1
|
Eid SY, Koshak MF, Elzubier ME, Refaat B, Almaimani RA, Althubiti M, Nour Eldin EEM, Alahmadi NH, Fatani SH, Aslam A, Khidir EBA, Abdellatif AAH, El-Readi MZ. Protective effects of oral pharmaceutical solution of fucoxanthin against paracetamol-induced liver injury: modulation of drug-metabolizing enzymes, oxidative stress, and apoptotic pathways in rats. Drug Dev Ind Pharm 2025; 51:332-343. [PMID: 39992072 DOI: 10.1080/03639045.2025.2469808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Paracetamol (PAC) overdose causes acute liver injury through oxidative stress, inflammation, and apoptosis. While N-acetyl cysteine (NAC) is the standard treatment, fucoxanthin (FUC), a carotenoid from brown seaweed, has shown hepatoprotective effects in animal studies, but its role in PAC toxicity is unclear. OBJECTIVE Compared to NAC, this study assessed the hepatoprotective potential of oral FUC solution toward PAC-induced injury to the rat's liver. METHOD FUC was formulated as a pharmaceutical solution and characterized via UV-VIS spectroscopy. Six groups of male Wistar rats each contain five animal which are in total 30 rats: negative control (NC), positive control (PC, 2 g/kg PAC), NAC (1200 mg/kg), and three oral FUC doses (100, 200, and 500 mg/kg) for seven days, with PAC administered on day-8. Liver tissues were analyzed for oxidative stress, gene expression, and histology. RESULTS FUC solution was clear with absorbance at 433 nm. PAC caused 30% mortality (p < .01 vs. others). NAC reduced ALT (56%), AST (78%), ALP (28%), and increased TP by 25% (p < .001 vs. PC). FUC at 500 mg/kg (F500) was superior, reducing ALT (82%), AST (93%), ALP (40%), and increasing TP (35%) (p < .001 vs. NAC). PAC increased oxidative stress, CYP2E1/CYP3A2 expression, apoptosis markers, and suppressed Nrf2/AMPK/AKT1. F500 improved antioxidants, reduced oxidative stress, and apoptosis, enhanced the Nrf2/AMPK pathway, and downregulated CYP2E1/CYP3A2 (p < .01). CONCLUSION FUC, particularly at 500 mg/kg, offers significant hepatoprotection against PAC-induced liver injury by modulating drug metabolizing enzymes and enhancing antioxidant defenses, warranting further research.
Collapse
Affiliation(s)
- Safaa Y Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maimonah F Koshak
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Laboratory of Clinical Chemistry, King Salman Armed Forces Hospital, Tabuk, Saudi Arabia
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Nawaf H Alahmadi
- Laboratory of Clinical Chemistry, King Salman Armed Forces Hospital, Tabuk, Saudi Arabia
| | - Sameer H Fatani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elshiekh Babiker Adam Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
2
|
Frazzini S, Rossi L. Anticancer Properties of Macroalgae: A Comprehensive Review. Mar Drugs 2025; 23:70. [PMID: 39997194 PMCID: PMC11857751 DOI: 10.3390/md23020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
In recent years, the exploration of bioactive molecules derived from natural sources has gained interest in several application fields. Among these, macroalgae have garnered significant attention due to their functional properties, which make them interesting in therapeutic applications, including cancer treatment. Cancer constitutes a significant global health burden, and the side effects of existing treatment modalities underscore the necessity for the exploration of novel therapeutic models that, in line with the goal of reducing drug treatments, take advantage of natural compounds. This review explores the anticancer properties of macroalgae, focusing on their bioactive compounds and mechanisms of action. The key findings suggest that macroalgae possess a rich array of bioactive compounds, including polysaccharides (e.g., fucoidans and alginates), polyphenols (e.g., phlorotannins), and terpenoids, which exhibit diverse anticancer activities, such as the inhibition of cell proliferation, angiogenesis, induction of apoptosis, and modulation of the immune system. This review provides an overview of the current understanding of macroalgae's anticancer potential, highlighting the most promising compounds and their mechanisms of action. While preclinical studies have shown promising results, further research is necessary to translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, via dell’Università 6, 26900 Lodi, Italy;
| | | |
Collapse
|
3
|
Hsiao YF, Huang SC, Cheng SB, Hsu CC, Huang YC. Glutathione and Selenium Supplementation Attenuates Liver Injury in Diethylnitrosamine-Induced Hepatocarcinogenic Mice by Enhancing Glutathione-Related Antioxidant Capacities. Int J Mol Sci 2024; 25:11339. [PMID: 39518894 PMCID: PMC11546938 DOI: 10.3390/ijms252111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Excess oxidative stress and inadequate antioxidant capacities are critical features in the development of hepatocellular carcinoma. This study aimed to determine whether supplementation with glutathione (GSH) and/or selenium (Se), as antioxidants, attenuates diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. C57BL/6J male mice were randomly assigned to control, DEN, DEN + GSH, DEN + Se, and DEN + GSH + Se groups for 20 weeks. Daily supplementation with GSH and/or Se commenced in the first experimental week and continued throughout the study. DEN was administered in weeks 2-9 and 16-19 of the experimental period. DEN administration induced significant pathological alterations of hepatic foci, evidenced by elevated levels of liver function, accompanied by high malondialdehyde (MDA) levels; low GSH levels; and glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Supplementation with GSH and Se significantly ameliorated liver pathological changes, reducing liver function and MDA levels while increasing GSH levels and GPx, GR, and GST activities. Notably, combined supplementation with GSH and Se more effectively increased the GSH/glutathione disulfide ratio and GPx activity than individual supplementation. Supplementation with GSH and Se attenuated liver injury in DEN-induced hepatocarcinogenic mice by enhancing GSH and its related antioxidant capacities, thereby mitigating oxidative damage.
Collapse
Affiliation(s)
- Yung-Fang Hsiao
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shao-Bin Cheng
- Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-F.H.); (S.-C.H.); (C.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
4
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
5
|
Recent advances in delivery systems of fucoxanthin. Food Chem 2023; 404:134685. [DOI: 10.1016/j.foodchem.2022.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
6
|
A novel mechanistic approach for the anti-fibrotic potential of rupatadine in rat liver via amendment of PAF/NF-ĸB p65/TGF-β1 and hedgehog/HIF-1α/VEGF trajectories. Inflammopharmacology 2023; 31:845-858. [PMID: 36811777 PMCID: PMC10140091 DOI: 10.1007/s10787-023-01147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-β1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-β1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).
Collapse
|
7
|
Rocha DHA, Pinto DCGA, Silva AMS. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar Drugs 2022; 20:md20120789. [PMID: 36547936 PMCID: PMC9783307 DOI: 10.3390/md20120789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.
Collapse
|
8
|
Wu Y, Li Y, Guo W, Liu J, Lao W, Hu P, Lin Y, Chen H. Laminaria japonica Peptides Suppress Liver Cancer by Inducing Apoptosis: Possible Signaling Pathways and Mechanism. Mar Drugs 2022; 20:704. [PMID: 36355026 PMCID: PMC9698768 DOI: 10.3390/md20110704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 01/10/2024] Open
Abstract
The anticancer properties of Laminaria japonica peptides (LJPs) have never been studied. Here, we extracted LJPs from fresh seaweed and explored their anti-liver cancer activity (in vivo and in vitro). LJPs were isolated/purified by HPLC-ESI-MS. HepG2 cell apoptosis and cell cycle were evaluated. MTT assays were used to examine the cytotoxicity of LJPs. Caspase activation of caspases 3 and 9, cleaved caspases 3 and 9, and cleaved PARP was examined by Western blotting. The PI3K/AKT pathway and the phosphorylation states of MAPKs (p38 and JNK) were examined. We found that the LJP-1 peptide had the most antiproliferative activity in H22 cells in vitro. LJP-1 blocked H22 cells in the G0/G1 phase, accompanied by inhibition of cyclin expression. LJP-1 induced apoptosis through caspase activation and regulation of the ASK1/MAPK pathway. Concurrent in vivo studies demonstrated that LJP-1 significantly inhibited tumor growth and induced tumor cell apoptosis/necrosis. In conclusion, LJPs, particularly LJP-1, exert strong inhibitory effects on liver cancer growth in vivo and in vitro. LJP-1 induces HCC cell apoptosis through the caspase-dependent pathway and G0/G1 arrest. LJP-1 induces caspase-dependent apoptosis, in part by inhibiting PI3K, MAPK signaling pathways, and cell cycle proteins. LJP-1 has the potential to be a novel candidate for human liver cancer therapeutics.
Collapse
Affiliation(s)
- Yingzi Wu
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuanhui Li
- National Marketing Center, Sinopharm Group Pharmaceutical Co., Ltd., Guangzhou 510010, China
| | - Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Weiguo Lao
- Department of Biochemistry, Douglass Hanly Moir Pathology, Macquarie Park, NSW 2113, Australia
| | - Penghui Hu
- Department of Oncology, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
9
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Li H, Liu NN, Li JR, Wang MX, Tan JL, Dong B, Lan P, Zhao LM, Peng ZG, Jiang JD. Bicyclol ameliorates advanced liver diseases in murine models via inhibiting the IL-6/STAT3 signaling pathway. Biomed Pharmacother 2022; 150:113083. [PMID: 35658240 DOI: 10.1016/j.biopha.2022.113083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Bicyclol, a synthetic hepatoprotective and anti-inflammatory agent approved in China, was widely used to treat various hepatitis accompanied by elevated serum aminotransferases. However, the pharmacological effects and mechanisms of bicyclol on advanced liver diseases, such as fibrosis/cirrhosis and hepatocellular carcinoma (HCC), remain to be explored. Here, we revealed that bicyclol prevents from formatting severe fibrosis, slows the progression of moderate liver fibrosis, accelerates the regression of moderate liver fibrosis, decreases the malignancy of HCC in rat models induced by diethylnitrosamine (DEN), and also blocks steatohepatitis to HCC in mice induced by western diet plus carbon tetrachloride and DEN. The detailed pharmacological mechanism showed that bicyclol alleviates chronic progressive liver diseases by inhibiting the levels of IL-6 and subsequent phosphorylated STAT3. Conclusion: Bicyclol plays significant protective roles in multiply stages of fibrosis/cirrhosis-HCC and nonalcoholic fatty liver disease-related HCC via inhibiting IL-6/STAT3 signaling pathway. Therefore, bicyclol might be a promising therapeutic strategy for treating advanced liver diseases.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Nan-Nan Liu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Li Tan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
12
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
13
|
Li G, Qi L, Chen H, Tian G. Involvement of NF-κB/PI3K/AKT signaling pathway in the protective effect of prunetin against a diethylnitrosamine induced hepatocellular carcinogenesis in rats. J Biochem Mol Toxicol 2022; 36:e23016. [PMID: 35239232 DOI: 10.1002/jbt.23016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Prunetin (PRU) is an O-methylated flavonoid that is present in various natural plants and a primary significant compound found in isoflavone. Liver cancer creates major carcinogenic death despite recently advanced therapies. Hepatocellular carcinoma (HCC) treatment and prognosis are better in people with secure liver function. In the present study, we evaluated the action of PRU on diethylnitrosamine (DEN) alone HCC in a rat model through inflammation-mediated cell proliferative phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway analysis. Male Wistar rats were divided into four groups of six rats each. Group I, normal rats; Group II, DEN alone; Group III, DEN + PRU, and Group IV, PRU-alone. All groups of rats carried out hepatic cancer development by hypothesis antioxidant, biochemical, cell proliferative, apoptosis, cytokines protein, and gene expression status profiles. In tumor incidence DEN + PRU, 100% delayed the tumor growth disappearance of the lesion, and reversal of normal liver architecture was observed. Liver marker enzymes levels decreased when antioxidant levels (superoxidase dismutase, catalase, glutathione peroxidase, and glutathione reductase) were in Group III. Proinflammatory markers nuclear factor-κB, interleukin (IL)-6, IL-1β, and tumor necrosis factor α, were elevated in the rat's serum in Group III. Cell proliferative markers proliferating cell nuclear antigen and Cyclin-D1 protein expressions were downregulated; in contrast, Bcl-2, Bax, caspase-3, and caspase-9 gene expressions were upregulated and then it followed that protein expression of PI3K/AKT was downregulated in PRU-treated groups. PRU assisted reversal of liver damage, antioxidant enzyme restoration cytokine balance, protein, and gene expression to control levels. Taken together, PRU improves functions of the liver, and as such prevents HCC. PRU can be used together with chemopreventives for HCC.
Collapse
Affiliation(s)
- Guanghua Li
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Qi
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, China
| | - Hui Chen
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, China
| | - Gendong Tian
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, Prieto M, Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Zhang Y, Li X, Li X. Curcumae Ameliorates Diethylnitrosamine-Induced Hepatocellular Carcinoma via Alteration of Oxidative Stress, Inflammation and Gut Microbiota. J Inflamm Res 2021; 14:5551-5566. [PMID: 34737604 PMCID: PMC8558749 DOI: 10.2147/jir.s330499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) increased the risk factor of hepatocellular carcinoma (HCC). NAFLD induces the hepatic-related cancer deaths mostly in middle-aged men. NAFLD enhanced the inflammatory reaction and oxidative stress in the hepatic tissue. Curcumae exhibited the anti-inflammatory and antioxidant effects. In this study, we made an attempt to scrutinize the protective effect of curcumae on obesity-induced HCC via alteration of inflammation, oxidative stress and gut microbiota. METHODS The rats used in this experiment were Wistar rats, 100 mg/kg intraperitoneal injection of diethylnitrosamine (hepatic carcinogen) was used at 2 weeks. After 6 weeks of the experimental study, the rats were randomly divided into high-fat diet (HFD) with or without curcumae-treated group rats and received the treatment for 22 weeks. Hepatic, non-hepatic, cardiac, antioxidant, pro-inflammatory and inflammatory were estimated at the end of the study. The stools of the experimental rats were collected for estimating the gut microbiota. RESULTS Curcumae-treated group rats exposed reduction of the hepatic nodules in hepatic tissue. Curcumae significantly (P<0.001) diminished the level of hepatic parameters and antioxidant parameters in the serum. Curcumae significantly (P<0.001) suppressed the pro-inflammatory cytokines level, viz. interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-7 (IL-7) and augmented the level of interleukin-10 (IL-10) in the serum and hepatic tissue. Curcumae significantly (P<0.001) suppressed inflammatory mediators including cyclooxygenase (COX-2), prostaglandin E2 (PGE2) and nuclear factor kappa B (NF-κB) in the serum and hepatic tissue. Furthermore, curcumae increased the gut microbial diversity and richness and decreased the relative abundance of genus Mucispirillum and Clostridium, respectively. CONCLUSION Curcumae prevents HFD-induced inflammation during the hepatic carcinoma by modulating the oxidative stress, inflammatory reaction and gut microbiota.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Laboratory Medicine, The First People’s Hospital of Lianyungang City, Lianyungang City, Jiangsu, 222002, People’s Republic of China
| | - Xuelian Li
- Department of Laboratory Medicine, The Fourth People’s Hospital of Lianyungang City, Lianyungang City, Jiangsu, 222002, People’s Republic of China
| | - Xinghua Li
- Department of Blood Transfusion, The First People’s Hospital of Lianyungang City, Lianyungang City, Jiangsu, 222002, People’s Republic of China
| |
Collapse
|
16
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
17
|
Terasaki M, Inoue T, Murase W, Kubota A, Kojima H, Kojoma M, Ohta T, Maeda H, Miyashita K, Mutoh M, Takahashi M. A Fucoxanthinol Induces Apoptosis in a Pancreatic Intraepithelial Neoplasia Cell. Cancer Genomics Proteomics 2021; 18:133-146. [PMID: 33608310 PMCID: PMC7943208 DOI: 10.21873/cgp.20248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Fucoxanthinol (FxOH), a predominant metabolite from fucoxanthin (Fx), can exert potential anti-cancer effects in various cancers. However, limited data are available on the effect of FxOH or Fx on pancreatic cancer. The present study investigated the effect of FxOH on a cell line derived from pancreatic cancer tissue developed in Ptf1aCre/+; LSL-k-rasG12D/+ mice. MATERIALS AND METHODS Using flow-cytometric, microarrays, and western blotting analyses, alterations in FxOH-induced apoptosis-related gene expression and protein levels were evaluated in a mice pancreatic cancer cell line, KMPC44. RESULTS FxOH significantly arrested the cells at S phase along with suppression of many gene sets, such as cytokine- cytokine receptor interaction and cell adhesion molecule CAMS. Moreover, attenuated protein levels for cytokine receptors, adhesion, phosphatidylinositol-3 kinase/protein kinase B, and mitogen-activated protein kinase were observed. CONCLUSION FxOH may prevent pancreatic cancer development in a murine cancer model.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuya Inoue
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mareshige Kojoma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, Tokyo, Japan
| |
Collapse
|
18
|
Terasaki M, Takahashi S, Nishimura R, Kubota A, Kojima H, Ohta T, Hamada J, Kuramitsu Y, Maeda H, Miyashita K, Takahashi M, Mutoh M. A Marine Carotenoid of Fucoxanthinol Accelerates the Growth of Human Pancreatic Cancer PANC-1 Cells. Nutr Cancer 2021; 74:357-371. [PMID: 33590779 DOI: 10.1080/01635581.2020.1863994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fucoxanthin and its metabolite fucoxanthinol (FxOH), highly polar xanthophylls, exert strong anticancer effects against many cancer cell types. However, the effects of Fx and FxOH on pancreatic cancer, a high mortality cancer, remain unclear. We herein investigated whether FxOH induces apoptosis in human pancreatic cancer cells. FxOH (5.0 μmol/L) significantly promoted the growth of human pancreatic cancer PANC-1 cells, but induced apoptosis in human colorectal cancer DLD-1 cells. A microarray-based gene analysis revealed that the gene sets of cell cycle, adhesion, PI3K/AKT, MAPK, NRF2, adipogenesis, TGF-β, STAT, and Wnt signals in PANC-1 cells were markedly altered by FxOH. A western blot analysis showed that FxOH up-regulated the expression of integrin β1 and PPARγ as well as the activation of pFAK(Tyr397), pPaxillin(Tyr31), and pAKT(Ser473) in PANC-1 cells, but exerted the opposite effects in DLD-1 cells. Moreover, the expression of FYN, a downstream target of integrin subunits, was up-regulated (7.4-fold by qPCR) in FxOH-treated PANC-1 cells. These results suggest that FxOH accelerates the growth of PANC-1 cells by up-regulating the expression of integrin β1, FAK, Paxillin, FYN, AKT, and PPARγ.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Shouta Takahashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ryuta Nishimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Junichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|
20
|
Xiao H, Zhao J, Fang C, Cao Q, Xing M, Li X, Hou J, Ji A, Song S. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar Drugs 2020; 18:E634. [PMID: 33322296 PMCID: PMC7763821 DOI: 10.3390/md18120634] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a natural carotenoid derived mostly from many species of marine brown algae. It is characterized by small molecular weight, is chemically active, can be easily oxidized, and has diverse biological activities, thus protecting cell components from ROS. Fucoxanthin inhibits the proliferation of a variety of cancer cells, promotes weight loss, acts as an antioxidant and anti-inflammatory agent, interacts with the intestinal flora to protect intestinal health, prevents organ fibrosis, and exerts a multitude of other beneficial effects. Thus, fucoxanthin has a wide range of applications and broad prospects. This review focuses primarily on the latest progress in research on its pharmacological activity and underlying mechanisms.
Collapse
Affiliation(s)
- Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Chang Fang
- Test Center for Agri‐Products Quality of Jinan, Jinan 250316, China;
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Junfeng Hou
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| |
Collapse
|
21
|
Krishnan P, Sundaram J, Salam S, Subramaniam N, Mari A, Balaraman G, Thiruvengadam D. Citral inhibits N-nitrosodiethylamine-induced hepatocellular carcinoma via modulation of antioxidants and xenobiotic-metabolizing enzymes. ENVIRONMENTAL TOXICOLOGY 2020; 35:971-981. [PMID: 32302048 DOI: 10.1002/tox.22933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N-nitrosodiethylamine (NDEA)-induced HCC via modulation of antioxidants and xenobiotic-metabolizing enzymes in vivo. NDEA-alone-administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α-fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic-metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer-bearing animals when compared to group II cancer-bearing animals. In group IV animals, citral-alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic-enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Collapse
Affiliation(s)
- Palanisamy Krishnan
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Jagan Sundaram
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Sharmila Salam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Nirmala Subramaniam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Ashok Mari
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Devaki Thiruvengadam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
22
|
Liu M, Li W, Chen Y, Wan X, Wang J. Fucoxanthin: A promising compound for human inflammation-related diseases. Life Sci 2020; 255:117850. [PMID: 32470447 DOI: 10.1016/j.lfs.2020.117850] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Fucoxanthin, a natural product of carotenoids, is a potential drug source obtained from marine algae. The special chemical structure of fucoxanthin has equipped it with a variety of biological activities. Several studies have indicated that fucoxanthin has a potential protective effect on a variety of inflammation-related diseases. This mechanism may be related to fucoxanthin's strong antioxidant capacity and gut microbiota regulation. The key molecules that require consideration include nuclear factor erythroid 2-related factor 2, Akt serine/threonine kinase/phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, adenosine monophosphate (AMP)-dependent protein kinase, cAMP response element binding protein, and peroxisome proliferator-activated receptorγcoactivator-1α. The study summarizes the recent progress in the research based on the protective effect of fucoxanthin and its related molecular mechanism, in addition to the potential use of fucoxanthin as a promising compound for human inflammation-related diseases.
Collapse
Affiliation(s)
- Mingjun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Wenwen Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
23
|
Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L, Xian CJ. Hydrocortisone Suppresses Early Paraneoplastic Inflammation And Angiogenesis To Attenuate Early Hepatocellular Carcinoma Progression In Rats. Onco Targets Ther 2019; 12:9481-9493. [PMID: 31807025 PMCID: PMC6850701 DOI: 10.2147/ott.s224618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inflammation is implicated in both hepatic cirrhosis development and hepatocellular carcinogenesis, and treatment with long-acting glucocorticoid dexamethasone prevented liver carcinogenesis in mice. However, it is unclear whether glucocorticoids have anti-inflammatory effect on hepatocellular carcinoma (HCC) and if short-acting glucocorticoids (with fewer adverse effects) inhibit paraneoplastic inflammation and HCC progression. Methods To investigate whether different types of anti-inflammatory agents attenuate HCC progression, the current study compared effects of treatments with hydrocortisone (a short-acting glucocorticoid) or aspirin on HCC progression. HCC was induced in diethylnitrosamine-treated rats which were randomly divided into 4 groups (n=8), respectively receiving orally once daily vehicle, glucuronolactone, glucuronolactone+hydrocortisone, and glucuronolactone+aspirin. Diethylnitrosamine (DEN) was given to rats in drinking water (100mg/L) to induce HCC. At weeks 12 and 16 post-induction, effects were compared on HCC nodule formation, microvessel density, and macrophage infiltration, and levels of paraneoplastic protein expression of tumor necrosis factor (TNF)-α, p38 mitogen-activated protein kinase (p38), phosphorylated p38 (p-p38), nuclear factor (NF)-κB, interleukin (IL)-10, hepatocyte growth factor (HGF), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF). Results Compared to the model and glucuronolactone alone groups, HCC nodule number and microvessel density in the glucuronolactone+hydrocortisone group were significantly lower at week 12. At week 12 but not week 16, significantly lower levels of macrophages, TNF-α, p-p38, NF-κB, IL-10, HGF, TGF-β1 and VEGF were observed in the paraneoplastic tissue of the glucuronolactone+hydrocortisone group when compared with the control and glucuronolactone groups. Conclusion The results suggest that hydrocortisone treatment reduces macrophage polarization, expression of inflammatory and anti-inflammatory cytokines, and angiogenesis in paraneoplastic tissue, and attenuates early HCC progression. Although hydrocortisone did not have attenuation effect on advanced solid tumor, the current study shows the potential benefits and supports potential clinical use of hydrocortisone in attenuating early progression of HCC, which is through suppressing paraneoplastic inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Haiyan Cui
- Department of Internal Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Hongling Niu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiangzhi Li
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jianghui Dong
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|