1
|
Kang H, Song J, Cheng Y. HDL regulates the risk of cardiometabolic and inflammatory-related diseases: Focusing on cholesterol efflux capacity. Int Immunopharmacol 2024; 138:112622. [PMID: 38971111 DOI: 10.1016/j.intimp.2024.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Dyslipidemia, characterized by higher serum concentrations of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and lower serum concentrations of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of cardiovascular diseases (CVD), posing serious risks to the future health of humans. Aside from the role of HDL-C concentrations, the capacity of cholesterol efflux to HDL is being identified as an enssential messurement for the dyslipidemic morbidity. Through inducing the progression of reverse cholesterol transport (RCT), the HDL-related cholesterol efflux plays a vital role in atherosclerotic plaque formation. In addition, increasing results demonstrated that the relationships between cholesterol efflux and cardiovascular events might be influenced by multiple factors, such as atherosclerosis, diabetes, and, inflammatory diseases. These risk factors could affect the intracellular composition of HDL, which might subsqently influence the cholesterol efflux process induced by HDL particle. In the present comprehensive article, we summarize the latest findings which described the modulatory roles of HDL in cardiometabolic disorders and inflammatory related diseases, focusing on its capacity in mediating cholesterol efflux. Moreover, the potential mechanisms whereby HDL regulate the risk of cardiometabolic disorders or inflammatory related diseases, at least partly, via cholesterol efflux pathway, are also well-listed.
Collapse
Affiliation(s)
- Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jingjin Song
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Advanced Glycation End Products: A Sweet Flavor That Embitters Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23052404. [PMID: 35269546 PMCID: PMC8910157 DOI: 10.3390/ijms23052404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies demonstrate the role of early and intensive glycemic control in the prevention of micro and macrovascular disease in both type 1 and type 2 diabetes mellitus (DM). Hyperglycemia elicits several pathways related to the etiopathogenesis of cardiovascular disease (CVD), including the generation of advanced glycation end products (AGEs). In this review, we revisit the role played by AGEs in CVD based in clinical trials and experimental evidence. Mechanistic aspects concerning the recognition of AGEs by the advanced glycosylation end product-specific receptor (AGER) and its counterpart, the dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST) and soluble AGER are discussed. A special focus is offered to the AGE-elicited pathways that promote cholesterol accumulation in the arterial wall by enhanced oxidative stress, inflammation, endoplasmic reticulum stress and impairment in the reverse cholesterol transport (RCT).
Collapse
|
3
|
Meneses RRC, Damasceno NRT, Cartolano FDC, Verde SMML, Lira LG, Dantas MB, Viana GDA, Silva MED, Sousa ELHD, Meneses GC, Ferreira JM, Sampaio TL, Queiroz MGRD. Hypertriglyceridemia promotes dysfunctions in high-density lipoprotein increasing the cardiovascular risk. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
4
|
Pinto RS, Ferreira GS, Silvestre GCR, Santana MDFM, Nunes VS, Ledesma L, Pinto PR, de Assis SIS, Machado UF, da Silva ES, Passarelli M. Plasma advanced glycation end products and soluble receptor for advanced glycation end products as indicators of sterol content in human carotid atherosclerotic plaques. Diab Vasc Dis Res 2022; 19:14791641221085269. [PMID: 35343275 PMCID: PMC8965288 DOI: 10.1177/14791641221085269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are independently related to cardiovascular disease (CVD) and favor cholesterol and oxysterol accumulation in macrophage foam cells. Soluble RAGE (sRAGE) impairs cellular AGE signaling alleviating the deleterious effects of AGE in atherogenesis. The association between plasma AGEs and sRAGE with the content of cholesterol, markers of cholesterol synthesis and absorption, and oxysterols in atherosclerotic plaques was evaluated in subjects undergoing carotid endarterectomy.Plasma and carotid plaques were obtained from symptomatic (n = 23) and asymptomatic subjects (n = 40). Lipids from plaques were extracted and sterols (oxysterols, cholesterol, desmosterol, lathosterol, sitosterol, and campesterol) were determined by using gas chromatography/mass spectrometry. Plasma total AGEs and pentosidine were measured by using fluorimetry and sRAGE by using ELISA.In symptomatic subjects´ atherosclerotic plaques, an increased amount of cholesterol (3x) and oxysterols [7 α-hydroxycholesterol (1.4x); 7 β-hydroxycholesterol (1.2x); 25-hydroxycholesterol (1.3x); 24-hydroxycholesterol (2.7x), and 27-hydroxycholesterol, (1.15x)], with exception to 7 ketocholesterol, were found in comparison to asymptomatic individuals. Plasma total AGEs and pentosidine significantly and positively correlated to sterols accumulated in the atherosclerotic lesion, including cholesterol, desmosterol, campesterol, sitosterol, and oxysterols. On the other hand, sRAGE inversely correlated to total AGEs and pentosidine in plasma, and with major species of oxysterols, cholesterol, and markers of cholesterol synthesis and absorption in the atherosclerotic lesion. In multiple regression analyses, it was observed a significant inverse correlation between sRAGE and 24-hydroxycholesterol and desmosterol, and a positive significant correlation between pentosidine and 24-hydroxycholesterol, 27-hydroxycholesterol, and campesterol.In conclusion, the plasma concentration of AGEs and sRAGE is a tool to predict the accumulation of sterols in atherosclerotic lesions in symptomatic and asymptomatic individuals, helping to prevent and improve the management of acute cardiovascular complications.
Collapse
Affiliation(s)
- Raphael S Pinto
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
- Universidade Santa Cecília –
UNISANTA, Santos, Brazil
| | - Guilherme S Ferreira
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
| | - Gina Camillo R Silvestre
- Laboratório de Anatomia e Cirurgia
Vascular (LIM 02), Hospital das Clinicas (HCFMUSP),
Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monique de Fátima M Santana
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
| | - Valéria S Nunes
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
| | | | - Paula R Pinto
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
| | - Sayonara Ivana S de Assis
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
| | - Ubiratan F Machado
- Department of Physiology and
Biophysics, Institute of Biomedical Sciences,
University of São Paulo, São Paulo, Brazil
| | - Erasmo S da Silva
- Laboratório de Anatomia e Cirurgia
Vascular (LIM 02), Hospital das Clinicas (HCFMUSP),
Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM10),
Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação em
Medicina, Universidade Nove de
Julho, São Paulo, Brazil
- Marisa Passarelli, Laboratório de Lípides
(LIM10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade
de São Paulo. Av. Dr Arnaldo 455, room 3305; CEP 01246-000, São Paulo - SP,
Brazil.
| |
Collapse
|
5
|
Minanni CA, Machado-Lima A, Iborra RT, Okuda LS, de Souza Pinto R, Santana MDFM, Lira ALDA, Nakandakare ER, Côrrea-Giannella MLC, Passarelli M. Persistent Effect of Advanced Glycated Albumin Driving Inflammation and Disturbances in Cholesterol Efflux in Macrophages. Nutrients 2021; 13:nu13103633. [PMID: 34684632 PMCID: PMC8537611 DOI: 10.3390/nu13103633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Advanced glycated albumin (AGE-albumin) impairs cholesterol efflux and contributes to inflammation in macrophages. The current study evaluated: (1) the persistence of the deleterious effect of AGE-albumin in cholesterol efflux and in inflammation, and (2) how metabolic control in diabetes mellitus (DM) contributes to attenuate the deleterious role of AGE-albumin in macrophage cholesterol homeostasis. Methods: AGE-albumin was produced in vitro or isolated from uncontrolled DM subjects' serum before (bGC) and after improved glycemic control (aGC). Albumin samples were incubated with bone marrow-derived macrophages and 14C-cholesterol efflux or LPS- induced cytokine secretion were determined immediately, or after cell resting in culture media alone. The ABCA-1 degradation rate was determined after cell incubation with cycloheximide, and ABCA1 protein level by immunoblot. Oil Red O staining was used to assess intracellular lipid accumulation. Results: A persistent effect of AGE-albumin was observed in macrophages in terms of the secretion of inflammatory cytokines and reduced cholesterol efflux. HDL-mediated 14C-cholesterol efflux was at least two times higher in macrophages treated with aCG-albumin as compared to bGC-albumin, and intracellular lipid content was significantly reduced in aGC-albumin-treated cells. As compared to bGC-albumin, the ABCA-1 protein content in whole cell bulk was 94% higher in aCG-albumin. A 20% increased ABCA-1 decay rate was observed in macrophages treated with albumin from poorly controlled DM. AGE-albumin has a persistent deleterious effect on macrophage lipid homeostasis and inflammation. The reduction of AGEs in albumin ameliorates cholesterol efflux.
Collapse
Affiliation(s)
- Carlos André Minanni
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Hospital Israelita Albert Einstein (HIAE), São Paulo 05652-900, Brazil
| | - Adriana Machado-Lima
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo 03166-000, Brazil
| | - Rodrigo Tallada Iborra
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Educação Física, Universidade São Judas Tadeu, São Paulo 03166-000, Brazil
| | - Lígia Shimabukuro Okuda
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Raphael de Souza Pinto
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Aécio Lopes de Araújo Lira
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Edna Regina Nakandakare
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Maria Lúcia Cardillo Côrrea-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
- Correspondence:
| |
Collapse
|
6
|
de Araújo Lira AL, de Fátima Mello Santana M, de Souza Pinto R, Minanni CA, Iborra RT, de Lima AMS, Correa-Giannella ML, Passarelli M, Queiroz MS. Serum albumin modified by carbamoylation impairs macrophage cholesterol efflux in diabetic kidney disease. J Diabetes Complications 2021; 35:107969. [PMID: 34183248 DOI: 10.1016/j.jdiacomp.2021.107969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Abnormalities in lipid metabolism, accumulation of uremic toxins and advanced glycation end products may contribute to worsening atherosclerosis. This study characterized the glycation and carbamoylation profile of serum albumin isolated from individuals with diabetic kidney disease and its influence on cholesterol efflux. MATERIAL AND METHODS 49 patients with type 2 diabetes (T2DM) and different eGFR evaluated glycation and carbamoylation profile by measurement of carboxymethyl lysine (CML) and carbamoylated proteins (CBL) in plasma by ELISA, homocitrulline (HCit) in plasma by colorimetry. In the isolated albumins, we quantified CBL (ELISA) and total AGE and pentosidine by fluorescence. Macrophages were treated with albumin isolated, and 14C-Cholesterol efflux mediated by HDL2 or HDL3 was measured. Kruskal-Wallis test, Jonckheere-Terpstra test and Brunner's posttest were used for comparisons among groups. RESULTS Determination of CML, HCit, CBL in plasma, as total AGE and pentosidine in albumins, did not differ between groups; however, CBL in the isolated albumins was higher in the more advanced stages of CKD (p=0.0414). There was reduction in the 14C-cholesterol efflux after treatment for 18h with albumin isolated from patients with eGFR<60mL/min/1.73m2 compared with control group mediated by HDL2 (p=0.0288) and HDL3 (p<0.0001), as well as when compared with eGFR ≥60mL/min/1.73m2 per HDL2 (p=0.0001) and HDL3 (p<0.0001). Treatment for 48h showed that eGFR<15mL/min/1.73m2 had a lower percentage of 14C-cholesterol efflux mediated by HDL2 compared to control and other CKD groups (p=0.0274). CONCLUSIONS Albumins isolated from individuals with T2DM and eGFR<60mL/min/1.73m2 suffer greater carbamoylation, and they impair the cholesterol efflux mediated by HDL2 and HDL3. In turn, this could promote lipids accumulation in macrophages and disorders in reverse cholesterol transport.
Collapse
Affiliation(s)
| | | | - Raphael de Souza Pinto
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Carlos André Minanni
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Rodrigo Tallada Iborra
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Adriana Machado Saldiba de Lima
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Maria Lúcia Correa-Giannella
- Laboratory of Carbohydrates and Radioimuneassays (LIM 18), Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Márcia Silva Queiroz
- Endocrinology Division, Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil.
| |
Collapse
|
7
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
8
|
Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines 2020; 9:biomedicines9010018. [PMID: 33375461 PMCID: PMC7823542 DOI: 10.3390/biomedicines9010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes and its vascular complications affect an increasing number of people. This disease of epidemic proportion nowadays involves abnormalities of large and small blood vessels, all commencing with alterations of the endothelial cell (EC) functions. Cardiovascular diseases are a major cause of death and disability among diabetic patients. In diabetes, EC dysfunction (ECD) is induced by the pathological increase of glucose and by the appearance of advanced glycation end products (AGE) attached to the plasma proteins, including lipoproteins. AGE proteins interact with their specific receptors on EC plasma membrane promoting activation of signaling pathways, resulting in decreased nitric oxide bioavailability, increased intracellular oxidative and inflammatory stress, causing dysfunction and finally apoptosis of EC. Irreversibly glycated lipoproteins (AGE-Lp) were proven to have an important role in accelerating atherosclerosis in diabetes. The aim of the present review is to present up-to-date information connecting hyperglycemia, ECD and two classes of glycated Lp, glycated low-density lipoproteins and glycated high-density lipoproteins, which contribute to the aggravation of diabetes complications. We will highlight the role of dyslipidemia, oxidative and inflammatory stress and epigenetic risk factors, along with the specific mechanisms connecting them, as well as the new promising therapies to alleviate ECD in diabetes.
Collapse
|
9
|
Machado-Lima A, López-Díez R, Iborra RT, Pinto RDS, Daffu G, Shen X, Nakandakare ER, Machado UF, Corrêa-Giannella MLC, Schmidt AM, Passarelli M. RAGE Mediates Cholesterol Efflux Impairment in Macrophages Caused by Human Advanced Glycated Albumin. Int J Mol Sci 2020; 21:ijms21197265. [PMID: 33019603 PMCID: PMC7582519 DOI: 10.3390/ijms21197265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
We addressed the involvement of the receptor for advanced glycation end products (RAGE) in the impairment of the cellular cholesterol efflux elicited by glycated albumin. Albumin was isolated from type 1 (DM1) and type 2 (DM2) diabetes mellitus (HbA1c > 9%) and non-DM subjects (C). Moreover, albumin was glycated in vitro (AGE-albumin). Macrophages from Ager null and wild-type (WT) mice, or THP-1 transfected with siRNA-AGER, were treated with C, DM1, DM2, non-glycated or AGE-albumin. The cholesterol efflux was reduced in WT cells exposed to DM1 or DM2 albumin as compared to C, and the intracellular lipid content was increased. These events were not observed in Ager null cells, in which the cholesterol efflux and lipid staining were, respectively, higher and lower when compared to WT cells. In WT, Ager, Nox4 and Nfkb1, mRNA increased and Scd1 and Abcg1 diminished after treatment with DM1 and DM2 albumin. In Ager null cells treated with DM-albumin, Nox4, Scd1 and Nfkb1 were reduced and Jak2 and Abcg1 increased. In AGER-silenced THP-1, NOX4 and SCD1 mRNA were reduced and JAK2 and ABCG1 were increased even after treatment with AGE or DM-albumin. RAGE mediates the deleterious effects of AGE-albumin in macrophage cholesterol efflux.
Collapse
MESH Headings
- Adult
- Animals
- Case-Control Studies
- Cell Line
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Glycated Hemoglobin/genetics
- Glycated Hemoglobin/metabolism
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/pharmacology
- Humans
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor for Advanced Glycation End Products/antagonists & inhibitors
- Receptor for Advanced Glycation End Products/deficiency
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Serum Albumin, Human/metabolism
- Serum Albumin, Human/pharmacology
- THP-1 Cells
- Triglycerides/blood
Collapse
Affiliation(s)
- Adriana Machado-Lima
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo CEP 03166-000, Brazil
| | - Raquel López-Díez
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Rodrigo Tallada Iborra
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo CEP 03166-000, Brazil
| | - Raphael de Souza Pinto
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Curso de Biomedicina, Centro Universitário CESMAC, Maceió, Alagoas CEP 57051-160, Brazil
| | - Gurdip Daffu
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Xiaoping Shen
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Edna Regina Nakandakare
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
| | - Ubiratan Fabres Machado
- Laboratório de Metabolismo e Endocrinologia, Instituto de Ciências Biomédicas da Universidade de São Paulo, São Paulo CEP 05508-000, Brazil;
| | - Maria Lucia Cardillo Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil;
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo CEP 01225-000, Brazil
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Langone Health, New York, NY 10016, USA; (R.L.-D.); (G.D.); (X.S.); (A.M.S.)
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP 01246-000, Brazil; (A.M.-L.); (R.T.I.); (R.d.S.P.); (E.R.N.)
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo CEP 01225-000, Brazil
- Correspondence:
| |
Collapse
|
10
|
Santana MFM, Lira ALA, Pinto RS, Minanni CA, Silva ARM, Sawada MIBAC, Nakandakare ER, Correa-Giannella MLC, Queiroz MS, Ronsein GE, Passarelli M. Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic kidney disease without dialysis. Lipids Health Dis 2020; 19:205. [PMID: 32921312 PMCID: PMC7488728 DOI: 10.1186/s12944-020-01381-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background and aims Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). Methods Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m2 plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60; n = 8). Results Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove 14C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. Conclusion The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.
Collapse
Affiliation(s)
- Monique F M Santana
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Aécio L A Lira
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Raphael S Pinto
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil.,Centro Universitário CESMAC, Maceio, Alagoas, Brazil
| | - Carlos A Minanni
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil.,Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil
| | - Amanda R M Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria I B A C Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Edna R Nakandakare
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil
| | - Maria L C Correa-Giannella
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.,Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcia S Queiroz
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Graziella E Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo 455, room 3305; CEP, São Paulo, 01246-000, Brazil. .,Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.
| |
Collapse
|
11
|
Pinto RS, Machado UF, Passarelli M. Advanced glycation end products as biomarkers for cardiovascular disease: browning clarifying atherogenesis. Biomark Med 2020; 14:611-614. [DOI: 10.2217/bmm-2020-0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- RS Pinto
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Centro Universitário CESMAC, Alagoas, Brazil
| | - UF Machado
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas da Universidade de São Paulo, São Paulo, Brazil
| | - M Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
12
|
Vergès B. Dyslipidemia in Type 1 Diabetes: AMaskedDanger. Trends Endocrinol Metab 2020; 31:422-434. [PMID: 32217073 DOI: 10.1016/j.tem.2020.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) patients show lipid disorders which are likely to play a role in their increased cardiovascular (CV) disease risk. Quantitative abnormalities of lipoproteins are noted in T1D with poor glycemic control. In T1D with optimal glycemic control, triglycerides and LDL-cholesterol are normal or slightly decreased whereas HDL-cholesterol is normal or slightly increased. T1D patients, even with good glycemic control, show several qualitative and functional abnormalities of lipoproteins that are potentially atherogenic. An association between these abnormalities and CV disease risk has been reported in recent studies. Although the mechanisms underlying T1D dyslipidemia remain unclear, the subcutaneous route of insulin administration, that is responsible for peripheral hyperinsulinemia, is likely to be an important factor.
Collapse
Affiliation(s)
- Bruno Vergès
- Service Endocrinologie, Diabétologie, et Maladies Métaboliques, Centre Hospitalier Universitaire (CHU), Institut National de la Santé et de la Recherche Médicale (INSERM) Lipides, Nutrition, Cancer (LNC)-Unité Mixte de Recherche (UMR) 1231, University of Burgundy, 21000 Dijon, France.
| |
Collapse
|
13
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
14
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
15
|
de Lima-Junior JC, Virginio VWM, Moura FA, Bertolami A, Bertolami M, Coelho-Filho OR, Zanotti I, Nadruz W, de Faria EC, de Carvalho LSF, Sposito AC. Excess weight mediates changes in HDL pool that reduce cholesterol efflux capacity and increase antioxidant activity. Nutr Metab Cardiovasc Dis 2020; 30:254-264. [PMID: 31753789 DOI: 10.1016/j.numecd.2019.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIM Obesity-related decline in high-density lipoprotein (HDL) functions such as cholesterol efflux capacity (CEC) has supported the notion that this lipoprotein dysfunction may contribute for atherogenesis among obese patients. We investigated if potentially other HDL protective actions may be affected with weight gain and these changes may occur even before the obesity range in a cross-sectional analysis. METHODS AND RESULTS Lipid profile, body mass index (BMI), biochemical measurements, and carotid intima-media thickness (cIMT) were obtained in this cross-sectional study with 899 asymptomatic individuals. Lipoproteins were separated by ultracentrifugation and HDL physical-chemical characterization, CEC, antioxidant activity, anti-inflammatory activity, HDL-mediated platelet aggregation inhibition were measured in a randomly-selected subgroup (n = 101). Individuals with increased HDL-C had an attenuated increase in cIMT with elevation of BMI (interaction effect β = -0.054; CI 95% -0.0815, -0.0301). CEC, HDL-C, HDL size and HDL-antioxidant activity were negatively associated with cIMT. BMI was inversely correlated with HDL-mediated inhibition of platelet aggregation (Spearman's rho -0.157, p < 0.03) and CEC (Spearman's rho -0.32, p < 0.001), but surprisingly it was directly correlated with the antioxidant activity (Spearman's rho 0.194, p = 0.052). Thus, even in non-obese, non-diabetic individuals, increased BMI is associated with a wide change in protective functions of HDL, reducing CEC and increasing antioxidant activity. In these subjects, decreased HDL concentration, size or function are related to increased atherosclerotic burden. CONCLUSION Our findings demonstrate that in non-obese, non-diabetic individuals, the increasing values of BMI are associated with impaired protective functions of HDL and concomitant increase in atherosclerotic burden.
Collapse
Affiliation(s)
- Jose Carlos de Lima-Junior
- Laboratory of Atherosclerosis and Vascular Biology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Vitor W M Virginio
- Laboratory of Atherosclerosis and Vascular Biology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Filipe A Moura
- Laboratory of Atherosclerosis and Vascular Biology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil; Department of Cardiology, Brigham and Women's Hospital, Boston, New England, United States
| | - Adriana Bertolami
- Department of Dyslipidemia, Dante Pazzanese Cardiological Institute, São Paulo, Brazil
| | - Marcelo Bertolami
- Department of Dyslipidemia, Dante Pazzanese Cardiological Institute, São Paulo, Brazil
| | - Otavio R Coelho-Filho
- Department of Internal Medicine, Cardiology Division, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Wilson Nadruz
- Department of Internal Medicine, Cardiology Division, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Eliana Cotta de Faria
- Lipids Laboratory, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Sao Paulo, Brazil
| | - Luiz Sergio F de Carvalho
- Laboratory of Atherosclerosis and Vascular Biology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil; Department of Internal Medicine, Cardiology Division, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Andrei C Sposito
- Laboratory of Atherosclerosis and Vascular Biology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil; Department of Internal Medicine, Cardiology Division, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil.
| |
Collapse
|
16
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
17
|
Advanced Glycated End Products Alter Neutrophil Effect on Regulation of CD 4+ T Cell Differentiation Through Induction of Myeloperoxidase and Neutrophil Elastase Activities. Inflammation 2019; 42:559-571. [PMID: 30343390 DOI: 10.1007/s10753-018-0913-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CD4+ T cell subset imbalance plays an important role in the development of diabetic complications. Neutrophils have recently been known as the regulator of CD4+ T cell differentiation. However, whether neutrophils affect CD4+ T cell population in diabetes is still elusive. In this study, we investigated the effect of neutrophils stimulated with advanced glycated end products (AGEs), the marker of diabetes, on CD4+ T cell differentiation and its underlying mechanism. Our data showed that the cultural medium of healthy adult neutrophils treated with AGEs increased expressions of both Th1 (IFN-γ) and Th17 (IL-17) phenotypes and the transcription factors of Th1 (Tbet) and Th17 (RORγt) in naive CD4+T cells and CD4+CD25+FoxP3+ (Treg) T cells in vitro. Next, we found that AGEs induced the generations of myeloperoxidase (MPO) and neutrophil elastase (NE) in neutrophils; inhibition of MPO or NE attenuated the effect of AGE-stimulated neutrophils on CD4+ T cell bias. Furthermore, receptor for AGEs (RAGE) inhibitor interrupted AGE-induced MPO and NE expressions, but MPO and NE inhibitions did not change AGE-increased RAGE gene expression. These results suggested that AGEs drive the effect of neutrophils on CD4+ T cell differentiation into pro-inflammatory program through inducing MPO and NE productions in neutrophils, which is mediated by AGE-RAGE interaction.
Collapse
|
18
|
Paradela-Dobarro B, Bravo SB, Rozados-Luís A, González-Peteiro M, Varela-Román A, González-Juanatey JR, García-Seara J, Alvarez E. Inflammatory effects of in vivo glycated albumin from cardiovascular patients. Biomed Pharmacother 2019; 113:108763. [DOI: 10.1016/j.biopha.2019.108763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022] Open
|
19
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
20
|
HDL acceptor capacities for cholesterol efflux from macrophages and lipid transfer are both acutely reduced after myocardial infarction. Clin Chim Acta 2018; 478:51-56. [DOI: 10.1016/j.cca.2017.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/16/2023]
|
21
|
Wang Z, Shi H, Zhao H, Dong Z, Zhao B, Weng X, Liu R, Hu K, Zou Y, Sun A, Ge J. Naoxintong Retards Atherosclerosis by Inhibiting Foam Cell Formation Through Activating Pparα Pathway. Curr Mol Med 2018; 18:698-710. [PMID: 30734676 PMCID: PMC6463403 DOI: 10.2174/1566524019666190207143207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS We recently reported that Naoxintong (NXT), a China Food and Drug Administration (FDA)-approved cardiac medicine, could reduce the plaque size, but the underlying mechanism remains elusive now. OBJECTIVE In this study, we investigated the effects of NXT on foam cell accumulation both in vivo and in vitro and explored related mechanisms. METHOD THP-1 cells and bone marrow-derived macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) with/without Naoxintong. ApoE-/- mice fed an atherogenic diet were administered to receive NXT for eight weeks. Macrophage-derived foam cell formation in plaques was measured by immunohistochemical staining. Expression of proteins was evaluated by Western blot. Lentivirus was used to knockdown PPARα in THP-1 cells. RESULTS After NXT treatment, foam cell accumulation was significantly reduced in atherosclerotic plaques. Further investigation revealed that oxidized low-density lipoprotein (ox-LDL) uptake was significantly decreased and expression of scavenger receptor class A (SR-A) and class B (SR-B and CD36) was significantly downregulated post-NXT treatment. On the other hand, NXT increased cholesterol efflux and upregulated ATP-binding cassette (ABC) transporters (ABCA-1 and ABCG-1) in macrophages. Above beneficial effects of NXT were partly abolished after lentiviral knockdown of PPARα. CONCLUSION Our findings suggest that NXT could retard atherosclerosis by inhibiting foam cell formation through reducing ox-LDL uptake and enhancing cholesterol efflux and above beneficial effects are partly mediated through PPARα pathway.
Collapse
Affiliation(s)
- Zeng Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huan Zhao
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Buchang Zhao
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Xinyu Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Rongle Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Xiao lia
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| |
Collapse
|
22
|
Iborra RT, Machado-Lima A, Okuda LS, Pinto PR, Nakandakare ER, Machado UF, Correa-Giannella ML, Pickford R, Woods T, Brimble MA, Rye KA, Lu R, Yokoyama S, Passarelli M. AGE-albumin enhances ABCA1 degradation by ubiquitin-proteasome and lysosomal pathways in macrophages. J Diabetes Complications 2018; 32:1-10. [PMID: 29097054 DOI: 10.1016/j.jdiacomp.2017.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/06/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Advanced glycation end products (AGEs) induce cellular oxidative/endoplasmic reticulum stress and inflammation. We investigated its underlying mechanisms for atherogenesis focusing on regulation of ABCA1 protein decay in macrophages. METHODS The ABCA1 decay rate was evaluated in macrophages after treatment with LXR agonist and by incubation with control (C) or AGE-albumin concomitant or not with cycloheximide, MG-132, ammonium chloride and calpain inhibitors were utilized to inhibit, respectively, proteasome, lysosome and ABCA1 proteolysis at cell surface. ABCA1 was determined by immunoblot and the protein decay rate calculated along time by the slope of the linear regression. Ubiquitination level was determined in ABCA1 immunoprecipitated from whole cell lysate or bulk cell membrane. AGE effect was also analyzed in THP-1 cells transfected with siRNA-RAGE. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/MS. One-way ANOVA and Student t test were utilized to compare results. RESULTS CML and PYR-albumin were higher in AGE-albumin as compared to C. AGE-albumin reduced ABCA1 in J774 and THP-1 macrophages (20-30%) and induced a higher ABCA1 ubiquitination and a faster protein decay rate that was dependent on the presence of AGE during the kinetics of measurement in the presence of cycloheximide. Proteasomal inhibition restored and lysosomal inhibition partially recovered ABCA1 in cells treated with AGE-albumin. Calpain inhibition was not able to rescue ABCA1. RAGE knockdown prevented the reduction in ABCA1 elicited by AGE. CONCLUSIONS AGE-albumin diminishes ABCA1 by accelerating its degradation through the proteasomal and lysosomal systems. This may increase lipid accumulation in macrophages by diminishing cholesterol efflux via RAGE signaling contributing to atherosclerosis in diabetes mellitus.
Collapse
Affiliation(s)
- Rodrigo Tallada Iborra
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Adriana Machado-Lima
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Universidade São Judas Tadeu, São Paulo, Brazil
| | - Ligia Shimabukuro Okuda
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Paula Ramos Pinto
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Edna Regina Nakandakare
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoinsaio, LIM 18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Programa de pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Tom Woods
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Rui Lu
- Nutritional Health Science Research Center at Chubu University, Kasugai, Japan
| | - Shinji Yokoyama
- Nutritional Health Science Research Center at Chubu University, Kasugai, Japan
| | - Marisa Passarelli
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, Banach M, Pirro M, Sahebkar A. HDL functionality in type 1 diabetes. Atherosclerosis 2017; 267:99-109. [PMID: 29102899 DOI: 10.1016/j.atherosclerosis.2017.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/08/2017] [Accepted: 10/18/2017] [Indexed: 11/15/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by absence of insulin secretion due to destruction of the pancreatic beta-cells. Patients with T1D exhibit an increased risk for cardiovascular disease (CVD) compared with non-diabetic subjects. It has been established that low concentration of high-density lipoprotein cholesterol (HDL-C), an independent risk marker of CVD, coincides with a reduced protective capacity against oxidative stress. However, conflicting results have been reported on the prevalence of low HDL-C levels in T1D. Interestingly, changes in composition and function of HDL particles (abnormal ratio of cholesteryl ester-to-triglyceride, reduction in the phospholipid content, reduced capacity to promote cholesterol efflux from macrophages, impaired anti-inflammatory and anti-oxidant activities) have been described in patients with T1D. Hence, exploring HDL function, even in the presence of normal HDL-C levels, might provide additional insight into the underlying pathophysiology associated with increased CV risk in T1D. In the current review, we will provide a detailed overview of the current evidence for a role of HDL function as independent risk factor for the development of CVD in T1D.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
24
|
Kamtchueng Simo O, Ikhlef S, Berrougui H, Khalil A. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages. Can J Physiol Pharmacol 2017; 95:977-984. [PMID: 28704619 DOI: 10.1139/cjpp-2017-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [3H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [3H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Collapse
Affiliation(s)
| | - Souade Ikhlef
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Hicham Berrougui
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Abdelouahed Khalil
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,c Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
25
|
Gomes DJ, Velosa AP, Okuda LS, Fusco FB, da Silva KS, Pinto PR, Nakandakare ER, Correa-Giannella ML, Woods T, Brimble MA, Pickford R, Rye KA, Teodoro WR, Catanozi S, Passarelli M. Glycated albumin induces lipid infiltration in mice aorta independently of DM and RAS local modulation by inducing lipid peroxidation and inflammation. J Diabetes Complications 2016; 30:1614-1621. [PMID: 27440461 DOI: 10.1016/j.jdiacomp.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 01/01/2023]
Abstract
AIMS Advanced glycated albumin (AGE-albumin) adversely impairs macrophage lipid homeostasis in vitro, which may be prevented by angiotensin receptor blockers. In vivo studies are inconclusive whether AGE-albumin itself plays important role in early-stage atherogenesis. We aimed at investigating how AGE-albumin by itself drives atherosclerosis development in dyslipidemic non-diabetic mice and if its effects are due to the activation of renin-angiotensin system in the arterial wall and the expression of genes and proteins involved in lipid flux. METHODS AND RESULTS Murine albumin glycation was induced by incubation with 10mM glycolaldehyde and C-albumin with PBS alone. Twelve-week-old-male apoE knockout mice were submitted to a daily IP injection of control (C) or AGE-albumin (2mg/mL) during 30days with or without losartan (LOS: 100mg/L; C+LOS and AGE+LOS). Aortic arch was removed, and gene expression was determined by RT-PCR and protein content by immunofluorescence. Plasma lipid and glucose levels were similar among groups. Systolic blood pressure was similarly reduced in both groups treated with LOS. In comparison to C-albumin, aortic lipid infiltration was 5.3 times increased by AGE-albumin, which was avoided by LOS. LOS prevented the enhancement induced by AGE-albumin in Ager, Tnf and Cybb mRNA levels but did not reduce Olr1. Nfkb and Agt mRNA levels were unchanged by AGE-albumin. LOS similarly reduced Agtr1a mRNA level in both C and AGE-albumin groups. In AGE-albumin-treated mice, immunofluorescence for carboxymethyl-lysine, 4-hydroxynonenal and RAGE was respectively, 4.8, 2.6 and 1.7 times enhanced in comparison to C-albumin. These increases were all avoided by LOS. CONCLUSIONS AGE-albumin evokes a pre-stage of atherogenesis in dyslipidemic mice independently of the presence of diabetes mellitus or modulation in the RAS in part by the induction of lipid peroxidation and inflammation.
Collapse
Affiliation(s)
- Diego Juvenal Gomes
- Lipids Laboratory (LIM 10), Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Velosa
- Rheumatology Division (LIM 17), Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Fernanda Bueno Fusco
- Lipids Laboratory (LIM 10), Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Paula Ramos Pinto
- Lipids Laboratory (LIM 10), Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratory of Carbohydrates and Radioimuneassays (LIM 18), Medical School, University of São Paulo, São Paulo, Brazil
| | - Tom Woods
- School of Chemical Sciences and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret Anne Brimble
- School of Chemical Sciences and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Walcy Rosolia Teodoro
- Rheumatology Division (LIM 17), Medical School, University of São Paulo, São Paulo, Brazil
| | - Sergio Catanozi
- Lipids Laboratory (LIM 10), Medical School, University of São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM 10), Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Scherrer D, Zago V, Parra E, Avansini S, Panzoldo N, Alexandre F, Baracat J, Nakandakare E, Quintão E, de Faria E. Asymptomatic individuals with high HDL-C levels overexpress ABCA1 and ABCG1 and present miR-33a dysregulation in peripheral blood mononuclear cells. Gene 2015; 570:50-6. [DOI: 10.1016/j.gene.2015.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
|
27
|
Gleißner CA. The vulnerable vessel. Vascular disease in diabetes mellitus. Hamostaseologie 2015; 35:267-71. [PMID: 25990316 DOI: 10.5482/hamo-14-11-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/04/2015] [Indexed: 01/11/2023] Open
Abstract
Diabetes represents one of the most important risk factors for atherosclerosis, which is the leading cause of mortality worldwide. Recent imaging studies employing intravascular ultrasound or computed coronary angiography tomography clearly confirm that diabetes is associated with larger plaque burden and with more lesions displaying features of instability. Various molecular mechanisms promoting atherogenesis and plaque destabilization in diabetics have been described in the past. The current review specifically focuses on recent papers that have addressed the effects of diabetes and hyperglycemia (i) on myeloid cells, (ii) on oxidative stress, and (iii) on protein kinase C (PKC) activation. Thus, it has been demonstrated that hyperglycemia may promote myelopoiesis and differentiation of pro-inflammatory macrophages. Furthermore, novel studies emphasize the interplay between inflammation and oxidative stress at both the molecular and the genetic level. Finally, experimental studies shed light on the role of PKC-β in diabetes-associated atherosclerosis. Several of these recent studies suggest that atherogenesis and plaque destabilization in diabetic individuals may be mediated by diabetes-specific mechanisms. This may open the door for developing tailored anti-atherosclerotic therapies for diabetic patients.
Collapse
Affiliation(s)
- C A Gleißner
- Priv.-Doz. Dr. med. Christian A. Gleißner, Abteilung für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Tel. 062 21/56 86 11, Fax 062 21/56 55 15,
| |
Collapse
|
28
|
Machado-Lima A, Iborra RT, Pinto RS, Castilho G, Sartori CH, Oliveira ER, Okuda LS, Nakandakare ER, Giannella-Neto D, Machado UF, Corrêa-Giannella MLC, Traldi P, Porcu S, Roverso M, Lapolla A, Passarelli M. In Type 2 Diabetes Mellitus Glycated Albumin Alters Macrophage Gene Expression Impairing ABCA1-Mediated Cholesterol Efflux. J Cell Physiol 2015; 230:1250-7. [DOI: 10.1002/jcp.24860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Adriana Machado-Lima
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Rodrigo T. Iborra
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Raphael S. Pinto
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Gabriela Castilho
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Camila H. Sartori
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Erika R. Oliveira
- Cellular and Molecular Endocrinology Laboratory (LIM 25); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Ligia S. Okuda
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Edna R. Nakandakare
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | | | - Ubiratan F. Machado
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Maria Lucia C. Corrêa-Giannella
- Cellular and Molecular Endocrinology Laboratory (LIM 25); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | | | - Simona Porcu
- Department of Medicine; University of Padova; Padova Italy
| | - Marco Roverso
- Department of Medicine; University of Padova; Padova Italy
| | | | - Marisa Passarelli
- Lipids Laboratory (LIM 10); Faculty of Medical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
29
|
Traldi P, Castilho G, Sartori CH, Machado-Lima A, Nakandakare ER, Corrêa-Giannella MLC, Roverso M, Porcu S, Lapolla A, Passarelli M. Glycated human serum albumin isolated from poorly controlled diabetic patients impairs cholesterol efflux from macrophages: an investigation by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:233-244. [PMID: 26307703 DOI: 10.1255/ejms.1322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advanced glycation end-products impair ABCA-1-mediated cholesterol efflux by eliciting inflammation, the generation of reactive oxygen species and endoplasmatic reticulum (ER) stress. The glycation level of human serum albumin (HSA) from type 1 and type 2 diabetic patients was determined by matrix assisted laser desorption/ionization (MALDI) mass spectrometry and related to possible impairment of ER function and cellular cholesterol efflux. Comparison of the MALDI spectra from healthy and diabetic subjects allowed us to determine an increased HSA mean mass of 1297 Da for type 1 and 890 Da for type 2. These values reflect a mean condensation of at least 8 glucose units and 5 glucose units, respectively. Mouse peritoneal macrophages were treated with HSA from control, type 1 and type 2 diabetic subjects in order to measure the expression of Grp78, Grp94, protein disulfide isomerase (PDI), calreticulin (CRT) and ABCA-1. (14)C-cholesterol overloaded-J774 macrophages were treated with HSA from control and diabetic subjects and further incubated with apo A-1 to determine the cholesterol efflux. Combined analyses comprising HSA from type 1 and type 2 diabetic patients were performed in cellular functional assays. In macrophages, PDI expression increased 89% and CRT 3.4 times in comparison to HSA from the control subjects. ABCA-1 protein level and apo A-I mediated cholesterol efflux were, respectively, 50% and 60% reduced in macrophages exposed to HSA from type 1 and type 2 diabetic patients when compared to that exposed to HSA from control subjects. We provide evidence that the level of glycation that occurs in albumin in vivo damages the ER function related to the impairment in macrophage reverse cholesterol transport and so contributes to atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Pietro Traldi
- CNR-IENI, Corso Stati Uniti 4, I35127 Padova, Italy.
| | - Gabriela Castilho
- Lipids Laboratory (LIM 10), University of São Paulo Medical School. São Paulo, SP, Brazil.
| | - Camila H Sartori
- Lipids Laboratory (LIM 10), University of São Paulo Medical School. São Paulo, SP, Brazil.
| | - Adriana Machado-Lima
- Lipids Laboratory (LIM 10), University of São Paulo Medical School. São Paulo, SP, Brazil.
| | - Edna R Nakandakare
- Lipids Laboratory (LIM 10), University of São Paulo Medical School. São Paulo, SP, Brazil.
| | - Maria Lucia C Corrêa-Giannella
- Cellular and Molecular Endocrinology Laboratory (LIM 25), University of São Paulo Medical School. São Paulo, SP, Brazil.
| | - Marco Roverso
- Department of Medicine, University of Padova, via Giustiniani 2, I35100 Padova, Italy.
| | - Simona Porcu
- Department of Medicine, University of Padova, via Giustiniani 2, I35100 Padova, Italy.
| | - Annunziata Lapolla
- Department of Medicine, University of Padova, via Giustiniani 2, I35100 Padova, Italy.
| | - Marisa Passarelli
- Lipids Laboratory (LIM 10), University of São Paulo Medical School. São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Kim W, Kim KJ, Lee BW, Kang ES, Cha BS, Lee HC. The glycated albumin to glycated hemoglobin ratio might not be associated with carotid atherosclerosis in patients with type 1 diabetes. Diabetes Metab J 2014; 38:456-63. [PMID: 25541609 PMCID: PMC4273032 DOI: 10.4093/dmj.2014.38.6.456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The ratio of glycated albumin to glycated hemoglobin (GA/A1c) is known to be elevated in subjects with type 2 diabetes mellitus (T2DM) who had decreased insulin secretion. Additionally, the carotid intima media thickness (IMT) is greater in T2DM patients with higher GA/A1c ratios. We investigated whether increased GA/A1c ratio and IMT are also associated in type 1 diabetes mellitus (T1DM), which is characterized by lack of insulin secretory capacity. METHODS In this cross-sectional study, we recruited 81 T1DM patients (33 men, 48 women; mean age 44.1±13.0 years) who underwent carotid IMT, GA, and HbA1c measurements. RESULTS The mean GA/A1c ratio was 2.90. Based on these results, we classified the subjects into two groups: group I (GA/A1c ratio <2.90, n=36) and group II (GA/A1c ratio ≥2.90, n=45). Compared with group I, the body mass indexes (BMIs), waist circumferences, and IMTs were lower in group II. GA/A1c ratio was negatively correlated with BMI, urine albumin to creatinine ratio (P<0.001 for both), and both the mean and maximal IMT (P=0.001, both). However, after adjusting the confounding factors, we observed that IMT was no longer associated with GA/A1c ratio. CONCLUSION In contrast to T2DM, IMT was not significantly related to GA/A1c ratio in the subjects with T1DM. This suggests that the correlations between GA/A1c ratio and the parameters known to be associated with atherosclerosis in T2DM could be manifested differently in T1DM. Further studies are needed to investigate these relationships in T1DM.
Collapse
Affiliation(s)
- Wonjin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Joon Kim
- Severance Executive Healthcare Clinic, Yonsei University Health System, Seoul, Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Chul Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Machado JT, Iborra RT, Fusco FB, Castilho G, Pinto RS, Machado-Lima A, Nakandakare ER, Seguro AC, Shimizu MH, Catanozi S, Passarelli M. N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1. Atherosclerosis 2014; 237:343-52. [DOI: 10.1016/j.atherosclerosis.2014.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023]
|
32
|
Spartano NL, Lamon-Fava S, Matthan NR, Ronxhi J, Greenberg AS, Obin MS, Lichtenstein AH. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages. Exp Clin Endocrinol Diabetes 2014; 122:463-8. [PMID: 24838154 DOI: 10.1055/s-0034-1374600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM).10 subjects (4 F/6 M, 50-85 years, BMI 25-35 kg/m²) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D- or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined.Baseline ABCA1and ABCG1 expression was lower (>50%) in human monocytes and PBMC than leukocytes (p<0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37% and 30%, respectively (p<0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10%; p<0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression.Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- N L Spartano
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - S Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - N R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - J Ronxhi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - A S Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - M S Obin
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - A H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
33
|
The Janus face of PAMAM dendrimers used to potentially cure nonenzymatic modifications of biomacromolecules in metabolic disorders-a critical review of the pros and cons. Molecules 2013; 18:13769-811. [PMID: 24213655 PMCID: PMC6269987 DOI: 10.3390/molecules181113769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus, which is characterised by high blood glucose levels and the burden of various macrovascular and microvascular complications, is a cause of much human suffering across the globe. While the use of exogenous insulin and other medications can control and sometimes prevent various diabetes-associated sequelae, numerous diabetic complications are still commonly encountered in diabetic patients. Therefore, there is a strong need for safe and effective antihyperglycaemic agents that provide an alternative or compounding option for the treatment of diabetes. In recent years, amino-terminated poly(amido)amine (PAMAM) dendrimers (G2, G3 and G4) have attracted attention due to their protective value as anti-glycation and anti-carbonylation agents that can be used to limit the nonenzymatic modifications of biomacromolecules. The focus of this review is to present a detailed survey of our own data, as well as of the available literature regarding the toxicity, pharmacological properties and overall usefulness of PAMAM dendrimers. This presentation pays particular and primary attention to their therapeutic use in poorly controlled diabetes and its complications, but also in other conditions, such as Alzheimer’s disease, in which such nonenzymatic modifications may underlie the pathophysiological mechanisms. The impact of dendrimer administration on the overall survival of diabetic animals and on glycosylation, glycoxidation, the brain-blood barrier and cellular bioenergetics are demonstrated. Finally, we critically discuss the potential advantages and disadvantages accompanying the use of PAMAM dendrimers in the treatment of metabolic impairments that occur under conditions of chronic hyperglycaemia.
Collapse
|
34
|
Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 2013; 526:411-28. [PMID: 23747399 DOI: 10.1016/j.gene.2013.05.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/28/2022]
Abstract
The metabolic functions of ATP-binding cassette (or ABC) proteins, one of the largest families of proteins presented in all organisms, have been investigated in many protozoan, animal and plant species. To facilitate more systematic and complicated studies on maize ABC proteins in the future, we present the first complete inventory of these proteins, including 130 open reading frames (ORFs), and provide general descriptions of their classifications, basic structures, typical functions, evolution track analysis and expression profiles. The 130 ORFs were assigned to eight subfamilies based on their structures and homological features. Five of these subfamilies consist of 109 proteins, containing transmembrane domains (TM) performing as transporters. The rest three subfamilies contain 21 soluble proteins involved in various functions other than molecular transport. A comparison of ABC proteins among nine selected species revealed either convergence or divergence in each of the ABC subfamilies. Generally, plant genomes contain far more ABC genes than animal genomes. The expression profiles and evolution track of each maize ABC gene were further investigated, the results of which could provide clues for analyzing their functions. Quantitative real-time polymerase chain reaction experiments (PCR) were conducted to detect induced expression in select ABC genes under several common stresses. This investigation provides valuable information for future research on stress tolerance in plants and potential strategies for enhancing maize production under stressful conditions.
Collapse
|