mesopores, and systematic investigations are conducted to establish a relationship between pore characteristics and K-storage performance. It is found that micropores fail to afford accessible active sites for K ion storage, whereas mesopores can provide abundant surface adsorption sites, and the enlarged interlayer spacing facilitates the intercalation process, thus resulting in significantly improved K-storage performances. Consequently, PCa electrode with a prominent mesoporous structure achieves the highest reversible capacity of 421.7 mAh g-1 and an excellent rate capability of 191.8 mAh g-1 at 5 C. Furthermore, the assembled potassium-ion hybrid capacitor realizes an impressive energy density of 151.7 Wh kg-1 at a power density of 398 W kg-1. The proposed work not only deepens the understanding of potassium storage in carbon materials with distinctive porosities but also paves a path toward developing high-performance anodes for PIBs with customized energy storage capabilities.
Collapse
Affiliation(s)
- Mingchi Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ning Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxu Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Razium Ali Somoro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengqiu Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| |
Collapse
|
9
|
Zhou T, Wu X, Liu S, Wang A, Liu Y, Zhou W, Sun K, Li S, Zhou J, Li B, Jiang J. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202301779. [PMID: 38416074 DOI: 10.1002/cssc.202301779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuqi Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| |
Collapse
|
10
|
Tang X, Dong T, Wang M, Ma S, Xu S, Wang J, Gao B, Huang Y, Yang Q, Hua D, Zhan S. From waste corn straw to graphitic porous carbon: A trade-off between specific surface area and graphitization degree for efficient peroxydisulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134422. [PMID: 38677118 DOI: 10.1016/j.jhazmat.2024.134422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Electron transfer pathways have been verified as overriding regimes when peroxydisulfate (PDS) was activated by porous carbon. The incorporation of graphitic structure into carbon matrix was favorable to the rapid electron transfer, but excessive graphitization would deteriorate the specific surface area (SSA), weakening the catalytic performance. The reasonable trade-off between SSA and graphitization degree was necessary and challenging for the preparation of efficient carbon based PS-activators. Herein, a series of graphitic porous carbon with discrepant SSA and graphitic structure were fabricated. The incorporation of graphitization tracks into ultra-thin edges on porous carbon film was verified by multifarious structural characterization. After trade-off, the optimum catalyst exhibited superior catalytic performance with degradation rate constant (kobs) exceeding that of ungraphitized precursor by up to 16.0 times. Mechanistic investigations substantiated that the sufficient SSA of catalyst provided favorable conditions for its affinity towards PDS and sulfadiazine (SDZ), resulting in the formation of PDS* complexes and SDZ adsorption, while the appropriate graphitization degree ensured the reinforced electron transfer rate, which collectively accelerated SDZ oxidation through electron-transfer pathway. The multivariate linear regression model linking kobs to SSA and graphitization degree was established providing basis to construct efficient catalysts for PDS activation.
Collapse
Affiliation(s)
- Xiaodan Tang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tingting Dong
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Mengya Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Jingzhen Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Boqiang Gao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yan Huang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qiuyun Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
11
|
Xiao J, Yuan X, Li W, Zhang TC, He G, Yuan S. Cellulose-based aerogel derived N, B-co-doped porous biochar for high-performance CO 2 capture and supercapacitor. Int J Biol Macromol 2024; 269:132078. [PMID: 38705332 DOI: 10.1016/j.ijbiomac.2024.132078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The remarkable characteristics of porous biochar have generated significant interest in various fields, such as CO2 capture and supercapacitors. The modification of aerogel-derived porous biochar through activation and heteroatomic doping can effectively enhance CO2 adsorption and improve supercapacitor performance. In this study, a novel N, B-co-doped porous biochar (NBCPB) was synthesized by carbonating and activating the N, B dual-doped cellulose aerogel. N and B atoms were doped in-situ using a modified alkali-urea method. The potassium citrate was served as both an activator and a salt template to facilitate the formation of a well-developed nanostructure. The optimized NBCPB-650-1 (where 650 corresponded to activation temperature and 1 represented mass ratio of potassium citrate activator to carbonized NBCPB-400 precursor) displayed the largest micropore volume of 0.40 cm3·g-1 and a high specific surface area of 891 m2·g-1, which contributed to an excellent CO2 adsorption capacity of 4.19 mmol·g-1 at 100 kPa and 25 °C, a high CO2/N2 selectivity, and exceptional reusability (retained >97.5 % after 10 adsorption-desorption cycles). Additionally, the NBCPB-650-1 electrode also delivered a high capacitance of 220.9 F·g-1 at 1 A·g-1. Notably, the symmetrical NBCPB-650-1 supercapacitor exhibited a high energy density of 9 Wh·kg-1 at the power density of 100 W·kg-1. This study not only presents the potential application of NBCPB-650-1 material in CO2 capture and electrochemical energy storage, but also offers a new insight into easy-to-scale production of heteroatomic-modified porous biochar.
Collapse
Affiliation(s)
- Jianfei Xiao
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaofang Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weikeduo Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Ge He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
13
|
Yang W, Zhang Y, Wang J, Xia M, Zhang J, He J, Guo W, Tian K, Liu S, Li X, Wang G, Wang H. Unprecedented 100% conversion from pyridinic to pyrrolic nitrogen configuration for electrochemically active nitrogen-doped carbon materials. J Colloid Interface Sci 2024; 662:883-892. [PMID: 38382372 DOI: 10.1016/j.jcis.2024.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Nitrogen-doped carbons with promising electrochemical performance exhibit a strong dependence on nitrogen configuration. Therefore, accurate control of nitrogen configurations is crucial to clarify their influence. Unfortunately, there is still no well-defined conversion route to finely control nitrogen configuration. Herein, we proposed the concept of 100% conversion from pyridinic to pyrrolic nitrogen in carbon materials through low-temperature pyrolysis and alkali activation of hydroxypyridine-3-halophenol-formaldehyde resins. Their dehalogenation pyrolysis promotes formation of carbon intermediates and conversion of tautomeric pyridone and hydroxypyridine into pyrrolic and pyridinic nitrogen through eliminating carbonyl and hydroxyl functionalities, respectively. Continuous thermal alkali activation introduces hydroxyl groups into carbon materials, converting pyridinic species to intermediate hydroxypyridine and pyridone; subsequently, these configurations transform to pyridinic and pyrrolic nitrogen, respectively, and finally, an excessive alkali ensures 100% conversion from pyridinic to pyrrolic nitrogen. NaOH activation for pyrrolic and pyridinic nitrogen co-doped carbon and KOH activation for model nitrogen-containing compounds including acridine, phenanthridine, and acridone further confirm that alkali activation plays an indispensable role in 100% conversion from pyridinic to pyrrolic units through the tautomeric hydroxypyridine and pyridone intermediates. Low-temperature alkali-induced controllable conversion of nitrogen configuration in carbon materials is suitable modulating nitrogen configurations for almost all nitrogen-doped carbon materials in electrochemical applications.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Junyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Meirong Xia
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jiamin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun He
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Wanchun Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China.
| | - Kesong Tian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China.
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 China
| | - Xueai Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haiyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
14
|
Li J, Xu Y, Li P, Völkel A, Saldaña FI, Antonietti M, López-Salas N, Odziomek M. Beyond Conventional Carbon Activation: Creating Porosity without Etching Using Cesium Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311655. [PMID: 38240357 DOI: 10.1002/adma.202311655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Facile synthesis of porous carbon with high yield and high specific surface area (SSA) from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (<20%) and poor control over porosity and composition especially when high SSAs are targeted (>2000 m2 g-1) because nanopores are typically created by etching. Herein, a non-etching activation strategy is demonstrated using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and SSAs reaching 3008 m2 g-1. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation, and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh g-1 (567 F g-1) and durability of 100 000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.
Collapse
Affiliation(s)
- Jiaxin Li
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yaolin Xu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Pengzhou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Antje Völkel
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
15
|
Cheng Y, Wang J, Fang C, Du Y, Su J, Chen J, Zhang Y. Recent Progresses in Pyrolysis of Plastic Packaging Wastes and Biomass Materials for Conversion of High-Value Carbons: A Review. Polymers (Basel) 2024; 16:1066. [PMID: 38674986 PMCID: PMC11054047 DOI: 10.3390/polym16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The recycling of plastic packaging wastes helps to alleviate the problems of white pollution and resource shortage. It is very necessary to develop high-value conversion technologies for plastic packaging wastes. To our knowledge, carbon materials with excellent properties have been widely used in energy storage, adsorption, water treatment, aerospace and functional packaging, and so on. Waste plastic packaging and biomass materials are excellent precursor materials of carbon materials due to their rich sources and high carbon content. Thus, the conversion from waste plastic packaging and biomass materials to carbon materials attracts much attention. However, closely related reviews are lacking up to now. In this work, the pyrolysis routes of the pyrolysis of plastic packaging wastes and biomass materials for conversion to high-value carbons and the influence factors were analyzed. Additionally, the applications of these obtained carbons were summarized. Furthermore, the limitations of the current pyrolysis technology are put forward and the research prospects are forecasted. Therefore, this review can provide a useful reference and guide for the research on the pyrolysis of plastic packaging wastes and biomass materials and the conversion to high-value carbon.
Collapse
Affiliation(s)
- Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Jinpeng Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Yanli Du
- Shaanxi Zhonghe Dadi Industrial Limited Company, Xianyang 712099, China;
| | - Jian Su
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Jing Chen
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Yingshuan Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| |
Collapse
|
16
|
Pereira L, Castillo V, Calero M, González-Egido S, Martín-Lara MÁ, Solís RR. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120753. [PMID: 38531130 DOI: 10.1016/j.jenvman.2024.120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Pyrolysis of residues enriched with carbon, such as in agroforestry or industrial activities, has been postulated as an emerging technology to promote the production of biofuels, contributing to the circular economy and minimizing waste. However, during the pyrolysis processes a solid fraction residue is generated. This work aims to study the viability of these chars to develop porous carbonaceous materials that can be used for environmental applications. Diverse chars discharged by an industrial pyrolysis factory have been activated with KOH. Concretely, the char residues came from the pyrolysis of olive stone, pine, and acacia splinters, spent residues fuel, and cellulose artificial casings. The changes in the textural, structural, and composition characteristics after the activation process were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, FTIR, elemental analysis, and XPS. A great porosity was developed, SBET within 776-1186 m2 g-1 and pore volume of 0.37-0.59 cm3 g-1 with 70-90% of micropores contribution. The activated chars were used for the adsorption of CO2, leading to CO2 maximum uptakes of 90-130 mg g-1. There was a good correlation between the CO2 uptake with microporosity and oxygenated surface groups of the activated chars. Moreover, their ability to adsorption of contaminants in aqueous solution was also evaluated. Concretely, there was studied the adsorption of aqueous heavy metals, i.e., Cd, Cu, Ni, Pb, and Zn, and organic pollutants of emerging concern such as caffeine, diclofenac, and acetaminophen.
Collapse
Affiliation(s)
- Ledicia Pereira
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Ventura Castillo
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Sergio González-Egido
- Environment and Bioproducts Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain
| | - M Ángeles Martín-Lara
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Rafael R Solís
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
17
|
Yildir MH, Genc AA, Erk N, Bouali W, Bugday N, Yasar S, Duygulu O. Pioneering electrochemical detection unveils erdafitinib: a breakthrough in anticancer agent determination. Mikrochim Acta 2024; 191:221. [PMID: 38536529 PMCID: PMC10973028 DOI: 10.1007/s00604-024-06318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The successful fabrication is reported of highly crystalline Co nanoparticles interconnected with zeolitic imidazolate framework (ZIF-12) -based amorphous porous carbon using the molten-salt-assisted approach utilizing NaCl. Single crystal diffractometers (XRD), and X-ray photoelectron spectroscopy (XPS) analyses confirm the codoped amorphous carbon structure. Crystallite size was calculated by Scherrer (34 nm) and Williamson-Hall models (42 nm). The magnetic properties of NPCS (N-doped porous carbon sheet) were studied using a vibrating sample magnetometer (VSM). The NPCS has a magnetic saturation (Ms) value of 1.85 emu/g. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that Co/Co3O4 nanoparticles are homogeneously distributed in the carbon matrix. While a low melting point eutectic salt acts as an ionic liquid solvent, ZIF-12, at high temperature, leading cobalt nanoparticles with a trace amount of Co3O4 interconnected by conductive amorphous carbon. In addition, the surface area (89.04 m2/g) and pore architectures of amorphous carbon embedded with Co nanoparticles are created using the molten salt approach. Thanks to this inexpensive and effective method, the optimal composite porous carbon structures were obtained with the strategy using NaCl salt and showed distinct electrochemical performance on electrochemical methodology revealing the analytical profile of Erdatifinib (ERD) as a sensor modifier. The linear response spanned from 0.01 to 7.38 μM, featuring a limit of detection (LOD) of 3.36 nM and a limit of quantification (LOQ) of 11.2 nM. The developed sensor was examined in terms of selectivity, repeatability, and reproducibility. The fabricated electrode was utilized for the quantification of Erdafitinib in urine samples and pharmaceutical dosage forms. This research provides a fresh outlook on the advancements in electrochemical sensor technology concerning the development and detection of anticancer drugs within the realms of medicine and pharmacology.
Collapse
Affiliation(s)
- Merve Hatun Yildir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey.
| | - Asena Ayse Genc
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
| | - Wiem Bouali
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nesrin Bugday
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Sedat Yasar
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Ozgur Duygulu
- TÜBİTAK Marmara Research Center, Materials Technologies, TÜBİTAK Gebze Campus, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
18
|
Czerwinska N, Giosuè C, Matos I, Sabbatini S, Ruello ML, Bernardo M. Development of activated carbons derived from wastes: coffee grounds and olive stones as potential porous materials for air depollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169898. [PMID: 38184266 DOI: 10.1016/j.scitotenv.2024.169898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Agro-industrial byproducts and food waste necessitate an environmentally friendly way of reducing issues related to their disposal; it is also necessary to recover as much new raw material from these resources as possible, especially when we consider their potential usage as a precursor for preparing depolluting materials, such as activated carbon. In this work, coffee grounds and olive stones were chosen as precursors and the adsorption capacity of the obtained porous carbons for volatile organic compounds (VOCs) was studied. Microporous activated carbons (ACs) were prepared using chemical (K2CO3) and physical (CO2) activation. The influence of the activation process, type, and time of activation was also investigated. Measurements of VOCs adsorption were performed, and methyl-ethyl-ketone (MEK) and toluene were chosen as the model pollutants. The surface areas and total pore volumes of 1487 m2/g and 0.53 cm3/g and 870 m2/g and 0.22 cm3/g for coffee ground carbons and olive stone carbons, respectively, were obtained via chemical activation, whereas physical activation yielded values of 716 m2/g and 0.184 cm3/g and 778 cm2 g-1 and 0.205 cm3/g, respectively. As expected, carbons without activation (biochars) showed the smallest surface area, equal to 331 m2/g and 251 m2/g, and, hence, the lowest adsorption capacity. The highest adsorption capacity of MEK (3210 mg/g) and toluene (2618 mg/g) was recorded for chemically activated coffee grounds. Additionally, from the CO2 isotherms recorded at a low pressure (0.03 bar) and 0 °C, the maximum CO2 adsorption capacity was equal to 253 mg/g.
Collapse
Affiliation(s)
- Natalia Czerwinska
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Chiara Giosuè
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Ines Matos
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Simona Sabbatini
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Letizia Ruello
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Bernardo
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Du S, Huang B, Hao GP, Huang J, Liu Z, Oschatz M, Xiao J, Lu AH. pH-Regulated Refinement of Pore Size in Carbon Spheres for Size-Sieving of Gaseous C 8 , C 6 and C 3 Hydrocarbon Pairs. CHEMSUSCHEM 2023; 16:e202300215. [PMID: 37186177 DOI: 10.1002/cssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Selective separation of industrial important C8 , C6 and C3 hydrocarbon pairs by physisorbents can greatly reduce the energy intensity related to the currently used cryogenic distillation techniques. The achievement of size-sieving based on carbonaceous materials is desirable, but commonly hindered by the random structure of carbons often with a broad pore size distribution. Herein, a pH-regulated pre-condensation strategy was introduced to control the carbon pore architecture by the sp2 /sp3 hybridization of precursor. The lower pH value during pre-condensation of glucose facilitates the growth of aromatic nanodomains, rearrangement of stacked layers and a concomitant transition from sp3 -C to sp2 -C. The subsequent pyrolysis endows the pore size manipulated from 6.8 to 4.8 Å and narrowly distributed over a range of 0.2 Å. The refined pores enable effective size-sieving of C8 , C6 and C3 hydrocarbon pairs with high separation factor of 1.9 and 4.9 for C8 xylene (X) isomers para-X/meta-X and para-X/ortho-X, respectively, 5.1 for C6 alkane isomers n-hexane/3-methylpentane, and 22.0 for C3 H6 /C3 H8 . The excellent separation performance based-on size exclusion effect is validated by static adsorption isotherms and dynamic breakthrough experiments. This synthesis strategy provides a means of exploring advanced carbonaceous materials with controlled hybridized structure and pore sizes for challenging separation needs.
Collapse
Affiliation(s)
- Shengjun Du
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Baolin Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiawu Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zewei Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Jing Xiao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
20
|
Yao Z, Lu Y, Song J, Zhang K. Synthesis of Daidzein and Thiophene Containing Benzoxazine Resin and Its Thermoset and Carbon Material. Molecules 2023; 28:5077. [PMID: 37446739 DOI: 10.3390/molecules28135077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.
Collapse
Affiliation(s)
- Zhenhao Yao
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianan Song
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Wang D, Zhou Q, Fu H, Lian Y, Zhang H. A Fe 2(SO 4) 3-assisted approach towards green synthesis of cuttlefish ink-derived carbon nanospheres for high-performance supercapacitors. J Colloid Interface Sci 2023; 638:695-708. [PMID: 36780850 DOI: 10.1016/j.jcis.2023.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The conversion of renewable biomass resources into advanced electrode materials through green, simple, and economical methods has become an important research direction in energy storage. In this study, Fe-decorated N/S-codoped porous carbon nanospheres have been successfully fabricated from cuttlefish ink through Fe2(SO4)3-assisted hydrothermal carbonization coupled with heat treatment. The effects of Fe2(SO4)3 dosage on the structure, chemical composition, and capacitive property of carbon nanospheres were investigated. Herein, environmentally friendly Fe2(SO4)3 plays a multifunctional role as the graphitization catalyst, dopant, and morphology-regulating agent. Benefitting from the moderate graphitization degree, great heteroatom content and hierarchical porous structure, the prepared carbon nanospheres exhibit high specific capacitance (311.9 F g-1 at a current density of 0.5 A g-1), good rate capability (19.1% decrease in specific capacitance as current density increases from 0.5 to 10 A g-1), and ideal cycling stability (94.3% capacitance retention after 5000 cycles). In addition, the symmetric supercapacitor assembled with the carbon nanosphere electrodes achieves an energy density of 9.7 Wh kg-1 at a power density of 0.25 kW kg-1 and maintains 91.3% capacitance after 10,000 cycles. The desirable electrochemical performance of cuttlefish ink-derived carbon nanosphere material makes it a potential electrode candidate for supercapacitors.
Collapse
Affiliation(s)
- Dawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiuping Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongliang Fu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yue Lian
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Huaihao Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
22
|
Catherine HN, Liu ZT, Lin CY, Chung PW, Tsunekawa S, Lin SD, Yoshida M, Hu C. Understanding the intermediates and carbon dioxide adsorption of potassium chloride-incorporated graphitic carbon nitride with tailoring melamine and urea as precursors. J Colloid Interface Sci 2023; 633:598-607. [PMID: 36470139 DOI: 10.1016/j.jcis.2022.11.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
In this study, we demonstrated the synthesis of potassium chloride (KCl)-incorporated graphitic carbon nitride, (g-C3N4, CN) with varying amounts of N-vacancies and pyridinic-N as well as enhanced Lewis basicity, via a single-step thermal polymerization by tailoring the precursors of melamine and urea for carbon oxide (CO2) capture. Melamine, as a precursor, undergoes a phase transformation into melam and triazine-rich g-C3N4, whereas the addition of urea polymerizes the mixture to form melem and heptazine-rich g-C3N4 (CN11). Owing to the abundance of pyridinic-N and the high surface area, CN11 adsorbed higher amounts of CO2 (44.52 μmol m-2 at 25 °C and 1 bar of CO2) than those reported for other template-free carbon materials. Spectroscopic analysis revealed that the enhanced CO2 adsorption is due to the presence of pyridinic-N and Lewis basic sites on the surface. The intermediates of CO2adsorption, including carbonate and bicarbonate species, attached to the CN samples were identified using in-situ Fourier-transform infrared spectroscopy (FTIR). This work provides insights into the mechanism of CO2 adsorption by comparing the structural features of the synthesized KCl-incorporated g-C3N4 samples. CN11, with an excellent CO2 uptake capacity, is viewed as a promising candidate for CO2 capture and storage.
Collapse
Affiliation(s)
- Hepsiba Niruba Catherine
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City 106, Taiwan
| | - Zhi-Ting Liu
- Department of Chemical Engineering, Chung Yuan Christian University, Chungli Dist., Taoyuan City 320, Taiwan
| | - Chan-Yi Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei City 115, Taiwan
| | - Po-Wen Chung
- Institute of Chemistry, Academia Sinica, Nankang, Taipei City 115, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan
| | - Shun Tsunekawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-0097, Japan
| | - Shawn D Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City 106, Taiwan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-0097, Japan; Blue Energy Center for SGE Technology (BEST), Yamaguchi University, Ube, Yamaguchi 755-0097, Japan
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City 320, Taiwan.
| |
Collapse
|
23
|
Qin J, Ji R, Sun Q, Li W, Cheng H, Han J, Jiang X, Song Y, Xue J. Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole. BIORESOURCE TECHNOLOGY 2023; 369:128361. [PMID: 36423753 DOI: 10.1016/j.biortech.2022.128361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Excellent biochar properties are crucial for sorption performance, and a developed pore structure is especially important. Herein, novel porous carbon/porous biochar (PC/PB) composites, in which the porous biochar and porous carbon were prepared at the same time, were synthesized via a green method from algal biomass with the help of the self-activation of citrate for the first time, and the composites were evaluated for the sorption of sulfamethoxazole (SMX). Many micro/meso/macropores were introduced into the PC/PB composites, which showed high specific surface areas (up to 1415 m2/g) and pore volumes (up to 1.08 cm3 g-1). The PC/PB composites displayed excellent SMX sorption capacities, which reached 844 mg g-1. Pore filling played a crucial role in determining the sorption capacity, and hydrogen bonding, electrostatic interactions and π-π stacking controlled the sorption rate. This study provides an improved method for preparation of porous biochar.
Collapse
Affiliation(s)
- Jiacheng Qin
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Wei Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-the Lake Wetland Ecosystem, Huaian 223100, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-the Lake Wetland Ecosystem, Huaian 223100, PR China.
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-the Lake Wetland Ecosystem, Huaian 223100, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
24
|
Gong L, Bao A. High-value utilization of lignin to prepare N,O-codoped porous carbon as a high-performance adsorbent for carbon dioxide capture. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Gu F, Ji R, Sun Q, Chen S, Bai R, Shen Y, Liu X, Song Y, Han J, Jiang X, Cheng H, Xue J. Coassisted carbonization with HCOOK/(HCOO) 2Ca for the fabrication of bamboo-derived oxygen-doped porous carbons exhibiting high-performance sorption of diethyl phthalate from aqueous solutions. BIORESOURCE TECHNOLOGY 2023; 367:128310. [PMID: 36370946 DOI: 10.1016/j.biortech.2022.128310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Porous carbons are excellent sorbents for removing organic pollutants. Green conversion of biowaste into advanced porous carbons is crucial for industrialized production and practical applications, which, however, have rarely been investigated. This study develops a coassisted carbonization method for the preparation of porous carbons with the environmentally friendly agents HCOOK and (HCOO)2Ca for the first time. The bamboo waste-derived hydrochar was transformed into oxygen-doped porous carbons, which displayed a large surface area and pore volume, abundant oxygen content, graphene structure and many surface functional groups. These properties contributed to the extremely high sorption of large quantities of diethyl phthalate, which reached 761 mg g-1. Surface adsorption, including pore filling, hydrogen bonding, and π-π stacking, rather than partitioning, was the main sorption process. Therefore, this study provides a sustainable and promising route for the preparation of porous carbons that can be applied in the efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Fei Gu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Shengcun Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Rong Bai
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuying Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinran Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
26
|
Vasilev AA, Efimov MN, Muratov DG, Karpacheva GP. Effect of Alkaline Activation on the Structural Characteristics of Nanocomposites Based on Carbonized Chitosan and Fe–Co Bimetallic Nanoparticles. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
27
|
Rehman A, Nazir G, Rhee KY, Park SJ. Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO 2 adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157805. [PMID: 35944625 DOI: 10.1016/j.scitotenv.2022.157805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Constrained by the extortionately expensive carbon sources, low carbon yields, inadequate adsorption capacities, and corrosive chemical activating agents, the commercialization of carbonaceous CO2 adsorbents remains a challenging task. Herein, potassium oxalate (K2C2O4), an activating agent with less corrosive properties, was used for the synthesis of activated carbons from inexhaustibly available "orange peel biowaste." For the first time, a comprehensive report is presented on the effect of hydrothermal treatment, hydrochar/K2C2O4 ratio, activation temperature, and melamine modification in tailoring the porosity and surface functionalization of activated carbons. The optimized sample, OPMK-900, exhibited large specific surface area ~2130 m2/g; micropore volume ~1.1166 cm3/g, and a high pyrrolic nitrogen content (~ 46.1 %). Notably, melamine played the dual role as a promoter to K2C2O4 porosity generation and a nitrogen dopant, which synergistically led to an efficient CO2 uptake of ~6.67 mmol/g at 273 K/ 1 bar via micropore-filling mechanism and Lewis acid-base interactions. Moreover, remarkably high IAST CO2/N2 selectivity (105 at 273 K and 96 at 298 K) surpasses most of the biomass-derived carbons. Furthermore, the moderately high isosteric heat of adsorption (∆Hads ~ 38.9 kJ/mol) revealed the physisorption mechanism of adsorption with a limited energy requirement for the regeneration of the spent adsorbents.
Collapse
Affiliation(s)
- Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| |
Collapse
|
28
|
Chen K, He ZJ, Liu ZH, Ragauskas AJ, Li BZ, Yuan YJ. Emerging Modification Technologies of Lignin-based Activated Carbon toward Advanced Applications. CHEMSUSCHEM 2022; 15:e202201284. [PMID: 36094056 DOI: 10.1002/cssc.202201284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Lignin-based activated carbon (LAC) is a promising high-quality functional material due to high surface area, abundant porous structure, and various functional groups. Modification is the most important step to functionalize LAC by altering its porous and chemical properties. This Review summarizes the state-of-the-art modification technologies of LAC toward advanced applications. Promising modification approaches are reviewed to display their effects on the preparation of LAC. The multiscale changes in the porosity and the surface chemistry of LAC are fully discussed. Advanced applications are then introduced to show the potential of LAC for supercapacitor electrode, catalyst support, hydrogen storage, and carbon dioxide capture. Finally, the mechanistic structure-function relationships of LAC are elaborated. These results highlight that modification technologies play a special role in altering the properties and defining the functionalities of LAC, which could be a promising porous carbon material toward industrial applications.
Collapse
Affiliation(s)
- Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, 37996 TN, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, 37996 TN, USA
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37830 TN, USA
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Liu R, Wang JX, Yang WD. Hierarchical Porous Heteroatoms-Co-Doped Activated Carbon Synthesized from Coconut Shell and Its Application for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3504. [PMID: 36234631 PMCID: PMC9565498 DOI: 10.3390/nano12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Coconut husk biomass waste was used as the carbon precursor to develop a simple and economical process for the preparation of hierarchical porous activated carbon, and the electrochemical properties of the electrode material were explored. The important process variables of carbonization, the weight ratios of the coconut shell/KOH, the amount of source dopant, and the carbonization temperature were investigated in order to reveal the influence of the as-obtained microporous/mesoporous/macroporous hierarchical porous carbon materials on the powder properties. Using a BET specific surface area analyzer, Raman analysis, XPS and SEM, surface morphology, pore distribution and specific surface area of the hierarchical porous carbon materials are discussed. The results show that the as-prepared N-, S- and O-heteroatom-co-doped activated carbon electrode was manufactured at 700 °C for electrochemical characteristics. The electrochemical behavior has the characteristics of pseudo-capacitance, and could reach 186 F g-1 at 1 A g-1 when measured by the galvanostatic charge-discharge (GCD) test. After 7000 cycles of the charge-discharge test, the initial capacitance value retention rate was 95.6%. It is predicted that capacitor materials made when using coconut shell as a carbon source will have better energy storage performance than traditional carbon supercapacitors.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Jing-Xuan Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
30
|
Nitrogen-doped porous carbon for excellent CO2 capture: A novel method for preparation and performance evaluation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Yuan X, Xiao J, Yılmaz M, Zhang TC, Yuan S. N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Li H, Luo H, Teng J, Yuan S, Li J, Zhang Y, Duan H, Li J. Lotus Root‐Derived Porous Carbon as an Anode Material for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202202413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Li
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Huan Luo
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Jinhan Teng
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Shengxu Yuan
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Jinchao Li
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Yaping Zhang
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| | - Hao Duan
- Sichuan Langsheng New Energy Technology Co. Ltd Suining 629200 P.R. China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials School of Materials and Chemistry Southwest University of Science and Technology Mianyang 621010 P.R.China
| |
Collapse
|
33
|
Bian Z, Wang H, Zhao X, Ni Z, Zhao G, Chen C, Hu G, Komarneni S. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers. J Colloid Interface Sci 2022; 630:115-126. [DOI: 10.1016/j.jcis.2022.09.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
|
34
|
Zhang J, Gu F, Zhou Y, Li Z, Cheng H, Li W, Ji R, Zhang L, Bian Y, Han J, Jiang X, Song Y, Xue J. Assisting the carbonization of biowaste with potassium formate to fabricate oxygen-doped porous biochar sorbents for removing organic pollutant from aqueous solution. BIORESOURCE TECHNOLOGY 2022; 360:127546. [PMID: 35777643 DOI: 10.1016/j.biortech.2022.127546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
In contrast to the efforts dedicated to applying porous biochars in environmental remediation, the search for green synthesis methods, which are crucial for industrialized production, is often neglected. Herein, oxygen-doped porous biochars were prepared for the first time by the assisted carbonization of hydrochar with a novel noncorrosive activator, potassium formate, and these biochars displayed a porous structure with large amounts of micropores (surface area: 1242 ∼ 1386 m2 g-1). Interestingly, the biochars contained an abundance of oxygen element (20 ∼ 26%), which formed many functional groups. Through sorption experiments, it was demonstrated that the oxygen-doped porous biochars were excellent sorbents for diethyl phthalate, and maximum sorption quantity reached 453 mg g-1. Monolayer sorption by pore filling, hydrogen bonding, electrostatic interaction and π-π stacking was the potential mechanism. This finding indicated that potassium formate was promising as an activator to greenly convert biowaste into advanced biochars for removing organic pollutants from aqueous solutions.
Collapse
Affiliation(s)
- Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Fei Gu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yun Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zixiang Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Wei Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
35
|
Lu T, Bai J, Demir M, Hu X, Huang J, Wang L. Synthesis of potassium Bitartrate-derived porous carbon via a facile and Self-Activating strategy for CO2 adsorption application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Cui H, Xu J, Shi J, Yan N, Zhang C, You S. N, S co-doped carbon spheres synthesized from glucose and thiourea as efficient CO2 adsorbents. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zafar FF, Marrakchi F, Barati B, Yuan C, Cao B, Wang S. Highly efficient adsorption of Bisphenol A using NaHCO 3/CO 2 activated carbon composite derived from shrimp shell@cellulose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68724-68734. [PMID: 35554807 DOI: 10.1007/s11356-022-20564-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the efficiency of activated carbon (AC) synthesized from the shrimp shell plus cellulose (SS@C) was optimized toward Bisphenol A (BPA) adsorption. Low-cost, renewable, and non-toxic shrimp shells mixed with cellulose were carbonized, followed by activation via CO2 and NaHCO3 to produce SS@C-AC. The results revealed that SS@C-AC samples were a porous composite with mesoporous structures comprising a relatively high specific surface area (935.20 m2/g) with a mean pore size of around 3.8 nm and mesoporous volume of 1.83E-02 cm3/g. The influences of initial concentrations, pH values, and adsorption on BPA were investigated systematically. Isotherm model and kinetics study of the adsorption of BPA on SS@C-AC exhibited that the obtained data were in agreement with the Langmuir adsorption isotherm model while there is no difference between PFO and PSO kinetic results for BPA concentrations in the range 25-100 mg/L. The impregnation ratio of 1.5 NaHCO3 and an activation time of 90 min at 800°C were the optimum conditions under which BPA removal of 81.78% was obtained.
Collapse
Affiliation(s)
- Fatemeh Fazeli Zafar
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fatma Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bahram Barati
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
38
|
Shi J, Cui H, Xu J, Yan N, You S. Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Shi J, Cui H, Xu J, Yan N. Carbon spheres synthesized from KHCO3 activation of glucose derived hydrochar with excellent CO2 capture capabilities at both low and high pressures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Zhang LL, Tong L, Lv XH, Yan QQ, Ding YW, Wang YC, Liang HW. A Top-Down Templating Strategy toward Functional Porous Carbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201838. [PMID: 35618445 DOI: 10.1002/smll.202201838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured carbon materials with high porosity and desired chemical functionalities are of immense interest because of their wide application potentials in catalysis, environment, and energy storage. Herein, a top-down templating strategy is presented for the facile synthesis of functional porous carbons, based on the direct carbonization of diverse organic precursors with commercially available metal oxide powders. During the carbonization, the metal oxide powders can evolve into nanoparticles that serve as in situ templates to introduce nanopores in carbons. The porosity and heteroatom doping of the prepared carbon materials can be engineered by varying the organic precursors and/or the metal oxides. It is further demonstrated that the top-down templating strategy is applicable to prepare carbon-based single-atom catalysts with iron-nitrogen sites, which exhibit a high power density of 545 mW cm-2 in a H2 -air proton exchange membrane fuel cell.
Collapse
Affiliation(s)
- Le-Le Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Hui Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiang-Qiang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Wei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Amirtha RM, Hsu HH, Abdelaal MM, Anbunathan A, Mohamed SG, Yang CC, Hung TF. Constructing a Carbon-Encapsulated Carbon Composite Material with Hierarchically Porous Architectures for Efficient Capacitive Storage in Organic Supercapacitors. Int J Mol Sci 2022; 23:ijms23126774. [PMID: 35743213 PMCID: PMC9223422 DOI: 10.3390/ijms23126774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Hierarchical porous activated carbon (HPAC) materials with fascinating porous features are favored for their function as active materials for supercapacitors. However, achieving high mass-loading of the HPAC electrodes remains challenging. Inspired by the concepts of carbon/carbon (C/C) composites and hydrogels, a novel hydrogel-derived HPAC (H-HPAC) encapsulated H-HPAC (H@H) composite material was successfully synthesized in this study. In comparison with the original H-HPAC, it is noticed that the specific surface area and pore parameters of the resulting H@H are observably decreased, while the proportions of nitrogen species are dramatically enhanced. The free-standing and flexible H@H electrodes with a mass-loading of 7.5 mg/cm2 are further prepared for electrochemical measurements. The experiments revealed remarkable reversible capacitance (118.6 F/g at 1 mA/cm2), rate capability (73.9 F/g at 10 mA/cm2), and cycling stability (76.6% of retention after 30,000 cycles at 5 mA) are delivered by the coin-type symmetric cells. The cycling stability is even better than that of the H-HPAC electrode. Consequently, the findings of the present study suggest that the nature of the HPAC surface is a significant factor affecting the corresponding capacitive performances.
Collapse
Affiliation(s)
- Rene Mary Amirtha
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
| | - Hao-Huan Hsu
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
| | - Mohamed M. Abdelaal
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
- Tabbin Institute for Metallurgical Studies (TIMS), Tabbin, Helwan 109, Cairo 11421, Egypt;
| | - Ammaiyappan Anbunathan
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
| | - Saad G. Mohamed
- Tabbin Institute for Metallurgical Studies (TIMS), Tabbin, Helwan 109, Cairo 11421, Egypt;
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist., Taoyuan 33302, Taiwan
| | - Tai-Feng Hung
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (R.M.A.); (H.-H.H.); (M.M.A.); (A.A.); (C.-C.Y.)
- Correspondence: ; Tel.: +886-2-2908-9899 (ext. 4957)
| |
Collapse
|
42
|
Shi J, Cui H, Xu J, Yan N. N-doped monodisperse carbon nanospheres with high surface area for highly efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Kitamoto Y, Cao KLA, Le PH, Abdillah OB, Iskandar F, Ogi T. A Sustainable Approach for Preparing Porous Carbon Spheres Derived from Kraft Lignin and Sodium Hydroxide as Highly Packed Thin Film Electrode Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3540-3552. [PMID: 35258982 DOI: 10.1021/acs.langmuir.1c03489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.
Collapse
Affiliation(s)
- Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Phong Hoai Le
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Oktaviardi Bityasmawan Abdillah
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
44
|
Zhang X, Jian W, Zhao L, Wen F, Chen J, Yin J, Qin Y, Lu K, Zhang W, Qiu X. Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128191] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Yang N, Ji L, Fu H, Shen Y, Wang M, Liu J, Chang L, Lv Y. Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Cheng H, Zhang J, Chen Y, Zhang W, Ji R, Song Y, Li W, Bian Y, Jiang X, Xue J, Han J. Hierarchical porous biochars with controlled pore structures derived from co-pyrolysis of potassium/calcium carbonate with cotton straw for efficient sorption of diethyl phthalate from aqueous solution. BIORESOURCE TECHNOLOGY 2022; 346:126604. [PMID: 34953984 DOI: 10.1016/j.biortech.2021.126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A one-pot co-pyrolysis of potassium/calcium carbonate with biowaste-derived hydrochar strategy was proposed to prepare hierarchical porous biochars (HPBs) for the first time. The pore structure, especially the pore size distribution, could be designed by adjusting the mass ratios of different carbonates. HPBs were hydrophobic, nitrogen doped, graphitized, and contained surface functional groups. HPBs showed unexpected sorption quantity for diethyl phthalate (DEP) that reached 657 mg g-1, which much higher than that of the reported sorbents. The sorption was multilayered and had multiple action modes, and was limited by the chemical sorption and the sorption quantity was dominated by the physical sorption. Lewis acid-base interaction, π-π stacking interaction, hydrogen bonding interaction, partitioning and pore filling were the potential sorption mechanisms. This work proposed a simple, environmentally friendly and low-cost method to convert biowaste into advanced HPBs and confirmed that produced HPBs represent ideal sorbents for the removal of organic pollutants.
Collapse
Affiliation(s)
- Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, Huaian 223100, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yueyi Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Wenrui Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Wei Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, Huaian 223100, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, Huaian 223100, PR China
| |
Collapse
|
47
|
|
48
|
Alhebshi NA, Salah N, Hussain H, Salah YN, Yin J. Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:122. [PMID: 35010069 PMCID: PMC8746510 DOI: 10.3390/nano12010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
The demand for supercapacitors has been high during the integration of renewable energy devices into the electrical grid. Although activated carbon materials have been widely utilized as supercapacitor electrodes, the need for economic and sustainable processes to extract and activate carbon nanomaterials is still crucial. In this work, the biomass waste of date palm fronds is converted to a hierarchical porous nanostructure of activated carbon using simple ball-milling and sonication methods. Chemical and physical activation agents of NaOH and CO2, receptively, were applied on two samples separately. Compared with the specific surface area of 603.5 m2/g for the CO2-activated carbon, the NaOH-activated carbon shows a higher specific surface area of 1011 m2/g with a finer nanostructure. Their structural and electrochemical properties are functionalized to enhance electrode-electrolyte contact, ion diffusion, charge accumulation, and redox reactions. Consequently, when used as electrodes in an H2SO4 electrolyte for supercapacitors, the NaOH-activated carbon exhibits an almost two-fold higher specific capacitance (125.9 vs. 56.8 F/g) than that of the CO2-activated carbon at the same current density of 1 A/g. Moreover, using carbon cloth as a current collector provides mechanical flexibility to our electrodes. Our practical approach produces cost-effective, eco-friendly, and flexible activated carbon electrodes with a hierarchical porous nanostructure for supercapacitor applications.
Collapse
Affiliation(s)
- Nuha A. Alhebshi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Numan Salah
- Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Humair Hussain
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yousef N. Salah
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
49
|
Yuan Y, Huang L, Zhang TC, Ouyang L, Yuan S. One-step synthesis of ZnFe2O4-loaded biochar derived from leftover rice for high-performance H2S removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Heteroatoms-doped hierarchical porous carbons: Multifunctional materials for effective methylene blue removal and cryogenic hydrogen storage. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|