1
|
Hu X, Tediashvili G, Gravina A, Stoddard J, McGill TJ, Connolly AJ, Deuse T, Schrepfer S. Inhibition of polymorphonuclear cells averts cytotoxicity against hypoimmune cells in xenotransplantation. Nat Commun 2025; 16:3706. [PMID: 40251154 PMCID: PMC12008267 DOI: 10.1038/s41467-025-58774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Allogeneic, immune-evasive hypoimmune (HIP) cell therapeutics that are HLA-depleted and overexpress CD47 create the opportunity to treat immunocompetent patients with cancer, degenerative, or autoimmune diseases. However, HIP cell therapy has not yet been established for xenotransplantation. Here we engineer, for human-to-non-human primate studies, human HIP* endothelial cells (EC) that are HLA-depleted and express macaque CD47 to allow compatibility with the macaque SIRPα immune checkpoint. Although no T cell, NK cell, or macrophage responses and no antibody-dependent cytotoxicity is observed in cynomolgus recipients, we reveal that macaque polymorphonuclear cells (PMN) show strong xenogeneic cytotoxicity against HIP* ECs. Inhibition of PMN killing using a multi-drug regimen leads to improved xenogeneic human HIP* EC survival in cynomolgus monkeys. Similarly, human PMNs show xenoreactivity against pig ECs, which has implications for clinical xenotransplantation. Accordingly, our engineered pig HIP* ECs that are SLA-depleted, overexpress human CD47, and additionally overexpress the PMN-inhibitory ligands CD99 and CD200, are protected against all human adaptive and innate cytotoxicity, including PMNs. In summary, specific targeting of PMN-mediated killing of the transplanted cells might improve outcomes for clinical pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
- Sana Biotechnology Inc., South San Francisco, CA, USA
| | - Grigol Tediashvili
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Alessia Gravina
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Stoddard
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Trevor J McGill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Andrew J Connolly
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA
| | - Sonja Schrepfer
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California San Francisco, San Francisco, CA, USA.
- Sana Biotechnology Inc., South San Francisco, CA, USA.
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Presence of Natural Killer B Cells in Simian Immunodeficiency Virus-Infected Colon That Have Properties and Functions Similar to Those of Natural Killer Cells and B Cells but Are a Distinct Cell Population. J Virol 2022; 96:e0023522. [PMID: 35311549 PMCID: PMC9006943 DOI: 10.1128/jvi.00235-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is low-level but significant mucosal inflammation in the gastrointestinal tract secondary to human immunodeficiency virus (HIV) infection that has long-term consequences for the infected host. This inflammation most likely originates from the immune response that appears as a consequence of HIV. Here, we show in an animal model of HIV that the chronically SIV-infected gut contains cytotoxic natural killer B cells that produce inflammatory cytokines and proliferate during infection.
Collapse
|
3
|
Deuse T, Hu X, Agbor-Enoh S, Jang MK, Alawi M, Saygi C, Gravina A, Tediashvili G, Nguyen VQ, Liu Y, Valantine H, Lanier LL, Schrepfer S. The SIRPα-CD47 immune checkpoint in NK cells. J Exp Med 2021; 218:e20200839. [PMID: 33416832 PMCID: PMC7802363 DOI: 10.1084/jem.20200839] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/01/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Here we report on the existence and functionality of the immune checkpoint signal regulatory protein α (SIRPα) in NK cells and describe how it can be modulated for cell therapy. NK cell SIRPα is up-regulated upon IL-2 stimulation, interacts with target cell CD47 in a threshold-dependent manner, and counters other stimulatory signals, including IL-2, CD16, or NKG2D. Elevated expression of CD47 protected K562 tumor cells and mouse and human MHC class I-deficient target cells against SIRPα+ primary NK cells, but not against SIRPα- NKL or NK92 cells. SIRPα deficiency or antibody blockade increased the killing capacity of NK cells. Overexpression of rhesus monkey CD47 in human MHC-deficient cells prevented cytotoxicity by rhesus NK cells in a xenogeneic setting. The SIRPα-CD47 axis was found to be highly species specific. Together, the results demonstrate that disruption of the SIRPα-CD47 immune checkpoint may augment NK cell antitumor responses and that elevated expression of CD47 may prevent NK cell-mediated killing of allogeneic and xenogeneic tissues.
Collapse
Affiliation(s)
- Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology Lab, University of California, San Francisco, San Francisco, CA
| | - Xiaomeng Hu
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology Lab, University of California, San Francisco, San Francisco, CA
- Sana Biotechnology, Inc., South San Francisco, CA
| | - Sean Agbor-Enoh
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
- Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Moon K. Jang
- Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessia Gravina
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology Lab, University of California, San Francisco, San Francisco, CA
| | - Grigol Tediashvili
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology Lab, University of California, San Francisco, San Francisco, CA
| | - Vinh Q. Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Yuan Liu
- Department of Biology, Georgia State University, Atlanta, GA
| | - Hannah Valantine
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
- Laboratory of Transplant Genomics, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Sonja Schrepfer
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology Lab, University of California, San Francisco, San Francisco, CA
- Sana Biotechnology, Inc., South San Francisco, CA
| |
Collapse
|
4
|
Pomplun NL, Vosler L, Weisgrau KL, Furlott J, Weiler AM, Abdelaal HM, Evans DT, Watkins DI, Matano T, Skinner PJ, Friedrich TC, Rakasz EG. Immunophenotyping of Rhesus CMV-Specific CD8 T-Cell Populations. Cytometry A 2020; 99:278-288. [PMID: 32713108 PMCID: PMC7855655 DOI: 10.1002/cyto.a.24197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nicholas L Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Logan Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David I Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Long-Term Protection of Rhesus Macaques from Zika Virus Reinfection. J Virol 2020; 94:JVI.01881-19. [PMID: 31801867 PMCID: PMC7022347 DOI: 10.1128/jvi.01881-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
By the end of the 2016 Zika virus (ZIKV) outbreak, it is estimated that there were up to 100 million infections in the Americas. In approximately one in seven infants born to mothers infected during pregnancy, ZIKV has been linked to microcephaly, developmental delays, or other congenital disorders collectively known as congenital Zika syndrome, as well as Guillain-Barré syndrome, in ZIKV-infected adults. It is a global health priority to develop a vaccine against ZIKV that elicits long-lasting immunity; however, the durability of immunity to ZIKV is unknown. Previous studies in mice and nonhuman primates have been crucial in vaccine development but have not defined the duration of immunity generated by ZIKV infection. In this study, we rechallenged five rhesus macaques with ZIKV 22 to 28 months after a primary ZIKV infection. We show that primary ZIKV infection generates high titers of neutralizing antibodies that protect from detectable plasma viremia following rechallenge and persist for at least 22 to 28 months. While additional longitudinal studies are necessary with longer time frames, this study establishes a new experimentally defined minimal length of protective ZIKV immunity.IMPORTANCE ZIKV emerged as a vector-borne pathogen capable of causing illness in infected adults and congenital birth defects in infants born to mothers infected during pregnancy. Despite the decrease in ZIKV cases since the 2015-2016 epidemic, questions concerning the prevalence and longevity of protective immunity have left vulnerable communities fearful that they may become the center of next ZIKV outbreak. Although preexisting herd immunity in regions of past outbreaks may dampen the potential for future outbreaks to occur, we currently do not know the longevity of protective immunity to ZIKV after a person becomes infected. Here, we establish a new experimentally defined minimal length of protective ZIKV immunity. We show that five rhesus macaques initially infected with ZIKV 22 to 28 months prior to rechallenge elicit a durable immune response that protected from detectable plasma viremia. This study establishes a new minimal length of protective immunity.
Collapse
|
6
|
Magden ER, Nehete BP, Chitta S, Williams LE, Simmons JH, Abee CR, Nehete PN. Comparative Analysis of Cellular Immune Responses in Conventional and SPF Olive Baboons ( Papio anubis). Comp Med 2020; 70:160-169. [PMID: 32014083 DOI: 10.30802/aalas-cm-19-000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Olive baboons (P. anubis) have provided a useful model of human diseases and conditions, including cardiac, respiratory, and infectious diseases; diabetes; and involving genetics, immunology, aging, and xenotransplantation. The development of a immunologically defined SPF baboons has advanced research further, especially for studies involving the immune system and immunosuppression. In this study, we compare normal immunologic changes of PBMC subsets, and their function in age-matched conventional and SPF baboons. Our results revealed that both groups have comparable numbers of different lymphocyte subsets, but phenotypic differences in central and effector memory T-cell subsets are more pronounced in CD4+ T cells. Despite equal proportions of CD3+ T cells among the conventional and SPF baboons, PBMC from the conventional group showed greater proliferative responses to phytohemagglutinin and pokeweed mitogen and higher numbers of IFNγ-producing cells after stimulation with concanavalin A or pokeweed mitogen, whereas plasma levels of the inflammatory cytokine TNFα were significantly higher in SPF baboons. Exposure of PBMC from conventional baboons to various Toll-like (TLR) ligands, including TLR3, TLR4, and TLR8, yielded increased numbers of IFNγ producing cells, whereas PBMC from SPF baboons stimulated with TLR5 or TLR6 ligand had more IFNγ-producing cells. These findings suggest that although lymphocyte subsets share many phenotypic and functional similarities in conventional and SPF baboons, specific differences in the immune function of lymphocytes could differentially influence the quality and quantity of their innate and adaptive immune responses. These differences should be considered in interpreting experimental outcomes, specifically in studies measuring immunologic endpoints.
Collapse
Affiliation(s)
- Elizabeth R Magden
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Bharti P Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas;,
| | - Sriram Chitta
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Lawrence E Williams
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Joe H Simmons
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Christian R Abee
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Pramod N Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
7
|
Shelton KA, Nehete BP, Chitta S, Williams LE, Schapiro SJ, Simmons J, Abee CR, Nehete PN. Effects of Transportation and Relocation on Immunologic Measures in Cynomolgus Macaques ( Macaca fascicularis). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:774-782. [PMID: 31604484 PMCID: PMC6926399 DOI: 10.30802/aalas-jaalas-19-000007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
NHP are a small, but critical, portion of the animals studied in research laboratories. Many NHP are imported or raised at one facility and subsequently moved to another facility for research purposes. To improve our understanding of the effects of transportation and relocation on the NHP immune system, to minimize potential confounds associated with relocation, and to maximize study validity, we examined the phenotype and function of PBMC in cynomolgus macaques (Macaca fascicularis) that were transported approximately 200 miles by road from one facility to another. We evaluated the phenotype of lymphocyte subsets through flow cytometry, mitogen-specific immune responses of PBMC in vitro, and plasma levels of circulating cytokines before transportation, at approximately 24 h after arrival (day 2), and after 30 d of acclimation. Analyses of blood samples revealed that the CD3+ and CD4+ T-cell counts increased significantly, whereas NK+, NKT, and CD14+ CD16+ nonclassical monocyte subsets were decreased significantly on day 2 after relocation compared with baseline. We also noted significantly increased immune cell function as indicated by mitogen-specific proliferative responses and by IFNγ levels on day 2 compared with baseline. After 30 d of acclimation, peripheral blood CD4+ T-cells and monocyte counts were higher than baseline, whereas B-cell numbers were lower. The mitogen-induced responses to LPS and IFNγ production after stimulation with pokeweed mitogen or phytohemagglutinin remained significantly different from baseline. In conclusion, the effects of transportation and relocation on immune parameters in cynomolgus monkeys are significant and do not fully return to baseline values even after 30 d of acclimation.
Collapse
Affiliation(s)
- Kathryn A Shelton
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Bharti P Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas;,
| | - Sriram Chitta
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Lawrence E Williams
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| | - Steven J Schapiro
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joe Simmons
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Christian R Abee
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Pramod N Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| |
Collapse
|
8
|
Ram DR, Manickam C, Hueber B, Itell HL, Permar SR, Varner V, Reeves RK. Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques. PLoS Pathog 2018; 14:e1007104. [PMID: 29851983 PMCID: PMC5997355 DOI: 10.1371/journal.ppat.1007104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/12/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Natural killer (NK) cells classically typify the nonspecific effector arm of the innate immune system, but have recently been shown to possess memory-like properties against multiple viral infections, most notably CMV. Expression of the activating receptor NKG2C is elevated on human NK cells in response to infection with CMV as well as HIV, and may delineate cells with memory and memory-like functions. A better understanding of how NKG2C+ NK cells specifically respond to these pathogens could be significantly advanced using nonhuman primate (NHP) models but, to date, it has not been possible to distinguish NKG2C from its inhibitory counterpart, NKG2A, in NHP because of unfaithful antibody cross-reactivity. Using novel RNA-based flow cytometry, we identify for the first time true memory NKG2C+ NK cells in NHP by gene expression (KLRC2), and show that these cells have elevated frequencies and diversify their functional repertoire specifically in response to rhCMV and SIV infections.
Collapse
Affiliation(s)
- Daniel R. Ram
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Cordelia Manickam
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Brady Hueber
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Hannah L. Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Valerie Varner
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States
- * E-mail:
| |
Collapse
|
9
|
ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 2018; 92:JVI.01748-17. [PMID: 29118125 DOI: 10.1128/jvi.01748-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and β chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.
Collapse
|
10
|
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol 2017; 8:892. [PMID: 28791027 PMCID: PMC5522883 DOI: 10.3389/fimmu.2017.00892] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past years, the phenotypic and functional boundaries distinguishing the main cell subsets of the immune system have become increasingly blurred. In this respect, CD56 (also known as neural cell adhesion molecule) is a very good example. CD56 is the archetypal phenotypic marker of natural killer cells but can actually be expressed by many more immune cells, including alpha beta T cells, gamma delta T cells, dendritic cells, and monocytes. Common to all these CD56-expressing cell types are strong immunostimulatory effector functions, including T helper 1 cytokine production and an efficient cytotoxic capacity. Interestingly, both numerical and functional deficiencies and phenotypic alterations of the CD56+ immune cell fraction have been reported in patients with various infectious, autoimmune, or malignant diseases. In this review, we will discuss our current knowledge on the expression and function of CD56 in the hematopoietic system, both in health and disease.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Anna Capsomidis
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA, Wolfe B, Salamat MS, Teixeira LBC, Wiepz GJ, Thoong TH, Aliota MT, Weiler AM, Barry GL, Weisgrau KL, Vosler LJ, Mohns MS, Breitbach ME, Stewart LM, Rasheed MN, Newman CM, Graham ME, Wieben OE, Turski PA, Johnson KM, Post J, Hayes JM, Schultz-Darken N, Schotzko ML, Eudailey JA, Permar SR, Rakasz EG, Mohr EL, Capuano S, Tarantal AF, Osorio JE, O’Connor SL, Friedrich TC, O’Connor DH, Golos TG. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathog 2017; 13:e1006378. [PMID: 28542585 PMCID: PMC5444831 DOI: 10.1371/journal.ppat.1006378] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.
Collapse
Affiliation(s)
- Sydney M. Nguyen
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sarah Kohn
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bryce Wolfe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - M. Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Leandro B. C. Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory J. Wiepz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Troy H. Thoong
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mustafa N. Rasheed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael E. Graham
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Oliver E. Wieben
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patrick A. Turski
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin M. Johnson
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Post
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Josh A. Eudailey
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California-Davis, California National Primate Research Center, Davis, California, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD, Breitbach ME, Buechler CR, Rasheed MN, Mohns MS, Weiler AM, Barry GL, Weisgrau KL, Eudailey JA, Rakasz EG, Vosler LJ, Post J, Capuano S, Golos TG, Permar SR, Osorio JE, Friedrich TC, O’Connor SL, O’Connor DH. Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Negl Trop Dis 2016; 10:e0005168. [PMID: 27911897 PMCID: PMC5135040 DOI: 10.1371/journal.pntd.0005168] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. METHODOLOGY/PRINCIPAL FINDINGS Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. CONCLUSIONS/SIGNIFICANCE An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Dane D. Gellerup
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor R. Buechler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mustafa N. Rasheed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Josh A. Eudailey
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Post
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
13
|
Tárnok A. OMIPs start school. Cytometry A 2016; 89:795-6. [PMID: 27657547 DOI: 10.1002/cyto.a.22976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Attila Tárnok
- Saxonian Incubator for Clinical Translation (SIKT), University Leipzig, Leipzig, Germany. .,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
| |
Collapse
|
14
|
Weisgrau KL, Ries M, Pomplun N, Evans DT, Rakasz EG. OMIP-035: Functional analysis of natural killer cell subsets in macaques. Cytometry A 2016; 89:799-802. [PMID: 27532346 DOI: 10.1002/cyto.a.22932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
This panel was developed to measure the functional capability of natural killer (NK) cell subsets in rhesus macaques (Macaca mulatta). It includes markers to determine the frequency of cytokine secreting and cytotoxic NK cell subpopulations in peripheral blood mononuclear cell (PBMC) samples stimulated in vitro with human 721.221 cells. NK cell subsets were defined by the expression of killer cell immunoglobulin-like receptors (KIRs) Mamu-KIR3DL01 and Mamu-KIR3DL05, and differentiation antigens CD16 and CD56. The panel can be used to assess the functional capability of NK cells in a range of normal and pathologic conditions of captive bred rhesus macaques of Indian origin. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.
| |
Collapse
|
15
|
Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, Weisgrau KL, Mohns MS, Breitbach ME, Rasheed MN, Newman CM, Gellerup DD, Moncla LH, Post J, Schultz-Darken N, Schotzko ML, Hayes JM, Eudailey JA, Moody MA, Permar SR, O'Connor SL, Rakasz EG, Simmons HA, Capuano S, Golos TG, Osorio JE, Friedrich TC, O'Connor DH. A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 2016; 7:12204. [PMID: 27352279 PMCID: PMC4931337 DOI: 10.1038/ncomms12204] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023] Open
Abstract
Infection with Asian-lineage Zika virus (ZIKV) has been associated with Guillain-Barré syndrome and fetal abnormalities, but the underlying mechanisms remain poorly understood. Animal models of infection are thus urgently needed. Here we show that rhesus macaques are susceptible to infection by an Asian-lineage ZIKV closely related to strains currently circulating in the Americas. Following subcutaneous inoculation, ZIKV RNA is detected in plasma 1 day post infection (d.p.i.) in all animals (N=8, including 2 pregnant animals), and is also present in saliva, urine and cerebrospinal fluid. Non-pregnant and pregnant animals remain viremic for 21 days and for up to at least 57 days, respectively. Neutralizing antibodies are detected by 21 d.p.i. Rechallenge 10 weeks after the initial challenge results in no detectable virus replication, indicating protective immunity against homologous strains. Therefore, Asian-lineage ZIKV infection of rhesus macaques provides a relevant animal model for studying pathogenesis and evaluating potential interventions against human infection, including during pregnancy.
Collapse
Affiliation(s)
- Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Gabrielle Lehrer-Brey
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Mustafa N. Rasheed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Dane D. Gellerup
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Louise H. Moncla
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jennifer Post
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Josh A. Eudailey
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - M. Anthony Moody
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sallie R. Permar
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Comparative Biosciences and Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| |
Collapse
|