1
|
Hardy KA, Rybolt S, Patel B, Dye R, Rosen MJ. Characterizing Behavioral Effects of Early-Life Stress in an Animal Model of Auditory Processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626725. [PMID: 39677688 PMCID: PMC11642929 DOI: 10.1101/2024.12.03.626725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Animal models provide significant insight into the development of typical and disordered sensory processing. Such models have been established to take advantage of physical and behavioral characteristics of specific species. For example, the Mongolian gerbil is a well-established model for auditory processing, with a hearing range similar in frequency to that of humans and an easily accessible cochlea. Recently, early-life stress (ELS) has been shown to affect sensory processing in auditory, visual, and somatosensory neural regions. To understand the functional impact of ELS, it is necessary to evaluate the susceptibility of sensory perceptual abilities to this early perturbation. Yet measuring sensory perception - e.g., using operant conditioning - often concurrently involves animal behavioral elements such as attention, memory, learning, and emotion. All of these elements are well-known to be impacted by ELS, and may affect behavioral measurements in ways that could be misconstrued as sensory deficits. Thus, it is critical to characterize which behavioral elements are affected by ELS in any sensory model. Here we induced ELS during a developmental time window for maturation of the auditory cortex in Mongolian gerbils. We conducted behavioral measures in juveniles, a developmental age when ELS is known to impair the auditory pathway. ELS had no effect on overall activity but reduced anxiety-related behavior, impaired recognition memory, and improved spatial memory, with some sex-specific effects. These effects may influence the ability of gerbils to learn and retain operant training, particularly if anxiety-provoking reinforcement is used.
Collapse
|
2
|
King C, Plakke B. Maternal choline supplementation modulates cognition and induces anti-inflammatory signaling in the prefrontal cortices of adolescent rats exposed to maternal immune activation. Brain Behav Immun Health 2024; 40:100836. [PMID: 39206430 PMCID: PMC11350509 DOI: 10.1016/j.bbih.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal infection has long been described as a risk factor for neurodevelopmental disorders, especially autism spectrum disorders (ASD) and schizophrenia. Although many pathogens do not cross the placenta and infect the developing fetus directly, the maternal immune response to them is sufficient to alter fetal neurodevelopment, a phenomenon termed maternal immune activation (MIA). Low maternal choline is also a risk factor for neurodevelopmental disorders, and most pregnant people do not receive enough of it. In addition to its role in neurodevelopment, choline is capable of inducing anti-inflammatory signaling through a nicotinic pathway. Therefore, it was hypothesized that maternal choline supplementation would blunt the neurodevelopmental impact of MIA in offspring through long-term instigation of cholinergic anti-inflammatory signaling. To model MIA in rats, the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)) was used to elicit a maternal antiviral innate immune response in dams both with and without choline supplementation. Offspring were reared to both early and late adolescent stages (postnatal days 28 and 50, respectively), where anxiety-related behaviors and cognition were examined. After behavioral testing, animals were euthanized, and their prefrontal cortices (PFCs) were collected for analysis. MIA offspring demonstrated sex-specific patterns of altered cognition and repetitive behaviors, which were modulated by maternal choline supplementation. Choline supplementation also bolstered anti-inflammatory signaling in the PFCs of MIA animals at both early and late adolescent stages. These findings suggest that maternal choline supplementation may be sufficient to blunt some of the behavioral and neurobiological impacts of inflammatory exposures in utero, indicating that it may be a cheap, safe, and effective intervention for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| |
Collapse
|
3
|
Yadav-Samudrala BJ, Dodson H, Ramineni S, Kim E, Poklis JL, Lu D, Ignatowska-Jankowska BM, Lichtman AH, Fitting S. Cannabinoid receptor 1 positive allosteric modulator ZCZ011 shows differential effects on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. PLoS One 2024; 19:e0305868. [PMID: 38913661 PMCID: PMC11195999 DOI: 10.1371/journal.pone.0305868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shreya Ramineni
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dai Lu
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, United States of America
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Hardy KA, Hart DM, Rosen MJ. Early-life stress affects Mongolian gerbil interactions with conspecific vocalizations in a sex-specific manner. Front Behav Neurosci 2023; 17:1128586. [PMID: 37234406 PMCID: PMC10206074 DOI: 10.3389/fnbeh.2023.1128586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
During development, early-life stress (ELS) impairs cognition, learning, and emotional regulation, in part by disrupting neural circuitry in regions underlying these higher-order functions. In addition, our recent work indicates that ELS also alters simple sensory perception: ELS impaired auditory perception and neural encoding of short gaps in sounds, which are essential for vocal communication. The combination of higher-order and basic sensory disruption suggests that ELS is likely to affect both the perception and interpretation of communication signals. We tested this hypothesis by measuring behavioral responses to conspecific vocalizations (those emitted by other gerbils) in ELS and untreated Mongolian gerbils. Because stress effects often differ by sex, we separately examined females and males. To induce ELS, pups were intermittently maternally separated and restrained from post-natal days (P) 9-24, a time window when the auditory cortex is most sensitive to external disruption. We measured the approach responses of juvenile (P31-32) gerbils to two types of conspecific vocalizations: an alarm call, which is emitted to alert other gerbils of a potential threat, and the prosocial contact call, which is emitted near familiar gerbils, especially after separation. Control males, Control females, and ELS females approached a speaker emitting pre-recorded alarm calls, while ELS males avoided this source, suggesting that ELS affects the response to alarm calls in male gerbils. During playback of the pre-recorded contact call, Control females and ELS males avoided the sound source, while Control males neither approached nor avoided, and ELS females approached the sound. These differences cannot be accounted for by changes in locomotion or baseline arousal. However, ELS gerbils slept more during playback, suggesting that ELS may reduce arousal during vocalization playback. Further, male gerbils made more errors than females on a measure of working memory, but the sex difference of cognition in this context may stem from novelty aversion rather than impaired memory. These data indicate that ELS influences behavioral responses to ethologically relevant communication sounds in a sex-specific manner, and are among the first to demonstrate an altered response to auditory stimuli following ELS. Such changes may arise from differences in auditory perception, cognition, or a combination of factors, and suggest that ELS may affect auditory communication in human adolescents.
Collapse
Affiliation(s)
- Kate A. Hardy
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Denise M. Hart
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Merri J. Rosen
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
6
|
Cloutier MÈ, Srivastava LK, Cermakian N. Exposure to Circadian Disruption During Adolescence Interacts With a Genetic Risk Factor to Modify Schizophrenia-relevant Behaviors in a Sex-dependent Manner. J Biol Rhythms 2022; 37:655-672. [PMID: 36168739 PMCID: PMC9749568 DOI: 10.1177/07487304221125363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DTNBP1 is a gene associated with schizophrenia. Postmortem studies found a reduced expression of DTNBP1 in regions associated with schizophrenia in patients' brains. Sandy (Sdy) mice have a loss-of-function mutation in Dtnbp1 gene, resulting in behavioral deficits and brain changes similar to those seen in patients with schizophrenia. We previously showed that exposing adult Sdy mice to circadian disruption led to an exacerbation of schizophrenia-relevant behaviors. Here we asked whether the interaction between this genetic risk factor and circadian disruption occurs during adolescence, a period when environmental insults can promote schizophrenia symptoms, and whether sex affects this interaction. Starting at postnatal day 21, wild-type (WT) and Sdy males and females were housed for 4 weeks either in a 12 h light:12 h dark (LD 12:12) cycle or under chronic jetlag (CJL). Then, after 2 weeks in LD 12:12, behavioral assessments were conducted, including elevated plus maze (EPM), novel object recognition (NOR), social interaction, and prepulse inhibition (PPI) of acoustic startle. NOR and social novelty tests showed that, surprisingly, CJL during adolescence had opposite effects on WT and Sdy males, that is, behavioral deficits in WT males while rescuing preexisting deficits in Sdy mice. CJL led to decreased sociability in WT and Sdy mice while decreasing PPI only in females. Sdy mice showed decreased anxiety-like behavior compared with wild-type (WT), which was further accentuated by CJL in males. Thus, circadian disruption during adolescence, on its own or in association with Dtnbp1 mutation, can influence cognition, sociability, sensorimotor gating, and anxiety-like behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Marie-Ève Cloutier
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Lalit K. Srivastava
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Lalit K. Srivastava, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Nicolas Cermakian, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| |
Collapse
|
7
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
8
|
Becegato M, Silva RH. Object recognition tasks in rats: Does sex matter? Front Behav Neurosci 2022; 16:970452. [PMID: 36035023 PMCID: PMC9412164 DOI: 10.3389/fnbeh.2022.970452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Novelty recognition tasks based on object exploration are frequently used for the evaluation of cognitive abilities and investigation of neurobiological and molecular aspects of memory in rodents. This is an interesting approach because variations of the object recognition tasks focus on different aspects of the memory events such as novelty, location, context, and combinations of these elements. Nevertheless, as in most animal neuroscience research, female subjects are underrepresented in object recognition studies. When studies include females, the particularities of this sex are not always considered. For example, appropriate controls for manipulations conducted exclusively in females (such as estrous cycle verification) are not included. In addition, interpretation of data is often based on standardizations conducted with male subjects. Despite that, females are frequently reported as deficient and unable to adequately perform some memory tests. Thus, our study aims to review studies that describe similarities and differences between male and female performances in the different variations of object recognition tasks. In summary, although females are commonly described with deficits and the articles emphasize sex differences, most published data reveal similar performances when sexes are compared.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
- MaternaCiência, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
9
|
Warren WG, Hale E, Papagianni EP, Cassaday HJ, Stevenson CW, Stubbendorff C. URB597 induces subtle changes to aggression in adult Lister Hooded rats. Front Psychiatry 2022; 13:885146. [PMID: 36032247 PMCID: PMC9412954 DOI: 10.3389/fpsyt.2022.885146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system has been implicated in both social and cognitive processing. The endocannabinoid metabolism inhibitor, URB597, dose-dependently improves non-social memory in adult Wistar and Sprague Dawley rats, whereas its effect on social interaction (SI) is affected by both rat strain and drug dose. Lister Hooded rats consistently respond differently to drug treatment in general compared with albino strains. This study sought to investigate the effects of different doses of URB597 on social and non-social memory in Lister Hooded rats, as well as analyzing the behavioral composition of the SI. Males were tested for novel object recognition (NOR), social preference (between an object and an unfamiliar rat), social novelty recognition (for a familiar vs. unfamiliar rat) and SI with an unfamiliar rat. URB597 (0.1 or 0.3 mg/kg) or vehicle was given 30 min before testing. During SI testing, total interaction time was assessed along with time spent on aggressive and explorative behaviors. Lister Hooded rats displayed expected non-social and social memory and social preference, which was not affected by URB597. During SI, URB597 did not affect total interaction time. However, the high dose increased aggression, compared to vehicle, and decreased anogenital sniffing, compared to the low dose of URB597. In summary, URB597 did not affect NOR, social preference or social recognition memory but did have subtle behavioral effects during SI in Lister hooded rats. Based on our findings we argue for the importance of considering strain as well as the detailed composition of behavior when investigating drug effects on social behavior.
Collapse
Affiliation(s)
- William G Warren
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Eleni P Papagianni
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
10
|
Promoting and Optimizing the Use of 3D-Printed Objects in Spontaneous Recognition Memory Tasks in Rodents: A Method for Improving Rigor and Reproducibility. eNeuro 2021; 8:ENEURO.0319-21.2021. [PMID: 34503967 PMCID: PMC8489023 DOI: 10.1523/eneuro.0319-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Spontaneous recognition memory tasks are widely used to assess cognitive function in rodents and have become commonplace in the characterization of rodent models of neurodegenerative, neuropsychiatric and neurodevelopmental disorders. Leveraging an animal’s innate preference for novelty, these tasks use object exploration to capture the what, where and when components of recognition memory. Choosing and optimizing objects is a key feature when designing recognition memory tasks. Although the range of objects used in these tasks varies extensively across studies, object features can bias exploration, influence task difficulty and alter brain circuit recruitment. Here, we discuss the advantages of using 3D-printed objects in rodent spontaneous recognition memory tasks. We provide strategies for optimizing their design and usage, and offer a repository of tested, open-source designs for use with commonly used rodent species. The easy accessibility, low-cost, renewability and flexibility of 3D-printed open-source designs make this approach an important step toward improving rigor and reproducibility in rodent spontaneous recognition memory tasks.
Collapse
|
11
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|
12
|
Wait J, Burns C, Jones T, Harper Z, Allen E, Langley‐Evans SC, Voigt J. Early postnatal exposure to a cafeteria diet interferes with recency and spatial memory, but not open field habituation in adolescent rats. Dev Psychobiol 2020; 63:572-581. [DOI: 10.1002/dev.22063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Janina Wait
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Catherine Burns
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Taylor Jones
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Zoe Harper
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Emily Allen
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | | | - Jörg‐Peter Voigt
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| |
Collapse
|
13
|
Kwan LY, Eaton DL, Andersen SL, Dow-Edwards D, Levin ED, Talpos J, Vorhees CV, Li AA. This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 2020; 81:106916. [DOI: 10.1016/j.ntt.2020.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
14
|
Hodgson AR, Richmond C, Tello J, Brown GR. Suppression of ovarian hormones in adolescent rats has no effect on anxiety-like behaviour or c-fos activation in the amygdala. J Neuroendocrinol 2020; 32:e12897. [PMID: 32935383 DOI: 10.1111/jne.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
In humans, sex differences in mood disorders emerge during adolescence, with prevalence rates being consistently higher in females than males. It has been hypothesised that exposure to endogenous ovarian hormones during adolescence enhances the susceptibility of females to mood disorders from this stage of life onwards. However, experimental evidence in favour of this hypothesis is lacking. In the present study, we examined the long-term effects of suppressing adolescent gonadal hormone levels in a group of female Lister-hooded rats via administration of a gonadotrophin-releasing hormone antagonist (Antide; administered on postnatal day [PND] 28 and 42) compared to control females and males (n = 14 per group). We predicted that, in adulthood, Antide-treated female rats would exhibit more male-like behaviour than control females in novel environments (elevated-plus maze, open field and light-dark box), in response to novel objects and novel social partners, and in an acoustic startle task. Progesterone and luteinising hormone assays (which were conducted on blood samples collected on PND 55/56 and 69/70) confirmed that the hypothalamic-pituitary-gonadal axis was temporarily suppressed by Antide treatment. In addition, Antide-treated females were found to exhibit a modest pubertal delay, as measured by vaginal opening, which was comparable in length to the pubertal delay that has been induced by adolescent exposure to alcohol or stress in previous studies of female rats. However, Antide-treated females did not substantially differ from control females on any of the behavioural tests, despite the evidence for predicted sex differences in some measures. Following the acoustic startle response task, all subjects were culled and perfused, and c-Fos staining was conducted in the medial and basolateral amygdala, with the results showing no significant differences in cell counts between the groups. These findings suggest that ovarian hormone exposure during adolescence does not have long-term effects on anxiety-related responses in female rats.
Collapse
Affiliation(s)
- Amy R Hodgson
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Claire Richmond
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Javier Tello
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Gillian R Brown
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
15
|
Krishna G, Bromberg C, Connell EC, Mian E, Hu C, Lifshitz J, Adelson PD, Thomas TC. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission. Front Neurol 2020; 11:749. [PMID: 32849211 PMCID: PMC7419702 DOI: 10.3389/fneur.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Women approximate one-third of the annual 2.8 million people in the United States who sustain traumatic brain injury (TBI). Several clinical reports support or refute that menstrual cycle-dependent fluctuations in sex hormones are associated with severity of persisting post-TBI symptoms. Previously, we reported late-onset sensory hypersensitivity to whisker stimulation that corresponded with changes in glutamate neurotransmission at 1-month following diffuse TBI in male rats. Here, we incorporated intact age-matched naturally cycling females into the experimental design while monitoring daily estrous cycle. We hypothesized that sex would not influence late-onset sensory hypersensitivity and associated in vivo amperometric extracellular recordings of glutamate neurotransmission within the behaviorally relevant thalamocortical circuit. At 28 days following midline fluid percussion injury (FPI) or sham surgery, young adult Sprague-Dawley rats were tested for hypersensitivity to whisker stimulation using the whisker nuisance task (WNT). As predicted, both male and female rats showed significantly increased sensory hypersensitivity to whisker stimulation after FPI, with females having an overall decrease in whisker nuisance scores (sex effect), but no injury and sex interaction. In males, FPI increased potassium chloride (KCl)-evoked glutamate overflow in primary somatosensory barrel cortex (S1BF) and ventral posteromedial nucleus of the thalamus (VPM), while in females the FPI effect was discernible only within the VPM. Similar to our previous report, we found the glutamate clearance parameters were not influenced by FPI, while a sex-specific effect was evident with female rats showing a lower uptake rate constant both in S1BF and VPM and longer clearance time (in S1BF) in comparison to male rats. Fluctuations in estrous cycle were evident among brain-injured females with longer diestrus (low circulating hormone) phase of the cycle over 28 days post-TBI. Together, these findings add to growing evidence indicating both similarities and differences between sexes in a chronic response to TBI. A better understanding of the influence of gonadal hormones on behavior, neurotransmission, secondary injury and repair processes after TBI is needed both clinically and translationally, with potential impact on acute treatment, rehabilitation, and symptom management.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Caitlin Bromberg
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Emily Charlotte Connell
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Erum Mian
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P. David Adelson
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
16
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
17
|
Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans S, Fone K, Voigt J. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2019; 363:191-198. [DOI: 10.1016/j.bbr.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
18
|
Greco T, Ferguson L, Giza C, Prins ML. Mechanisms underlying vulnerabilities after repeat mild traumatic brain injuries. Exp Neurol 2019; 317:206-213. [PMID: 30853388 DOI: 10.1016/j.expneurol.2019.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) has drawn national attention for its high incidence and mechanistic complexity. The majority of TBI cases are "mild" in nature including concussions and mild TBI (mTBI). Concussions are a distinct form of mTBI where diagnosis is difficult, quantification of the incidence is challenging and there is greater risk for subsequent injuries. While concussions occur in the general population, it has become a hallmark injury consistently observed among adolescent and young adult athletes and the risks for repeat TBI (rTBI) is significant. Clinical and experimental evidence shows that the magnitude and duration of deficits is dependent on the number and the interval between injuries. Several studies suggest that metabolic vulnerabilities after injury may contribute to the window for cerebral vulnerability from rTBI. In addition to metabolism, this review addresses how age, sex and hormones also play an important role in the response to repeat concussions. Understanding how these factors collectively contribute to concussion and rTBI recovery is critically important in establishing age/sex appropriate return to play guidelines, injury prevention, therapeutic interventions and mitigation of long-term consequences of rTBI.
Collapse
Affiliation(s)
- T Greco
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - L Ferguson
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - C Giza
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - M L Prins
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
19
|
Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi. Behav Processes 2018; 146:34-41. [DOI: 10.1016/j.beproc.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
20
|
Garcia AN, Bezner K, Depena C, Yin W, Gore AC. The effects of long-term estradiol treatment on social behavior and gene expression in adult female rats. Horm Behav 2017; 87:145-154. [PMID: 27871902 PMCID: PMC5203957 DOI: 10.1016/j.yhbeh.2016.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Abstract
This study tested the effects of long-term estradiol (E2) replacement on social behavior and gene expression in brain nuclei involved in the regulation of these social behaviors in adult female rats. We developed an ultrasonic vocalization (USV) test and a sociability test to examine communications, social interactions, and social preference, using young adult female cagemates. All rats were ovariectomized (OVX) and implanted with a Silastic capsule containing E2 or vehicle, and housed in same-treatment pairs for a 3-month period. Then, rats were behaviorally tested, euthanized, and 5 nuclei in the brain's social decision-making circuit were selected for neuromolecular profiling by a multiplex qPCR method. Our novel USV test proved to be a robust tool to measure numbers and types of calls emitted by cagemates that had been reintroduced after a 1-week separation. Results also showed that E2-treated OVX rats had profoundly decreased numbers of USV calls compared to vehicle-treated OVX rats. In a test of sociability, in which a female was allowed to choose between her cagemate or a same-treatment novel rat, we found few effects of E2 compared to vehicle, although interestingly, rats chose the cagemate over an unfamiliar conspecific. Gene expression results revealed that the supraoptic nucleus had the greatest number of gene changes caused by E2: Oxt, Oxtr and Avp were increased, and Drd2, Htr1a, Grin2b, and Gabbr1 were decreased, by E2. No genes were affected in the prefrontal cortex, and 1-4 genes were changed in paraventricular nucleus (Pgr), bed nucleus of the stria terminalis (Oxtr, Esr2, Dnmt3a), and medial amygdala (Oxtr, Ar, Foxp1, Tac3). Thus, E2 changes communicative interactions between adult female rats, together with selected expression of genes in the brain, especially in the supraoptic nucleus.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kelsey Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Goepfrich AA, Friemel CM, Pauen S, Schneider M. Ontogeny of sensorimotor gating and short-term memory processing throughout the adolescent period in rats. Dev Cogn Neurosci 2016; 25:167-175. [PMID: 27908562 PMCID: PMC6987840 DOI: 10.1016/j.dcn.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing.
Collapse
Affiliation(s)
- Anja A Goepfrich
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chris M Friemel
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabina Pauen
- Department of Psychology, University of Heidelberg, Germany
| | | |
Collapse
|
22
|
Intra-perirhinal cortex administration of estradiol, but not an ERβ agonist, modulates object-recognition memory in ovariectomized rats. Neurobiol Learn Mem 2016; 133:89-99. [DOI: 10.1016/j.nlm.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 02/01/2023]
|
23
|
Fattore L, Melis M. Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addict Biol 2016; 21:1043-51. [PMID: 26935237 DOI: 10.1111/adb.12381] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
Abstract
Sex differences in inhibition and self-regulation at a behavioral level have been widely described. From an evolutionary point of view, the different selection pressures placed on male and female hominids led them to differ in their behavioral strategies that allowed our species to survive during natural selection processes. These differences reflect changes in neural and structural plasticity that might be the core of sex differences, and of the susceptibility towards one psychiatric condition rather than another. The goal of the present review is to summarize current evidence for such a dichotomy in impulsive and compulsive behavior with a focus on drug addiction. Sex-dependent differences in drug abuse and dependence will be examined in the context of pathophysiological regulation of impulse and motivation by neuromodulators (i.e. gonadal hormones) and neurotransmitters (i.e. dopamine). Advances in the understanding of the sex differences in the capability to control impulses and motivational states is key for the determination of efficacious biologically based intervention and prevention strategies for several neuropsychiatric disorders where loss of impulse control and compulsivity are the core symptoms.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari National Research Council of Italy; Cittadella Universitaria di Monserrato; Italy
- Centre of Excellence ‘Neurobiology of Dependence’; University of Cagliari; Italy
| | - Miriam Melis
- Centre of Excellence ‘Neurobiology of Dependence’; University of Cagliari; Italy
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology; Cittadella Universitaria di Monserrato, University of Cagliari; Italy
| |
Collapse
|
24
|
Smith CJW, Wilkins KB, Mogavero JN, Veenema AH. Social Novelty Investigation in the Juvenile Rat: Modulation by the μ-Opioid System. J Neuroendocrinol 2015. [PMID: 26212131 DOI: 10.1111/jne.12301] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drive to approach and explore novel conspecifics is inherent to social animals and may promote optimal social functioning. Juvenile animals seek out interactions with novel peers more frequently and find these interactions to be more rewarding than their adult counterparts. In the present study, we aimed to establish a behavioural paradigm to measure social novelty-seeking in juvenile rats and to determine the involvement of the opioid, dopamine, oxytocin and vasopressin systems in this behaviour. To this end, we developed the social novelty preference test to assess the preference of a juvenile rat to investigate a novel over a familiar (cage mate) conspecific. We show that across the juvenile period both male and female rats spend more time investigating a novel conspecific than a cage mate, independent of subject sex or repeated exposure to the test. We hypothesised that brain systems subserving social information processing and social motivation/reward (i.e. the opioid, dopamine, oxytocin, vasopressin systems) might support social novelty preference. To test this, receptor antagonists of each of these systems were administered i.c.v. prior to exposure to the social novelty preference test and, subsequently, to the social preference test, to examine the specificity of these effects. We find that μ-opioid receptor antagonism reduces novel social investigation in both the social novelty preference and social preference tests while leaving the investigation of a cage mate (social novelty preference test) or an object (social preference test) unaffected. In contrast, central blockade of dopamine D2 receptors (with eticlopride), oxytocin receptors (with des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) or vasopressin V1a receptors [with (CH2)5Tyr(Me2)AVP] failed to alter social novelty preference or social preference. Overall, we have established a new behavioural test to study social novelty-seeking behaviour in the juvenile rat and show that the μ-opioid system facilitates this behaviour, possibly by reducing risk avoidance and enhancing the hedonic and/or motivational value of social novelty.
Collapse
Affiliation(s)
- C J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - K B Wilkins
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - J N Mogavero
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - A H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
25
|
Exposure to prenatal stress has deleterious effects on hippocampal function in a febrile seizure rat model. Brain Res 2015; 1624:506-514. [DOI: 10.1016/j.brainres.2015.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
|
26
|
Fuentes S, Daviu N, Gagliano H, Garrido P, Zelena D, Monasterio N, Armario A, Nadal R. Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience? Front Behav Neurosci 2014; 8:56. [PMID: 24616673 PMCID: PMC3934416 DOI: 10.3389/fnbeh.2014.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pedro Garrido
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Science Budapest, Hungary
| | - Nela Monasterio
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
27
|
Robinson JE, Evans NP, Dumbell R, Solbakk AK, Ropstad E, Haraldsen IRH. Effects of inhibition of gonadotropin releasing hormone secretion on the response to novel objects in young male and female sheep. Psychoneuroendocrinology 2014; 40:130-9. [PMID: 24485485 DOI: 10.1016/j.psyneuen.2013.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/03/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
This study investigated the actions of blocking the GnRH receptor using a specific agonist on the response of male and female sheep to a novel object placed in their pen. The study is part of a series performed on 46 same sex twin animals. One of the pair received a subcutaneous implant of the GnRH agonist Goserelin acetate every four weeks while the other remained untreated. Implantation began immediately prior to puberty; at 8 weeks in the males and 28 weeks in the females (as timing of puberty is sex specific). To determine the effects of agonist treatment on the reproductive axis blood samples were collected for measurement of testosterone in the males and progesterone in the females. In addition the volume of the scrotum was determined. The present study aimed to determine whether there are sexually differentiated behavioural responses to a novel object at different stages of brain development (8, 28 and 48 weeks of age) and whether these responses are altered by GnRHa treatment. Approach behaviour towards and interactions with the novel object were monitored as was the number of vocalisations per unit time during the test period. GnRHa treatment suppressed testosterone concentrations and testicular growth in the males and progesterone release in the females. Sheep vocalised significantly more prior to weaning (8 weeks of age) than post weaning (28 and 48 weeks of age) suggesting stress on separation from their dams. Our current study shows that males are more likely to leave their conspecifics to approach a novel object than females. As this behaviour was not altered by suppression of the reproductive axis we suggest that, although sex differences are more obviously expressed in the phenotype after puberty, these may be developed during adolescence but not primarily altered during puberty by sex hormones.
Collapse
Affiliation(s)
- Jane E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK.
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK
| | - Rebecca Dumbell
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Scotland, UK
| | - Anne-Kristin Solbakk
- Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Erik Ropstad
- Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Ira Ronit Hebold Haraldsen
- Department of Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
28
|
Bayless DW, Darling JS, Daniel JM. Mechanisms by which neonatal testosterone exposure mediates sex differences in impulsivity in prepubertal rats. Horm Behav 2013; 64:764-9. [PMID: 24126137 DOI: 10.1016/j.yhbeh.2013.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
Abstract
Neonatal testosterone, either acting directly or through its conversion to estradiol, can exert organizational effects on the brain and behavior. The goal of the current study was to examine sex differences and determine the role of neonatal testosterone on prefrontal cortex-dependent impulsive choice behavior in prepubertal rats. Male and female prepubertal rats were tested on the delay-based impulsive choice task. Impulsive choice was defined as choosing an immediate small food reward over a delayed large reward. In a first experiment to examine sex differences, males made significantly more impulsive choices than did females. In a second experiment to examine the organizational effects of testosterone, females treated with neonatal testosterone made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. In a third experiment to determine if the effect of testosterone on performance is due to the actions of androgens or estrogens through its conversion to estradiol, males treated neonatally with the aromatase inhibitor formestane, which blocks the conversion of testosterone to estradiol, females treated neonatally with the non-aromatizable androgen dihydrotestosterone, and females treated neonatally with estradiol made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. Results indicate that male pubertal rats display increased impulsive choice behavior as compared to females, that this sex difference results from organizing actions of testosterone during the neonatal period, and that this effect can result from both androgenic and estrogenic actions.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
29
|
Green MR, Barnes B, McCormick CM. Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male long-evans rats. Dev Psychobiol 2012; 55:849-59. [DOI: 10.1002/dev.21077] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/26/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew R. Green
- Department of Psychology; Brock University; 500 Glenridge Ave St. Catharines, Ontario, Canada L2S 3A1
| | - Brittany Barnes
- Centre for Neuroscience; Brock University; 500 Glenridge Ave St. Catharines, Ontario, Canada L2S 3A1
| | - Cheryl M. McCormick
- Department of Psychology; Brock University; 500 Glenridge Ave St. Catharines, Ontario, Canada L2S 3A1
- Centre for Neuroscience; Brock University; 500 Glenridge Ave St. Catharines, Ontario, Canada L2S 3A1
| |
Collapse
|
30
|
Heyser CJ, Ferris JS. Object exploration in the developing rat: Methodological considerations. Dev Psychobiol 2012; 55:373-81. [DOI: 10.1002/dev.21041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 04/09/2012] [Indexed: 11/10/2022]
|
31
|
Vetter-O'Hagen CS, Spear LP. The effects of gonadectomy on sex- and age-typical responses to novelty and ethanol-induced social inhibition in adult male and female Sprague-Dawley rats. Behav Brain Res 2012; 227:224-32. [PMID: 22036699 PMCID: PMC3242866 DOI: 10.1016/j.bbr.2011.10.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 10/11/2011] [Accepted: 10/16/2011] [Indexed: 11/21/2022]
Abstract
Sex- and age-typical responses to ethanol and novel stimuli tend to emerge postpubertally, suggesting a potential organizational or activational role for pubertal hormones in these behaviors. To test this possibility, male and female rats were gonadectomized (GX) or received sham gonadectomy (SH) either prepubertally on postnatal day (P) 23 (early) or in adulthood on P70 (late). Animals were tested as adults for response to novelty and, on the following day, challenged with either saline or ethanol (1g/kg) prior to social interaction testing with an unfamiliar partner in a familiar setting under low light conditions. Gonadectomy did not influence ethanol-induced social inhibition in either sex, but instead altered the microstructure of social behavior, with GX animals exhibiting proportionally less time in social investigation and proportionally more time in contact behavior than SH animals, regardless of age of gonadectomy. The early sham surgical manipulation process itself influenced social motivation, with early SH surgery eliminating ethanol-induced decreases in social preference in both sexes. Response to novelty was unaffected by gonadectomy, but was suppressed in early compared to late SH manipulated animals. These results suggest that adult-typical responses to ethanol and novelty-directed behaviors are little influenced by gonadal hormones during puberty or in adulthood. However, the experience of surgical manipulation itself during development exerts behavioral and pharmacological consequences that last into adulthood.
Collapse
Affiliation(s)
- Courtney S Vetter-O'Hagen
- Center for Development and Behavioral Neuroscience, Developmental Exposure to Alcohol Research Center, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | |
Collapse
|
32
|
Cyrenne DLM, Brown GR. Effects of suppressing gonadal hormones on response to novel objects in adolescent rats. Horm Behav 2011; 60:625-31. [PMID: 21920363 PMCID: PMC3221042 DOI: 10.1016/j.yhbeh.2011.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/26/2011] [Accepted: 08/28/2011] [Indexed: 11/20/2022]
Abstract
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a 'novel object recognition' task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.
Collapse
Affiliation(s)
| | - Gillian R. Brown
- Corresponding author at: School of Psychology, University of St Andrews, South Street, St Andrews, KY16 9JP, UK. Fax: + 44 1334 463042.
| |
Collapse
|