1
|
Meneses-Preza YG, Soria-Castro R, Alfaro-Doblado ÁR, Hernández-Solis A, Álvarez-Maldonado P, Gómez-Martín D, Torres-Ruiz J, Muñoz-Valle JF, Muñoz-Ríos G, Hernández-Ramírez CO, Güemes-González AM, Wong-Baeza I, Maravillas-Montero JL, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Chacón-Salinas R. Mast cell activation signature as a potential biomarker in COVID-19. Immunol Lett 2025; 275:107026. [PMID: 40250770 DOI: 10.1016/j.imlet.2025.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/22/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, represented a public health challenge due to the absence of effective treatments to combat the disease. Lethality associated with SARS-CoV-2 infection results from an exacerbated immune response that mediates clinical disease progression and compromises respiratory capacity and organ function. In the lungs, one of the cell lineages increased during COVID-19 are mast cells (MC), cells of innate immune response known for their ability to promote inflammation through the release of their pre-formed mediators or de novo synthesis. The role of MC-derived mediators during SARS-CoV-2 infection and their association with the development of severe COVID-19 have been poorly described. In a previous report, we demonstrated the predictive ability of carboxypeptidase A3 (CPA3) to determine COVID-19 severity. However, it is currently unclear whether the use of other mast cell-derived mediators could improve this predictive ability. To address this gap, we evaluated levels of total tryptase, CPA3, chymase, and prostaglandin D2 (PGD2) in serum from patients with non-severe and severe COVID-19 to develop a predictive model of severe COVID-19 outcomes. We demonstrate that the combined use of these mediators enhances their predictive ability for MC activation during SARS-CoV-2 infection and their involvement in severe forms of COVID-19. Based on these findings, a serum MC activation profile can be proposed as a promising biomarker for SARS-CoV-2 infection and may contribute to the development of targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - Ángel R Alfaro-Doblado
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - Alejandro Hernández-Solis
- Servicio de Neumología, Secretaría de Salud, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Pablo Álvarez-Maldonado
- Servicio de Neumología, Secretaría de Salud, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Guillermina Muñoz-Ríos
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Cristian Oswaldo Hernández-Ramírez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Azmavet M Güemes-González
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - José Luis Maravillas-Montero
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Autónoma De México, Cuernavaca, Morelos, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Carpio y Plan de Ayala s/n Col, Mexico City, Santo Tomás C.P. 11340, Mexico.
| |
Collapse
|
2
|
Ricciotti E, FitzGerald GA. Prostaglandins and the Cardiovascular System. Arterioscler Thromb Vasc Biol 2025; 45:841-844. [PMID: 40397722 PMCID: PMC12097520 DOI: 10.1161/atvbaha.124.320744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 05/23/2025]
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Garret A. FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Huang J, Zhang L, Duan W, Li L, Liu X, Wang X. Lipidomics reveals effect of EHHADH in lung squamous cell. Cell Biol Toxicol 2025; 41:94. [PMID: 40450155 DOI: 10.1007/s10565-025-10044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025]
Abstract
Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are two major pathological types of non-small cell lung cancer (NSCLC), characterized by distinct patterns of lipid metabolism. However, the molecular mechanisms underlying lipid metabolism reprogramming specific to LUSC remain poorly understood. This study aims to fill this gap by identifying and characterizing EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) as a key regulator of medium-chain fatty acid metabolism in LUSC. The peroxisomal L-bifunctional enzyme is one of the important elements to control the peroxisomal fatty acid beta-oxidation pathway. Through high-expression genes related to lipid metabolism were identified by data mining, the expression and regulatory effects of EHHADH in different cell lines were investigated. EHHADH was highly expressed in LUSC cells and exhibited different expression patterns from those in LUAD cells. Knockdown of EHHADH in LUSC cell lines led to a marked reduction in cell proliferation. RNA sequencing following EHHADH silencing demonstrated significant changes in the expression of lipid metabolism-related genes in different cell lines, such as AZGP1, CAV1, CYP3A4, NR2F2, NR3C2, and RARG. Lipidomics analysis further demonstrated that EHHADH plays a crucial role in regulating intracellular and extracellular lipid profiles. EHHADH knockdown resulted in increased levels of long-chain fatty acids and storage lipids, while decreased levels of medium-chain fatty acids. Conversely, overexpression of EHHADH reduced long-chain fatty acids and storage lipids, while increasing specific medium-chain fatty acids. These metabolic alterations were consistent with changes in lipid metabolism-related protein expression, supporting the molecular mechanistic role of EHHADH in lipid regulation. In conclusion, EHHADH functions as an important regulator of lipid metabolism in LUSC and plays a key role in the occurrence, progression, and treatment of lung cancer. The important impact of EHHADH in lipid metabolism disorders suggests potential utility as a biomarker for diagnosis and a target for personalized treatment strategies in lung cancer.
Collapse
Affiliation(s)
- Jianan Huang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanxin Duan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Tomalka JA, Owings A, Galeas-Pena M, Ziegler CGK, Robinson TO, Wichman TG, Laird H, Williams HB, Ghaliwal NS, Everman S, Zafar Y, Walsh JML, Shalek AK, Horwitz BH, Ordovas-Montanes J, Glover SC, Gibert Y. Enhanced Production of Lipid Mediators in Plasma and Activation of DNA Damage Pathways in PBMCs Are Correlated With the Severity of Ancestral SARS-CoV-2 Infection. FASEB J 2025; 39:e70600. [PMID: 40322970 DOI: 10.1096/fj.202403195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
Many questions remain unanswered regarding the implication of genetics and lipid metabolites with severe SARS-CoV-2 infections. We performed bulk RNA-seq and a total fatty acid panel analysis on PBMCs and plasma collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites using the Mann-Whitney U-test revealed that six lipid metabolites were significantly increased in COVID-19 patients, including the lipid mediators arachidonic acid (AA) and eicosapentaenoic acid (EPA), which both give rise to eicosanoids. Key lipids implicated in inflammation, including AA and EPA, along with the fatty acids DHA and DPA, were significantly and positively correlated to the WHO disease severity score. Analysis of our bulk RNA-seq dataset demonstrated distinct transcriptional profiles leading to a segregation of COVID-19 patients based on the WHO score. Ontology, KEGG, and Reactome analysis identified several key pathways and nodes that were enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling, and subsequent DNA damage pathways. EPA levels correlated with heightened cell cycling and DNA damage pathways observed in patients with a high WHO score. We studied gene expression in nasopharyngeal swabs from 58 healthy and COVID-19 participants and identified that genes implicated in eicosanoid synthesis, such as alox5, alox12, and alox15B, were specifically up-regulated in high WHO score patients in several cell types of the nasopharynx, especially goblet cells across different viral variants (Deta and Omicron). Using published nasal scRNA-seq datasets from COVID-19 patients, we evaluated the expression of genes implicated in eicosanoid synthesis, such as ALOX5, ALOX15, and ALOX15B, across nasal cell types and COVID-19 severity groups. Altogether, our study highlights the fact that the increase in specific lipids implicated in inflammation and the genes required for their synthesis correlated with the severity of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Carly G K Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tanya O Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Thomas G Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley B Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Neha S Ghaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Steven Everman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yousaf Zafar
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jaclyn M L Walsh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alex K Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Bruce H Horwitz
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Sarah C Glover
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
dos S. P. Andrade AC, Lacasse E, Dubuc I, Gudimard L, Gravel A, Puhm F, Campolina-Silva G, Queiroz-Junior C, Allaeys I, Prunier J, Azeggouar Wallen O, Dumais É, Belleannée C, Droit A, Flamand N, Boilard É, Flamand L. Deficiency in platelet 12-lipoxygenase exacerbates inflammation and disease severity during SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2025; 122:e2420441122. [PMID: 40100623 PMCID: PMC11962506 DOI: 10.1073/pnas.2420441122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Platelets, known for maintaining blood balance, also participate in antimicrobial defense. Upon severeacute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, platelets become hyperactivated, releasing molecules such as cytokines, granule contents, and bioactive lipids. The key effector biolipids produced by platelets include 12-hydroxyeicosatetraenoic acid (12-HETE) and 12-hydroxyeicosatrienoic acid (12-HETrE), produced by 12-lipoxygenase (12-LOX), and prostaglandins and thromboxane, produced by cyclooxygenase-1. While prostaglandin E2 and thromboxane B2 were previously associated with lung inflammation in severe COVID-19, the role of platelet 12-LOX in SARS-CoV-2 infection remains unclear. Using mice deficient for platelets' 12-LOX, we report that SARS-CoV-2 infection resulted in higher lung inflammation characterized by histopathological tissue analysis, increased leukocyte infiltrates, and cytokine production relative to wild-type mice. In addition, distinct platelet and lung transcriptomic changes, including alterations in NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) inflammasome-related gene expression, were observed. Mass spectrometry lipidomic analysis in 12-LOX-deficient-infected mice revealed significant changes in bioactive lipid content, including reduced levels of 12-HETrE that inversely correlated with disease severity. Finally, platelet 12-LOX deficiency was associated with increased morbidity and lower survival rates relative to wild type (WT) mice. Overall, this study highlights the complex interplay between 12-LOX-related lipid metabolism and inflammatory responses during SARS-CoV-2 infection. The findings provide valuable insights into potential therapeutic targets aimed at mitigating severe outcomes, emphasizing the pivotal role of platelet enzymes in the host response to viral infections.
Collapse
Affiliation(s)
- Ana Claudia dos S. P. Andrade
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Emile Lacasse
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Isabelle Dubuc
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Leslie Gudimard
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Annie Gravel
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Florian Puhm
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Gabriel Campolina-Silva
- Division of Reproduction, mother and youth health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Celso Queiroz-Junior
- Morphology Department, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Isabelle Allaeys
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Julien Prunier
- Division of Endocrinology and Nephrology, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Oumaima Azeggouar Wallen
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Élizabeth Dumais
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Clémence Belleannée
- Division of Reproduction, mother and youth health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Arnaud Droit
- Division of Endocrinology and Nephrology, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Nicolas Flamand
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Éric Boilard
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
- Centre de Recherche ARThrite–Arthrite, Recherche, Traitements, Université Laval, Québec, QCG1V 4G2, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Louis Flamand
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
- Centre de Recherche ARThrite–Arthrite, Recherche, Traitements, Université Laval, Québec, QCG1V 4G2, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
6
|
Lacasse É, Dubuc I, Gudimard L, Andrade ACDSP, Gravel A, Greffard K, Chamberland A, Oger C, Galano JM, Durand T, Philipe É, Blanchet MR, Bilodeau JF, Flamand L. Delayed viral clearance and altered inflammatory responses affect severity of SARS-CoV-2 infection in aged mice. Immun Ageing 2025; 22:11. [PMID: 40075368 PMCID: PMC11899864 DOI: 10.1186/s12979-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Epidemiological investigations consistently demonstrate an overrepresentation of the elderly in COVID-19 hospitalizations and fatalities, making the advanced age as a major predictor of disease severity. Despite this, a comprehensive understanding of the cellular and molecular mechanisms explaining how old age represents a major risk factor remain elusive. To investigate this, we compared SARS-CoV-2 infection outcomes in young adults (2 months) and geriatric (15-22 months) mice. Both groups of K18-ACE2 mice were intranasally infected with 500 TCID50 of SARS-CoV-2 Delta variant with analyses performed on days 3, 5, and 7 post-infection (DPI). Analyses included pulmonary cytokines, lung RNA-seq, viral loads, lipidomic profiles, and histological assessments, with a concurrent evaluation of the percentage of mice reaching humane endpoints. The findings unveiled notable differences, with aged mice exhibiting impaired viral clearance, reduced survival, and failure to recover weight loss due to infection. RNA-seq data suggested greater lung damage and reduced respiratory function in infected aged mice. Additionally, elderly-infected mice exhibited a deficient antiviral response characterized by reduced Th1-associated mediators (IFNγ, CCL2, CCL3, CXCL9) and diminished number of macrophages, NK cells, and T cells. Furthermore, mass-spectrometry analysis of the lung lipidome indicated altered expression of several lipids with immunomodulatory and pro-resolution effects in aged mice such as Resolvin, HOTrEs, and NeuroP, but also DiHOMEs-related ARDS. These findings indicate that aging affects antiviral immunity, leading to prolonged infection, greater lung damage, and poorer clinical outcomes. This underscores the potential efficacy of immunomodulatory treatments for elderly subjects experiencing symptoms of severe COVID-19.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Ana Claudia Dos S P Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | | | - Camille Oger
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Éric Philipe
- Département de Chirurgie, Faculté de Médecine, Université, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
- Centre de Recherche de L'Institut de Cardiologie de Québec, Université, Québec, QC, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada.
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
7
|
Huang P, Liu Y, Li Y, Xin Y, Nan C, Luo Y, Feng Y, Jin N, Peng Y, Wang D, Zhou Y, Luan F, Wang X, Wang X, Li H, Zhou Y, Zhang W, Liu Y, Yuan M, Zhang Y, Song Y, Xiao Y, Shen L, Yu K, Zhao M, Cheng L, Wang C. Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury. BMC Med 2025; 23:79. [PMID: 39934788 PMCID: PMC11818193 DOI: 10.1186/s12916-025-03920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication in patients with sepsis and is associated with high mortality. Therefore, early recognition of SA-AKI is essential for administering supportive treatment and preventing further damage. This study aimed to identify and validate metabolite biomarkers of SA-AKI to assist in early clinical diagnosis. METHODS Untargeted renal proteomic and metabolomic analyses were performed on the renal tissues of LPS-induced SA-AKI and sepsis mice. Glomerular filtration rate (GFR) monitoring technology was used to evaluate real-time renal function in mice. To elucidate the distinctive characteristics of SA-AKI, a multi-omics Spearman correlation network was constructed integrating core metabolites, proteins, and renal function. Subsequently, metabolomics analysis was used to explore the dynamic changes of core metabolites in the serum of SA-AKI mice at 0, 8, and 24 h. Finally, a clinical cohort (28 patients with SA-AKI vs. 28 patients with sepsis) serum quantitative metabolomic analysis was carried out to build a diagnostic model for SA-AKI via logistic regression (LR). RESULTS Thirteen differential renal metabolites and 112 differential renal proteins were identified through a multi-omics study of SA-AKI mice. Subsequently, a multi-omics correlation network was constructed to highlight five core metabolites, i.e., 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, creatine, myristic acid, and inosine, the early changes of which were then observed via serum time series experiments of SA-AKI mice. The levels of 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, and creatine increased significantly at 24 h, myristic acid increased at 8 h, while inosine decreased at 8 h. Ultimately, based on the identified core metabolites, we recruited 56 patients and constructed a diagnostic model named IC3, using inosine, creatine, and 3-hydroxybutyric acid, to early identify SA-AKI (AUC = 0.90). CONCLUSIONS We proposed a blood metabolite model consisting of inosine, creatine, and 3-hydroxybutyric acid for the early screening of SA-AKI. Future studies will observe the performance of these metabolites in other clinical populations to evaluate their diagnostic role.
Collapse
Affiliation(s)
- Pengfei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yanqi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yue Li
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yu Xin
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chuanchuan Nan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yating Feng
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Nana Jin
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Yahui Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Dawei Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Feiyu Luan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xinran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Hongxu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Weiting Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuhan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Mengyao Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuxin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuchen Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yu Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Lifeng Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Lixin Cheng
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China.
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
8
|
Li S, Liu H, Hu H, Ha E, Prasad P, Jenkins BC, Das US, Mukherjee S, Shishikura K, Hu R, Rader DJ, Pei L, Baur JA, Matthews ML, FitzGerald GA, McReynolds MR, Susztak K. Human genetics identify convergent signals in mitochondrial LACTB-mediated lipid metabolism in cardiovascular-kidney-metabolic syndrome. Cell Metab 2025; 37:154-168.e7. [PMID: 39561766 PMCID: PMC11972450 DOI: 10.1016/j.cmet.2024.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
The understanding of cardiovascular-kidney-metabolic syndrome remains difficult despite recently performed large scale genome-wide association studies. Here, we identified beta-lactamase (LACTB), a novel gene whose expression is targeted by genetic variations causing kidney dysfunction and hyperlipidemia. Mice with LACTB deletion developed impaired glucose tolerance, elevated lipid levels, and increased sensitivity to kidney disease, while mice with tubule-specific overexpression of LACTB were protected from kidney injury. We show that LACTB is a novel mitochondrial protease cleaving and activating phospholipase A2 group VI (PLA2G6), a kidney-metabolic risk gene itself. Genetic deletion of PLA2G6 in tubule-specific LACTB-overexpressing mice abolished the protective function of LACTB. Via mouse and human lipidomic studies, we show that LACTB and downstream PLA2G6 convert oxidized phosphatidylethanolamine to lyso-phosphatidylethanolamine and thereby regulate mitochondrial function and ferroptosis. In summary, we identify a novel gene and a core targetable pathway for kidney-metabolic disorders.
Collapse
Affiliation(s)
- Shen Li
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunji Ha
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ujjalkumar Subhash Das
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Renming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Shen R, Qi Z, Huang X, Xia J, Zhan Q. Causal relationship between lipidome and acute respiratory distress syndrome. Sci Rep 2024; 14:29523. [PMID: 39604464 PMCID: PMC11603036 DOI: 10.1038/s41598-024-80985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS), with high morbidity and mortality, is a common clinical syndrome of acute respiratory failure caused by diffuse lung inflammation and edema. ARDS can precipitate in various ways. The complex pathophysiology of ARDS involves the activation and dysregulation of multiple metabolisms and immune responses. Using summary-level data from a genome-wide association study (GWAS), a two-sample Mendelian randomization (MR) analysis of 179 genetically predicted lipid species and ARDS (375 cases, 406,518 controls) was performed and validated in plasma and pulmonary edema fluid from 24 patients. Furthermore, we used a two-step MR to quantify the effect of immune cell-mediated lipids on ARDS. We identified 8 lipids (Cholesterol, Phosphatidylcholine (14:0_16:0), Phosphatidylcholine (16:0_20:5), Phosphatidylcholine (18:0_18:2), Phosphatidylethanolamine (18:1_18:1), Triacylglycerol (51:2), Triacylglycerol (52:4), and Triacylglycerol (54:3) ) associated with ARDS. The proportions of genetically-predicted lipids mediated by the four types of immune cells were determined. Sensitivity analysis did not reveal any obvious pleiotropy or heterogeneity. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomic data and reveals genetic links between ARDS and lipid species beyond standard lipids.
Collapse
Affiliation(s)
- Ruoyi Shen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhijiang Qi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
| | - Xu Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jingen Xia
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Qingyuan Zhan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Wang K, Nie Y, Maguire C, Syphurs C, Sheen H, Karoly M, Lapp L, Gygi JP, Jayavelu ND, Patel RK, Hoch A, Corry D, Kheradmand F, McComsey GA, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, Davis MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Hafler DA, Shaw A, Rahman A, Hough CL, Geng LN, Ozonoff A, Haddad EK, Reed EF, van Bakel H, Kim-Schultz S, Krammer F, Wilson M, Eckalbar W, Bosinger S, Langelier CR, Sekaly RP, Montgomery RR, Maecker HT, Krumholz H, Melamed E, Steen H, Pulendran B, Augustine AD, Cairns CB, Rouphael N, Becker PM, Fourati S, Shannon CP, Smolen KK, Peters B, Kleinstein SH, Levy O, Altman MC, Iwasaki A, Diray-Arce J, Ehrlich LIR, Guan L. Unraveling SARS-CoV-2 Host-Response Heterogeneity through Longitudinal Molecular Subtyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624784. [PMID: 39651165 PMCID: PMC11623532 DOI: 10.1101/2024.11.22.624784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery. We confirmed that unresolved systemic inflammation and T-cell dysfunctions were hallmarks of increased severity and further distinguished patients with similar acute respiratory severity by their distinct immune profiles, which correlated with differences in demographic and clinical complications. Notably, one critical subtype (SubF) was uniquely characterized by early excessive inflammation, insufficient anticoagulation, and fatty acid dysregulation, alongside higher incidences of hematologic, cardiac, and renal complications, and an elevated risk of long COVID. Among the severe subtypes, significant differences in viral clearance and early antiviral responses were observed, with one subtype (SubC) showing strong early T-cell cytotoxicity but a poor humoral response, slower viral clearance, and greater risks of chronic organ dysfunction and long COVID. These findings provide crucial insights into the complex and context-dependent nature of COVID-19 immune responses, highlighting the importance of personalized therapeutic strategies to improve both acute and long-term outcomes.
Collapse
|
11
|
Becker A, Röhrich K, Leske A, Heinicke U, Knape T, Kannt A, Trümper V, Sohn K, Wilken-Schmitz A, Neb H, Adam EH, Laux V, Parnham MJ, Onasch V, Weigert A, Zacharowski K, von Knethen A. Identification of CRTH2 as a New PPARγ-Target Gene in T Cells Suggested CRTH2 Dependent Conversion of T h2 Cells as Therapeutic Concept in COVID-19 Infection. Immunotargets Ther 2024; 13:595-616. [PMID: 39507298 PMCID: PMC11539866 DOI: 10.2147/itt.s463601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background COVID-19 is a serious viral infection, which is often associated with a lethal outcome. Therefore, understanding mechanisms, which affect the immune response during SARS-CoV2 infection, are important. Methods To address this, we determined the number of T cells in peripheral blood derived from intensive care COVID-19 patients. Based on our previous studies, evaluating PPARγ-dependent T cell apoptosis in sepsis patients, we monitored PPARγ expression. We performed a next generation sequencing approach to identify putative PPARγ-target genes in Jurkat T cells and used a PPARγ transactivation assay in HEK293T cells. Finally, we translated these data to primary T cells derived from healthy donors. Results A significantly reduced count of total CD3+ T lymphocytes and the CD4+ and CD8+ subpopulations was observed. Also, the numbers of anti-inflammatory, resolutive Th2 cells and FoxP3-positive regulatory T cells (Treg) were decreased. We observed an augmented PPARγ expression in CD4+ T cells of intensive care COVID-19 patients. Adapted from a next generation sequencing approach in Jurkat T cells, we found the chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) as one gene regulated by PPARγ in T cells. This Th2 marker is a receptor for prostaglandin D and its metabolic degradation product 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), an established endogenous PPARγ agonist. In line, we observed an increased PPARγ transactivation in response to 15d-PGJ2 treatment in HEK293T cells overexpressing CRTH2. Translating these data to primary T cells, we found that Th2 differentiation was associated with an increased expression of CRTH2. Interestingly, these CRTH2+ T cells were prone to apoptosis. Conclusion These mechanistic data suggest an involvement of PPARγ in Th2 differentiation and T cell depletion in COVID-19 patients.
Collapse
Affiliation(s)
- Antonia Becker
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Karoline Röhrich
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Amanda Leske
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Ulrike Heinicke
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, 60590, Germany
| | - Verena Trümper
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Sohn
- Innovation Field in-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, 70569, Germany
| | - Annett Wilken-Schmitz
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Holger Neb
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Elisabeth H Adam
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Valerie Onasch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Zacharowski
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Andreas von Knethen
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| |
Collapse
|
12
|
Alnouri MW, Roquid KA, Bonnavion R, Cho H, Heering J, Kwon J, Jäger Y, Wang S, Günther S, Wettschureck N, Geisslinger G, Gurke R, Müller CE, Proschak E, Offermanns S. SPMs exert anti-inflammatory and pro-resolving effects through positive allosteric modulation of the prostaglandin EP4 receptor. Proc Natl Acad Sci U S A 2024; 121:e2407130121. [PMID: 39365815 PMCID: PMC11474063 DOI: 10.1073/pnas.2407130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024] Open
Abstract
Inflammation is a protective response to pathogens and injury. To be effective it needs to be resolved by endogenous mechanisms in order to avoid prolonged and excessive inflammation, which can become chronic. Specialized pro-resolving mediators (SPMs) are a group of lipids derived from omega-3 fatty acids, which can induce the resolution of inflammation. How SPMs exert their anti-inflammatory and pro-resolving effects is, however, not clear. Here, we show that SPMs such as protectins, maresins, and D-series resolvins function as biased positive allosteric modulators (PAM) of the prostaglandin E2 (PGE2) receptor EP4 through an intracellular binding site. They increase PGE2-induced Gs-mediated formation of cAMP and thereby promote anti-inflammatory signaling of EP4. In addition, SPMs endow the endogenous EP4 receptor on macrophages with the ability to couple to Gi-type G-proteins, which converts the EP4 receptor on macrophages from an anti-phagocytotic receptor to one increasing phagocytosis, a central mechanism of the pro-resolving activity of synthetic SPMs. In the absence of the EP4 receptor, SPMs lose their anti-inflammatory and pro-resolving activity in vitro and in vivo. Our findings reveal an unusual mechanism of allosteric receptor modulation by lipids and provide a mechanism by which synthetic SPMs exert pro-resolving and anti-inflammatory effects, which may facilitate approaches to treat inflammation.
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Rémy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Haaglim Cho
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Yannick Jäger
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi’an710061, China
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Deep Sequencing Platform, Bad Nauheim61231, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn53121, Germany
- PharmaCenter Bonn, University of Bonn, Bonn53121, Germany
| | - Ewgenij Proschak
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| |
Collapse
|
13
|
Hawryłkowicz V, Stasiewicz B, Maciejewska D, Sołek-Pastuszka J, Komorniak N, Skonieczna-Żydecka K, Martynova-Van Kley A, Stachowska E. The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status. Int J Mol Sci 2024; 25:7899. [PMID: 39063142 PMCID: PMC11276903 DOI: 10.3390/ijms25147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | | | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| |
Collapse
|
14
|
Bilson J, Scorletti E, Swann JR, Byrne CD. Bile Acids as Emerging Players at the Intersection of Steatotic Liver Disease and Cardiovascular Diseases. Biomolecules 2024; 14:841. [PMID: 39062555 PMCID: PMC11275019 DOI: 10.3390/biom14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
- Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Christopher D. Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
15
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Tang SY, Lordan R, Meng H, Auerbach BJ, Hennessy EJ, Sengupta A, Das US, Joshi R, Marcos-Contreras OA, McConnell R, Grant GR, Ricciotti E, Muzykantov VR, Grosser T, Weiljie AM, FitzGerald GA. Differential Impact In Vivo of Pf4-ΔCre-Mediated and Gp1ba-ΔCre-Mediated Depletion of Cyclooxygenase-1 in Platelets in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1393-1406. [PMID: 38660804 PMCID: PMC11138953 DOI: 10.1161/atvbaha.123.320295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1β (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.
Collapse
Affiliation(s)
- Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Benjamin J. Auerbach
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Elizabeth J. Hennessy
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Ujjalkumar S. Das
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | | | - Ryan McConnell
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, University of Pennsylvania
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Medicine Perelman School of Medicine, University of Pennsylvania
| | - Aalim M. Weiljie
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, University of Pennsylvania
| |
Collapse
|
17
|
Karpurapu M, Nie Y, Chung S, Yan J, Dougherty P, Pannu S, Wisler J, Harkless R, Parinandi N, Berdyshev E, Pei D, Christman JW. The calcineurin-NFATc pathway modulates the lipid mediators in BAL fluid extracellular vesicles, thereby regulating microvascular endothelial cell barrier function. Front Physiol 2024; 15:1378565. [PMID: 38812883 PMCID: PMC11133699 DOI: 10.3389/fphys.2024.1378565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Extracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice. Although pro-inflammatory lipid mediators are known contributors to lung inflammation and injury, it remains unclear whether the calcineurin-NFATc pathway regulates extracellular vesicle (EV) lipid content and if this content contributes to ALI pathogenesis. In this study, EVs from mouse bronchoalveolar lavage fluid (BALF) were analyzed for their lipid mediators by liquid chromatography in conjunction with mass spectrometry (LC-MS/MS). Our data demonstrate that EVs from LPS-treated mice contained significantly higher levels of arachidonic acid (AA) metabolites, which were found in low levels by prior treatment with CNI103. The catalytic activity of lung tissue cytoplasmic phospholipase A2 (cPLA2) increased during ALI, correlating with an increased amount of arachidonic acid (AA) in the EVs. Furthermore, ALI is associated with increased expression of cPLA2, cyclooxygenase 2 (COX2), and lipoxygenases (5-LOX, 12-LOX, and 15-LOX) in lung tissue, and pretreatment with CNI103 inhibited the catalytic activity of cPLA2 and the expression of cPLA2, COX, and LOX transcripts. Furthermore, co-culture of mouse pulmonary microvascular endothelial cell (PMVEC) monolayer and NFAT-luciferase reporter macrophages with BALF EVs from LPS-treated mice increased the pulmonary microvascular endothelial cell (PMVEC) monolayer barrier permeability and luciferase activity in macrophages. However, EVs from CNI103-treated mice had no negative impact on PMVEC monolayer barrier integrity. In summary, BALF EVs from LPS-treated mice carry biologically active NFATc-dependent, AA-derived lipids that play a role in regulating PMVEC monolayer barrier function.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jiasheng Yan
- Department of Pharmacology, Ohio State University, Columbus, OH, United States
| | - Patrick Dougherty
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jon Wisler
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Ryan Harkless
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Narasimham Parinandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Evgeny Berdyshev
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
18
|
Yan F, Zhang L, Duan L, Li L, Liu X, Liu Y, Qiao T, Zeng Y, Fang H, Wu D, Wang X. Roles of glutamic pyruvate transaminase 2 in reprogramming of airway epithelial lipidomic and metabolomic profiles after smoking. Clin Transl Med 2024; 14:e1679. [PMID: 38706045 PMCID: PMC11070440 DOI: 10.1002/ctm2.1679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Linlin Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Lian Duan
- Department of Pediatric SurgeryFaculty of Pediatricsthe Seventh Medical Center of PLA General HospitalBeijingChina
| | - Liyang Li
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tiankui Qiao
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Yiming Zeng
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Hao Fang
- Department of AnesthesiologyShanghai Geriatic Medical CenterShanghaiChina
- Department of AnesthesiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Constantin L, Ungurianu A, Streinu-Cercel A, Săndulescu O, Aramă V, Margină D, Țârcomnicu I. Investigation of Serum Endocan Levels in SARS-CoV-2 Patients. Int J Mol Sci 2024; 25:3042. [PMID: 38474287 PMCID: PMC10932032 DOI: 10.3390/ijms25053042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Endocan is an endothelial-cell-specific proteoglycan (ESM-1) and has emerged as an endothelial dysfunction and inflammatory marker in recent years. Endocan can be used as a marker of inflammatory endothelial dysfunction in endothelium-dependent disease: cardiovascular disease, sepsis, lung and kidney disease and malignancies. Recent data suggest that endothelial dysfunction is a key mechanism in COVID-19 pathogenesis. Endotheliitis and thrombo-inflammation are associated with severe forms of SARS-CoV-2 infection, and endocan is currently under investigation as a potential diagnostic and prognostic marker. The aim of this study was to determine serum endocan levels in patients with COVID-19 to evaluate the correlation between endocan levels and clinical disease diagnosis and prognosis. This study enrolled 56 patients, divided into three groups depending on disease severity: mild (15), moderate (25) and severe (16). The biochemical, demographic, clinical and imagistic data were collected and evaluated in correlation with the endocan levels. Serum endocan levels were significantly higher in the COVID-19 patients compared to the control group; also, endocan concentration correlated with vaccination status. The results revealed significantly elevated serum endocan levels in COVID-19 patients compared to the control group, with a correlation observed between endocan concentration and vaccination status. These findings suggest that endocan may serve as a novel biomarker for detecting inflammation and endothelial dysfunction risk in COVID-19 patients. There was no significant relationship between serum endocan levels and disease severity or the presence of cardiovascular diseases. Endocan can be considered a novel biomarker for the detection of inflammation and endothelial dysfunction risk in COVID-19 patients.
Collapse
Affiliation(s)
- Laura Constantin
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (L.C.); (A.S.-C.); (V.A.); (I.Ț.)
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Anca Streinu-Cercel
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (L.C.); (A.S.-C.); (V.A.); (I.Ț.)
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Oana Săndulescu
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (L.C.); (A.S.-C.); (V.A.); (I.Ț.)
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Victoria Aramă
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (L.C.); (A.S.-C.); (V.A.); (I.Ț.)
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Isabela Țârcomnicu
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania; (L.C.); (A.S.-C.); (V.A.); (I.Ț.)
| |
Collapse
|