1
|
Zandawala M, Bilal Amir M, Shin J, Yim WC, Alfonso Yañez Guerra L. Proteome-wide neuropeptide identification using NeuroPeptide-HMMer (NP-HMMer). Gen Comp Endocrinol 2024; 357:114597. [PMID: 39084320 DOI: 10.1016/j.ygcen.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on Drosophila melanogaster, Daphnia pulex, Tribolium castaneum and Tenebrio molitor demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; Integrative Neuroscience Program, University of Nevada, Reno, NV 89557, USA; Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Muhammad Bilal Amir
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Joel Shin
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Luis Alfonso Yañez Guerra
- School of Biological Sciences, University of Southampton, University Road, SO17 1BJ Southampton, UK; Institute for Life Sciences, University of Southampton, University Road SO17 1BJ, Southampton, UK.
| |
Collapse
|
2
|
Sosnowski MJ, Brosnan SF. Conserved and differing functions of the endocrine system across different social systems - oxytocin as a case study. Front Endocrinol (Lausanne) 2024; 15:1418089. [PMID: 39055053 PMCID: PMC11269223 DOI: 10.3389/fendo.2024.1418089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
A key goal of the field of endocrinology has been to understand the hormonal mechanisms that drive social behavior and influence reactions to others, such as oxytocin. However, it has sometimes been challenging to understand which aspects and influences of hormonal action are conserved and common among mammalian species, and which effects differ based on features of these species, such as social system. This challenge has been exacerbated by a focus on a relatively small number of traditional model species. In this review, we first demonstrate the benefits of using non-traditional models for the study of hormones, with a focus on oxytocin as a case study in adding species with diverse social systems. We then expand our discussion to explore differing effects of oxytocin (and its response to behavior) within a species, with a particular focus on relationship context and social environment among primate species. Finally, we suggest key areas for future exploration of oxytocin's action centrally and peripherally, and how non-traditional models can be an important resource for understanding the breadth of oxytocin's potential effects.
Collapse
Affiliation(s)
- Meghan J. Sosnowski
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Sarah F. Brosnan
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Language Research Center, Georgia State University, Decatur, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
3
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Liu W, Liu Y, Wei F, Chen J, Zhou L, Yu H, Zhang J, Hu J. NTR-1's essential contribution to asymmetric mating between two sibling nematode Species: Bursaphelenchus xylophilus and B. Mucronatus. Gene 2024; 895:148006. [PMID: 37979950 DOI: 10.1016/j.gene.2023.148006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The pine-wood invasive species nematode Bursaphelenchus xylophilus causes great forestry damage globally, particularly in Eurasia. B. xylophilus can hybridize with its native sibling, Bursaphelenchus mucronatus, with whom it shares an interestingly asymmetric mating behavior. However, the molecular mechanism underlying interspecific asymmetric mating has yet to be clarified. ntr-1, a nematocin receptor gene, is involved in an oxytocin/vasopressin-like signaling system that can regulate reproduction. Structural analysis using bioinformatics revealed that both Bxy- and Bmu-ntr-1 encode 7TM-GPCR, a conserved sequence. In situ hybridization and qPCR showed that both Bxy- and Bmu-ntr-1 were highly expressed in adult nematodes. Specifically, Bxy-ntr-1 was expressed in the vulva of females and caudal gonad of males, whereas Bmu-ntr-1 was expressed in the postal vulva and uterus of females and the whole gonads of males. Furthermore, RNAi of ntr-1 further demonstrated the biological function of interspecific mating: ntr-1 can regulate mating behavior, lead to male-female specificity, and ultimately result in interspecific differences. In B. mucronatus, ntr-1 influenced male mating more than female mating success, while downregulation of ntr-1 in B. xylophilus resulted in a significant decline in the female mating rate. Competitive tests revealed that the mating rate of the cross significantly declined after downregulation of Bxy♀- and Bmu♂-ntr-1, but no obvious change occurred in the reciprocal cross. Thus, we speculate that ntr-1 may be the key factor behind interspecific asymmetric mating. The current study (1) demonstrated the regulatory function of ntr-1 on mating behavior and (2) theoretically revealed the molecular basis of interspecific asymmetric mating.
Collapse
Affiliation(s)
- Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yinru Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Fengyuan Wei
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Lifeng Zhou
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Hongshi Yu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
6
|
Cong X, Liu H, Zheng Y, Chen M. A Putative Role of Vasopressin/Oxytocin-Type Neuropeptide in Osmoregulation and Feeding Inhibition of Apostichopus japonicus. Int J Mol Sci 2023; 24:14358. [PMID: 37762661 PMCID: PMC10532012 DOI: 10.3390/ijms241814358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Vasopressin/oxytocin (VP/OT)-type neuropeptide is an ancient neurophysin-associated neuropeptide and has been intensively studied to be involved in multiple physiological processes in protostomian and deuterostome vertebrates. However, little is known about the functions of VP/OT-type neuropeptide in deuterostome invertebrates especially in echinoderms. Here, we firstly report VP/OT-type neuropeptide signaling in an important economic species, Apostichopus japonicus, which is widely cultured in Asia, with high nutritional and medicinal values. Molecular characterization analysis of holotocin and its precursor revealed the highly conserved features of VP/OT family. The candidate receptor for holotocin (AjHOR) was confirmed to be able to activate the signaling via cAMP-PKA and possible Ca2+-PKC pathway, and further activated the downstream ERK1/2 cascade. Holotocin precursor expression profile showed that they were mainly concentrated in circumoral nerve ring. Furthermore, in vitro pharmacological experiments demonstrated that holotocin caused contractile responses in preparations from A. japonicus. And in vivo functional studies indicated that short-term injection of holotocin resulted in body bloat and long-term injection resulted in reduced body mass, suggesting potential roles of holotocin in osmoregulation and feeding co-inhibition with holotocin-CCK. Our findings provided a comprehensive description of AjHOR-holotocin signaling, revealed ancient roles of holotocin in osmoregulation and feeding inhibition by controlling muscle contractions.
Collapse
Affiliation(s)
| | | | | | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (X.C.); (H.L.); (Y.Z.)
| |
Collapse
|
7
|
Kavaliers M, Wah DTO, Bishnoi IR, Ossenkopp KP, Choleris E. Disgusted snails, oxytocin, and the avoidance of infection threat. Horm Behav 2023; 155:105424. [PMID: 37678092 DOI: 10.1016/j.yhbeh.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Disgust is considered to be a fundamental affective state associated with triggering the behavioral avoidance of infection and parasite/pathogen threat. In humans, and other vertebrates, disgust affects how individuals interact with, and respond to, parasites, pathogens and potentially infected conspecifics and their sensory cues. Here we show that the land snail, Cepaea nemoralis, displays a similar "disgust-like" state eliciting behavioral avoidance responses to the mucus associated cues of infected and potentially infected snails. Brief exposure to the mucus of snails treated with the Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), elicited dose-related behavioral avoidance, including acute antinociceptive responses, similar to those expressed by mammals. In addition, exposure to the mucus cues of LPS treated snails led to a subsequent avoidance of unfamiliar individuals, paralleling the recognition of and avoidance responses exhibited by vertebrates exposed to potential pathogen risk. Further, the avoidance of, and antinociceptive responses to, the mucus of LPS treated snails were attenuated in a dose-related manner by the oxytocin (OT) receptor antagonist, L-368,899. This supports the involvement of OT and OT receptor homologs in the expression of infection avoidance, and consistent with the roles of OT in the modulation of responses to salient social and infection threats by rodents and other vertebrates. These findings with land snails are indicative of evolutionarily conserved disgust-like states associated with OT/OT receptor homolog modulated behavioral avoidance responses to infection and pathogen threat.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Deanne T O Wah
- Department of Psychology, University of Western Ontario, London, Canada
| | - Indra R Bishnoi
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Trigo S, Silva PA, Cardoso GC, Soares MC. Effects of mesotocin manipulation on the behavior of male and female common waxbills. Physiol Behav 2023; 267:114226. [PMID: 37150430 DOI: 10.1016/j.physbeh.2023.114226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
The oxytocin family of neuropeptides is implicated in the regulation of sociality across vertebrates. Non-mammalian homologs of oxytocin, such as isotocin in fish and mesotocin in amphibians, reptiles and birds, all play crucial roles modulating social and reproductive behavior. In this study, we exogenously manipulated the mesotocinergic system in a highly social bird, the common waxbill Estrild astrild, and tested the effects on affiliative and aggressive behavior by performing tests of competition over food. Birds treated with mesotocin showed a sedative state, decreasing almost all the behaviors we studied (movement, feeding, allopreening), while birds treated with an oxytocin antagonist showed a decrease only in social behaviors (aggressions and allopreening). We also found two sex-specific effects: mesotocin reduced allopreening more in males than females, and the oxytocin antagonist reduced aggressiveness only in females. Our results suggest sex-specific effects in the modulation of affiliative and aggressive behaviors via mesotocinergic pathways.
Collapse
Affiliation(s)
- Sandra Trigo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Paulo A Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Gonçalo C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, 7002-554, Évora, Portugal.
| |
Collapse
|
9
|
Lee YH, Kim MS, Lee Y, Kim DH, Lee JS. Nanoplastics induce epigenetic signatures of transgenerational impairments associated with reproduction in copepods under ocean acidification. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131037. [PMID: 36842400 DOI: 10.1016/j.jhazmat.2023.131037] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification (OA) is one of many major global climate changes that pose a variety of risks to marine ecosystems in different ways. Meanwhile, there is growing concern about how nanoplastics (NPs) affect marine ecosystems. Combined exposure of marine organisms to OA and NPs is inevitable, but their interactive effects remain poorly understood. In this study, we investigated the multi- and transgenerational toxicity of NPs on copepods under OA conditions for ten generations. The findings revealed that OA and NPs have a synergistic negative effect on copepod reproduction across generations. In particular, the transgenerational groups showed reproductive impairments in the F1 and F2 generations (F1T and F2T), even though they were never exposed to NPs. Moreover, our epigenetic examinations demonstrated that the observed intergenerational reproductive impairments are associated with differential methylation patterns of specific genes, suggesting that the interaction of OA and NPs can pose a significant threat to the sustainability of copepod populations through epigenetic modifications. Overall, our findings provide valuable insight into the intergenerational toxicity and underlying molecular mechanisms of responses to NPs under OA conditions.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
11
|
Kobayashi A, Hamada M, Yoshida MA, Kobayashi Y, Tsutsui N, Sekiguchi T, Matsukawa Y, Maejima S, Gingell JJ, Sekiguchi S, Hamamoto A, Hay DL, Morris JF, Sakamoto T, Sakamoto H. Vasopressin-oxytocin-type signaling is ancient and has a conserved water homeostasis role in euryhaline marine planarians. SCIENCE ADVANCES 2022; 8:eabk0331. [PMID: 35245108 PMCID: PMC8896804 DOI: 10.1126/sciadv.abk0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vasopressin/oxytocin (VP/OT)-related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the "platytocin" system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an "antidiuretic hormone" and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.
Collapse
Affiliation(s)
- Aoshi Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Masa-aki Yoshida
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane 685-0024, Japan
| | - Yasuhisa Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Laboratory for Aquatic Biology, Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Naoaki Tsutsui
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Marine Bioresources, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Yuta Matsukawa
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Sho Maejima
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Joseph J. Gingell
- Vertex Pharmaceuticals (Europe) Ltd., Milton Park, Abingdon OX11 4RW, UK
| | - Shoko Sekiguchi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ayumu Hamamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Debbie L. Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - John F. Morris
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Corresponding author.
| |
Collapse
|
12
|
Bales KL, Ardekani CS, Baxter A, Karaskiewicz CL, Kuske JX, Lau AR, Savidge LE, Sayler KR, Witczak LR. What is a pair bond? Horm Behav 2021; 136:105062. [PMID: 34601430 DOI: 10.1016/j.yhbeh.2021.105062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Pair bonding is a psychological construct that we attempt to operationalize via behavioral and physiological measurements. Yet, pair bonding has been both defined differently in various taxonomic groups as well as used loosely to describe not just a psychological and affective phenomenon, but also a social structure or mating system (either social monogamy or just pair living). In this review, we ask the questions: What has been the historical definition of a pair bond? Has this definition differed across taxonomic groups? What behavioral evidence do we see of pair bonding in these groups? Does this observed evidence alter the definition of pair bonding? Does the observed neurobiology underlying these behaviors affect this definition as well? And finally, what are the upcoming directions in which the study of pair bonding needs to head?
Collapse
Affiliation(s)
- Karen L Bales
- Department of Psychology, University of California, Davis, United States of America; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States of America; California National Primate Research Center, United States of America.
| | - Cory S Ardekani
- Department of Psychology, University of California, Davis, United States of America
| | - Alexander Baxter
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Chloe L Karaskiewicz
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Jace X Kuske
- Department of Psychology, University of California, Davis, United States of America
| | - Allison R Lau
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Logan E Savidge
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Kristina R Sayler
- Department of Human Ecology, University of California, Davis, United States of America
| | - Lynea R Witczak
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| |
Collapse
|
13
|
Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, Olivos-Cisneros L, Ebert MS, Kazmi MA, Garrison JL, Bargmann CI, Kronauer DJC. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. PLoS Biol 2021; 19:e3001305. [PMID: 34191794 PMCID: PMC8244912 DOI: 10.1371/journal.pbio.3001305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies. The neuropeptides oxytocin and vasopressin modulate social behavior in vertebrates, but their function in invertebrates is not well understood. Using brain staining and pharmacological manipulations, this study shows that a related neuropeptide, inotocin, affects how ants respond to larvae.
Collapse
Affiliation(s)
- Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail: (IFP); (DJCK)
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Asaf Gal
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Peter R. Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Margaret S. Ebert
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Manija A. Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, United States of America
| | - Jennifer L. Garrison
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Cornelia I. Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- * E-mail: (IFP); (DJCK)
| |
Collapse
|
14
|
Camerino C. Oxytocin Involvement in Body Composition Unveils the True Identity of Oxytocin. Int J Mol Sci 2021; 22:ijms22126383. [PMID: 34203705 PMCID: PMC8232088 DOI: 10.3390/ijms22126383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
The origin of the Oxytocin/Vasopressin system dates back about 600 million years. Oxytocin (Oxt) together with Vasopressin (VP) regulate a diversity of physiological functions that are important for osmoregulation, reproduction, metabolism, and social behavior. Oxt/VP-like peptides have been identified in several invertebrate species and they are functionally related across the entire animal kingdom. Functional conservation enables future exploitation of invertebrate models to study Oxt’s functions not related to pregnancy and the basic mechanisms of central Oxt/VP signaling. Specifically, Oxt is well known for its effects on uteri contractility and milk ejection as well as on metabolism and energy homeostasis. Moreover, the striking evidence that Oxt is linked to energy regulation is that Oxt- and Oxytocin receptor (Oxtr)-deficient mice show late onset obesity. Interestingly Oxt−/− or Oxtr−/− mice develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is expressed in a diversity of skeletal muscle phenotypes and regulates thermogenesis and bone mass. Oxt may increases skeletal muscle tonicity and/or increases body temperature. In this review, the author compared the three most recent theories on the effects of Oxt on body composition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology (Section of Pharmacology), School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Saetan J, Kornthong N, Duangprom S, Phanthong P, Kruangkum T, Sobhon P. The oxytocin/vasopressin-like peptide receptor mRNA in the central nervous system and ovary of the blue swimming crab, Portunus pelagicus. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110983. [PMID: 34004320 DOI: 10.1016/j.cbpa.2021.110983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
The authors recently reported the presence and distribution of oxytocin/vasopressin-like peptide in Portunus pelagicus as well as demonstrated its function to inhibit ovarian steroid release (Saetan et al., 2018). Here, the full-length receptor of this peptide, namely oxytocin/vasopressin-like peptide receptor (PpelOT/VP-like peptide receptor) is reported. The coding region of the PpelOT/VP-like peptide receptor contained 1497 bp which translationally corresponded to 499 amino acids. Sequence analysis revealed its seven transmembrane characteristics, with -two N-linked glycosylation residues located before the first transmembrane domain (TM I). The phylogenetic tree revealed that the PpelOT/VP-like peptide receptor was placed in the group of invertebrate OT/VP-like receptors, and was clearly distinguishable from the V1R, V2R and OTR of vertebrates. Also, this receptor gene transcript was detected in several organs of the blue swimming crab with highest abundance found in brain tissue. In situ hybridization exhibited its distribution in all neuronal clusters of the eyestalk, brain, ventral nerve cord (VNC), as well as in the ovary. Comparative gene expressions between this receptor and its corresponding peptide in immature and mature female crabs revealed no significant difference of the PpelOT/VP-like peptide receptor gene expression in the central nervous system (CNS) and ovary. In contrast, the PpelOT/VP-like peptide gene was shown to significantly express higher in the VNC of immature crabs and in the ovary of mature crabs. Changes in expression of this peptide gene, but not its receptor, might result in ovarian steroid release inhibition. However, the detailed mechanism of this peptide in reproduction regulation will be included in our further studies.
Collapse
Affiliation(s)
- Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Biotechnology and Molecular Biology, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Campbell SK, Cortés-Ortiz L. Oxytocin amino acid variation within Neotropical primates: new genetic variants in hormone and receptor sequences and evidence for evolutionary forces driving this unexpected diversity. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Oxytocin is a mammalian neuropeptide hormone that mediates behaviours important to reproduction. Despite almost universal amino acid sequence conservation across most groups of mammals, several unique forms have been reported across Neotropical primates. To explore sequence diversity, we investigated the genes encoding oxytocin and its receptor across the Atelidae, which was known to contain at least three unique oxytocin sequences. Additionally, we included the genus Cebus, within the Cebidae, to further explore the ubiquity of the Pro8 variant in this family. We found a novel amino acid variant (Val3) within the Atelidae radiation, bringing the total number of oxytocin sequences within Neotropical primates to seven. Analyses of physicochemical properties revealed conservative substitutions that are likely tolerated within the selective constraints imposed by receptor binding. Furthermore, we report radical substitutions at the eighth codon and evidence for co-evolution between Pro8 and a ligand-binding region of the oxytocin receptor in the Atelidae, supporting the notion that this variant may affect binding specificity. Overall, we suggest that selective constraint on binding specificity may maintain proper oxytocin function and that the diversification of amino acid sequence is likely due to a variety of processes such as relaxed constraint, neutral mutation, positive selection and coevolution.
Collapse
Affiliation(s)
- Susanna K Campbell
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
18
|
Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA. Is Oxytocin "Nature's Medicine"? Pharmacol Rev 2020; 72:829-861. [PMID: 32912963 PMCID: PMC7495339 DOI: 10.1124/pr.120.019398] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - William M Kenkel
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Evan L MacLean
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Steven R Wilson
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jason R Yee
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Craig F Ferris
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Hossein P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Stephen W Porges
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - John M Davis
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jessica J Connelly
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Marcy A Kingsbury
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| |
Collapse
|
19
|
Tonna M, Ponzi D, Palanza P, Marchesi C, Parmigiani S. Proximate and ultimate causes of ritual behavior. Behav Brain Res 2020; 393:112772. [PMID: 32544508 DOI: 10.1016/j.bbr.2020.112772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 01/24/2023]
Abstract
Ritual behaviour, intended as a specific, repetitive and rigid form of action flow, appears both in social and non-social environmental contexts, representing an ubiquitous phenomenon in animal life including human individuals and cultures. The purpose of this contribution is to investigate an evolutionary continuum in proximate and ultimate causes of ritual behavior. A phylogenetic homology in proximal mechanisms can be found, based on the repetition of genetically programmed and/or epigenetically acquired action patterns of behavior. As far as its adaptive significance, ethological comparative studies show that the tendency to ritualization is driven by the unpredictability of social or ecological environmental stimuli. In this perspective, rituals may have a "homeostatic" function over unpredictable environments, as further highlighted by psychopathological compulsions. In humans, a circular loop may have occurred among ritual practices and symbolic activity to deal with a novel culturally-mediated world. However, we suggest that the compulsion to action patterns repetition, typical of all rituals, has a genetically inborn motor foundation, thus precognitive and pre-symbolic. Rooted in such phylogenetically conserved motor structure (proximate causes), the evolution of cognitive and symbolic capacities have generated the complexity of human rituals, though maintaining the original adaptive function (ultimate causes) to cope with unpredictable environments.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Mental Health, Local Health Service, Parma, Italy.
| | - Davide Ponzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, Unit of Behavioral Biology, University of Parma, Italy
| |
Collapse
|
20
|
Müller C, Caspers BA, Gadau J, Kaiser S. The Power of Infochemicals in Mediating Individualized Niches. Trends Ecol Evol 2020; 35:981-989. [PMID: 32723498 DOI: 10.1016/j.tree.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Infochemicals, including hormones, pheromones, and allelochemicals, play a central role in mediating information and shaping interactions within and between individuals. Due to their high plasticity, infochemicals are predestined mediators in facilitating individualized niches of organisms. Only recently it has become clear that individual differences are essential to understand how and why individuals realize a tiny subset of the species' niche. Moreover, individual differences have a central role in both ecological adjustment and evolutionary adaptation in a rapidly changing world. Here we highlight that infochemicals act as key signals or cues and empower the realization of the individualized niche through three proposed processes: niche choice, niche conformance, and niche construction.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Behavioral Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
21
|
Odekunle EA, Elphick MR. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front Endocrinol (Lausanne) 2020; 11:225. [PMID: 32362874 PMCID: PMC7181382 DOI: 10.3389/fendo.2020.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of structurally related hypothalamic hormones that regulate blood pressure and diuresis (vasopressin, VP; CYFQNCPRG-NH2) or lactation and uterine contraction (oxytocin, OT; CYIQNCPLG-NH2) was a major advance in neuroendocrinology, recognized in the award of the Nobel Prize for Chemistry in 1955. Furthermore, the discovery of central actions of VP and OT as regulators of reproductive and social behavior in humans and other mammals has broadened interest in these neuropeptides beyond physiology into psychology. VP/OT-type neuropeptides and their G-protein coupled receptors originated in a common ancestor of the Bilateria (Urbilateria), with invertebrates typically having a single VP/OT-type neuropeptide and cognate receptor. Gene/genome duplications followed by gene loss gave rise to variety in the number of VP/OT-type neuropeptides and receptors in different vertebrate lineages. Recent advances in comparative transcriptomics/genomics have enabled discovery of VP/OT-type neuropeptides in an ever-growing diversity of invertebrate taxa, providing new opportunities to gain insights into the evolution of VP/OT-type neuropeptide function in the Bilateria. Here we review the comparative physiology of VP/OT-type neuropeptides in invertebrates, with roles in regulation of reproduction, feeding, and water/salt homeostasis emerging as common themes. For example, we highlight recent reports of roles in regulation of oocyte maturation in the sea-squirt Ciona intestinalis, extraoral feeding behavior in the starfish Asterias rubens and energy status and dessication resistance in ants. Thus, VP/OT-type neuropeptides are pleiotropic regulators of physiological processes, with evolutionarily conserved roles that can be traced back to Urbilateria. To gain a deeper understanding of the evolution of VP/OT-type neuropeptide function it may be necessary to not only determine the actions of the peptides but also to characterize the transcriptomic/proteomic/metabolomic profiles of cells expressing VP/OT-type precursors and/or VP/OT-type receptors within the framework of anatomically and functionally identified neuronal networks. Furthermore, investigation of VP/OT-type neuropeptide function in a wider range of invertebrate species is now needed if we are to determine how and when this ancient signaling system was recruited to regulate diverse physiological and behavioral processes in different branches of animal phylogeny and in contrasting environmental contexts.
Collapse
Affiliation(s)
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
22
|
Odekunle EA, Semmens DC, Martynyuk N, Tinoco AB, Garewal AK, Patel RR, Blowes LM, Zandawala M, Delroisse J, Slade SE, Scrivens JH, Egertová M, Elphick MR. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol 2019; 17:60. [PMID: 31362737 PMCID: PMC6668147 DOI: 10.1186/s12915-019-0680-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes. RESULTS Here, we have identified and functionally characterised a VP/OT-type signalling system comprising the neuropeptide asterotocin and its cognate G-protein coupled receptor in the starfish (sea star) Asterias rubens, a deuterostomian invertebrate belonging to the phylum Echinodermata. Analysis of the distribution of asterotocin and the asterotocin receptor in A. rubens using mRNA in situ hybridisation and immunohistochemistry revealed expression in the central nervous system (radial nerve cords and circumoral nerve ring), the digestive system (including the cardiac stomach) and the body wall and associated appendages. Informed by the anatomy of asterotocin signalling, in vitro pharmacological experiments revealed that asterotocin acts as a muscle relaxant in starfish, contrasting with the myotropic actions of VP/OT-type neuropeptides in vertebrates. Furthermore, in vivo injection of asterotocin had a striking effect on starfish behaviour-triggering fictive feeding where eversion of the cardiac stomach and changes in body posture resemble the unusual extra-oral feeding behaviour of starfish. CONCLUSIONS We provide a comprehensive characterisation of VP/OT-type signalling in an echinoderm, including a detailed anatomical analysis of the expression of both the VP/OT-type neuropeptide asterotocin and its cognate receptor. Our discovery that asterotocin triggers fictive feeding in starfish provides important new evidence of an evolutionarily ancient role of VP/OT-type neuropeptides as regulators of feeding in animals.
Collapse
Affiliation(s)
- Esther A. Odekunle
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Dean C. Semmens
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Nataly Martynyuk
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Clinical Neurosciences, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ UK
| | - Ana B. Tinoco
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Abdullah K. Garewal
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Radhika R. Patel
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Liisa M. Blowes
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Meet Zandawala
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Neuroscience, Brown University, Providence, USA
| | - Jérôme Delroisse
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons (UMONS), 7000 Mons, Belgium
| | - Susan E. Slade
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX UK
| | - James H. Scrivens
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- School of Science, Engineering & Design, Teesside University, Stephenson Street, Tees Valley, TS1 3BA UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| |
Collapse
|
23
|
Taylor JH, Schulte NA, French JA, Toews ML. Binding Characteristics of Two Oxytocin Variants and Vasopressin at Oxytocin Receptors from Four Primate Species with Different Social Behavior Patterns. J Pharmacol Exp Ther 2018; 367:101-107. [PMID: 30068728 PMCID: PMC7250472 DOI: 10.1124/jpet.118.250852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
A clade of New World monkeys (NWMs) exhibits considerable diversity in both oxytocin (OT) ligand and oxytocin receptor (OTR) structure. Most notable is the variant Pro8-OT, with proline instead of leucine at the eighth position, resulting in a rigid bend in the peptide backbone. A higher proportion of species that express Pro8-OT also engage in biparental care and social monogamy. When marmosets (genus Callithrix), a biparental and monogamous Pro8-OT NWM species, are administered the ancestral Leu8-OT, there is no change in social behavior compared with saline treatment. However, when Pro8-OT is administered, marmosets' sociosexual and prosocial behaviors are altered. The studies here tested the hypothesis that OTR binding affinities and OT-induced intracellular Ca2+ potencies would favor the native OT ligand in OTRs from four primate species, each representing a unique combination of ancestral lineage, breeding system, and native OT ligand: humans (Leu8-OT, monogamous, apes), macaques (Leu8-OT, nonmonogamous, Old World monkey), marmosets (Pro8-OT, monogamous, NWM), and titi monkeys (Leu8-OT, monogamous, NWM). OTRs were expressed in immortalized Chinese hamster ovary cells and tested for intact-cell binding affinities for Pro8-OT, Leu8-OT, and arginine vasopressin (AVP), as well as intracellular Ca2+ signaling after stimulation with Pro8-OT, Leu8-OT, and AVP. Contrary to our hypothesis, Pro8-OT bound at modestly higher affinities and stimulated calcium signaling at modestly higher potencies compared with Leu8-OT in all four primate OTRs. Thus, differences downstream from a ligand-receptor binding event are more likely to explain the different behavioral responses to these two ligands.
Collapse
Affiliation(s)
- Jack H Taylor
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Nancy A Schulte
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Jeffrey A French
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Myron L Toews
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| |
Collapse
|
24
|
|
25
|
Aydoğan A, Bingöl SA. Examination of the immunohistochemical localization and gene expression by RT-PCR of the oxytocin receptor in diabetic and non-diabetic mouse testis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:695-700. [PMID: 30140408 PMCID: PMC6098958 DOI: 10.22038/ijbms.2018.28069.6820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective(s): The aim of this study was to determine Oxytocin receptor (OTR) gene expression and localization in diabetic and non-diabetic mouse testes by RT-PCR and immunohistochemistry, respectively. Materials and Methods: In this study, 18 male BALB/c mice (8–12 weeks old) were used and divided into three groups: diabetic, sham, and control. Streptozotocin (STZ) was applied to the diabetic group and sodium citrate was administered to the sham group in the same way, however, the control group was left untouched. The testicular tissues were removed on the thirtieth day of testing; the right testis tissues were passed through a routine histologic process and sections were stained with H&E and PAS staining techniques. The avidin-biotin-peroxidase method was applied to determine OTR immunoreactivity, while the left testis tissues were used for RT-PCR. Results: It was found that the body weight had decreased in the diabetic group and the diameter of the seminiferous tubules in the said group was shorter than those of the other groups. There were no obvious differences with regard to the histologic appearance between the groups. The immunohistochemical examination showed that the OTR immunoreactivity was strong in the control and sham groups but weak in the diabetic group, and the immunoreactivity was only seen in the Leydig cells. In addition, the OTR gene expression was lower in the diabetic group than in the other groups. Conclusion: We concluded that diabetes reduces the OTR expression in the testis. It is suggested that OTR protection should be researched in diabetes for healthy reproduction and sexuality.
Collapse
Affiliation(s)
- Ayşe Aydoğan
- Veterinary Faculty, Histology and Embryology Department, Kafkas University, 36100, Kars, Turkey
| | - Seyit Ali Bingöl
- Medicine Faculty, Histology and Embryology Department, Kafkas University, 36100, Kars, Turkey
| |
Collapse
|
26
|
Discovery of peptide probes to modulate oxytocin-type receptors of insects. Sci Rep 2018; 8:10020. [PMID: 29968789 PMCID: PMC6030093 DOI: 10.1038/s41598-018-28380-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/21/2018] [Indexed: 11/08/2022] Open
Abstract
The oxytocin/vasopressin signalling system is conserved across the animal kingdom. In insects, the role of oxytocin-type (inotocin) neuropeptides has only been studied in locusts, beetles and ants, but their physiology continues to be poorly understood. One reason for this knowledge deficit is the lack of available research tools to complement functional genomics efforts. Consequently, ligands to probe insect inotocin receptors are essential. In this study, we sought to identify novel agonists and antagonists of the inotocin receptor from the representative model species Tribolium castaneum and Lasius niger. Drawing upon known ligands of the human receptors, we examined the pharmacology of the plant-derived cyclotide kalata B7 and the synthetic oxytocin analogue atosiban. Kalata B7 is a weak partial agonist of both inotocin receptors. This is the first reported direct interaction of cyclotides with an insect receptor, an observation that may explain their presumed role in herbivore defence. Furthermore, we discovered atosiban is an antagonist of the Tribolium receptor, which may provide a useful probe to investigate the functionality of inotocin signalling in beetles and related insect species. Our findings will enable further examination of insect inotocin receptor pharmacology and physiology, and may trigger studies to comprehend the interaction of plant cyclotides and insects.
Collapse
|
27
|
Oxytocin Signaling in the Lateral Septum Prevents Social Fear during Lactation. Curr Biol 2018; 28:1066-1078.e6. [DOI: 10.1016/j.cub.2018.02.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/03/2023]
|
28
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
29
|
Yao S, Bergan J, Lanjuin A, Dulac C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 2017; 6:31373. [PMID: 29231812 PMCID: PMC5768418 DOI: 10.7554/elife.31373] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/11/2017] [Indexed: 01/30/2023] Open
Abstract
The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncovered significant changes in the sensory representation of conspecific cues in the absence of oxytocin signaling. Finally, acute manipulation of oxytocin signaling in adults is sufficient to alter social interaction preferences in males as well as responses of MeA neurons to chemosensory cues. These results uncover the critical role of oxytocin signaling in a molecularly defined neuronal population in order to modulate the behavioral and physiological responses of male mice to females on a moment-to-moment basis.
Collapse
Affiliation(s)
- Shenqin Yao
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Joseph Bergan
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Anne Lanjuin
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
30
|
An oxytocin-dependent social interaction between larvae and adult C. elegans. Sci Rep 2017; 7:10122. [PMID: 28860630 PMCID: PMC5579267 DOI: 10.1038/s41598-017-09350-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Oxytocin has a conserved role in regulating animal social behaviour including parental-offspring interactions. Recently an oxytocin-like neuropeptide, nematocin, and its cognate receptors have been identified in the nematode Caenorhabditis elegans. We provide evidence for a pheromone signal produced by C. elegans larvae that modifies the behaviour of adult animals in an oxytocin-dependent manner increasing their probability of leaving a food patch which the larvae are populating. This increase is positively correlated to the size of the larval population but cannot be explained by food depletion nor is it modulated by biogenic amines, which suggest it is not an aversive behaviour. Moreover, the food-leaving behaviour is conspecific and pheromone dependent: C. elegans adults respond more strongly to C. elegans larvae compared to other nematode species and this effect is absent in C. elegans daf-22 larvae which are pheromone deficient. Neurotransmitter receptors previously implicated in C. elegans foraging decisions NPR-1 and TYRA-3, for NPY-like neuropeptides and tyramine respectively, do not appear to be involved in oxytocin-dependent adult food-leaving. We conclude oxytocin signals within a novel neural circuit that regulates parental-offspring social behaviour in C. elegans and that this provides evidence for evolutionary conservation of molecular components of a parental decision making behaviour.
Collapse
|
31
|
Ziegler TE, Crockford C. Neuroendocrine control in social relationships in non-human primates: Field based evidence. Horm Behav 2017; 91:107-121. [PMID: 28284710 PMCID: PMC6372243 DOI: 10.1016/j.yhbeh.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Primates maintain a variety of social relationships and these can have fitness consequences. Research has established that different types of social relationships are unpinned by different or interacting hormonal systems, for example, the neuropeptide oxytocin influences social bonding, the steroid hormone testosterone influences dominance relationships, and paternal care is characterized by high oxytocin and low testosterone. Although the oxytocinergic system influences social bonding, it can support different types of social bonds in different species, whether pair bonds, parent-offspring bonds or friendships. It seems that selection processes shape social and mating systems and their interactions with neuroendocrine pathways. Within species, there are individual differences in the development of the neuroendocrine system: the social environment individuals are exposed to during ontogeny alters their neuroendocrine and socio-cognitive development, and later, their social interactions as adults. Within individuals, neuroendocrine systems can also have short-term effects, impacting on social interactions, such as those during hunting, intergroup encounters or food sharing, or the likelihood of cooperating, winning or losing. To understand these highly dynamic processes, extending research beyond animals in laboratory settings to wild animals living within their natural social and ecological setting may bring insights that are otherwise unreachable. Field endocrinology with neuropeptides is still emerging. We review the current status of this research, informed by laboratory studies, and identify questions particularly suited to future field studies. We focus on primate social relationships, specifically social bonds (mother-offspring, father-offspring, cooperative breeders, pair bonds and adult platonic friendships), dominance, cooperation and in-group/out-group relationships, and examine evidence with respect to the 'tend and defend' hypothesis.
Collapse
Affiliation(s)
- Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
32
|
Leng G, Sabatier N. Oxytocin - The Sweet Hormone? Trends Endocrinol Metab 2017; 28:365-376. [PMID: 28283319 DOI: 10.1016/j.tem.2017.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Mammalian neurons that produce oxytocin and vasopressin apparently evolved from an ancient cell type with both sensory and neurosecretory properties that probably linked reproductive functions to energy status and feeding behavior. Oxytocin in modern mammals is an autocrine/paracrine regulator of cell function, a systemic hormone, a neuromodulator released from axon terminals within the brain, and a 'neurohormone' that acts at receptors distant from its site of release. In the periphery oxytocin is involved in electrolyte homeostasis, gastric motility, glucose homeostasis, adipogenesis, and osteogenesis, and within the brain it is involved in food reward, food choice, and satiety. Oxytocin preferentially suppresses intake of sweet-tasting carbohydrates while improving glucose tolerance and supporting bone remodeling, making it an enticing translational target.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK.
| | - Nancy Sabatier
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
33
|
Stoop R, Yu X. Special issue on: "Oxytocin in development and plasticity". Dev Neurobiol 2017; 77:125-127. [PMID: 27907268 DOI: 10.1002/dneu.22470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ron Stoop
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital Center (CHUV), Prilly-Lausanne, 1008, Switzerland
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|