1
|
Pelletier R, Le Daré B, Kerforne T, Parvedy NP, Lemaitre F, Tron C, Maunand K, Corlu A, Morel I, Rayar M, Gicquel T. Cathinone metabolism and biliary excretion in an ex-vivo pig liver model: Example of 4-Cl-PVP and eutylone. Food Chem Toxicol 2025; 196:115217. [PMID: 39793951 DOI: 10.1016/j.fct.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE Recently, the pig liver model perfused ex vivo using a normothermic machine perfusion (NMP) has been proposed as a suitable model to study xenobiotic metabolism and biliary excretion. The aim of our study is to describe the metabolism of NPS such as cathinones (with a focus on 4-Cl-PVP and eutylone) in blood and bile, using a normothermic perfused pig liver model. METHODS Livers (n = 4) from male large white pigs, 3-4 months of age and weighing approximately 75-80 kg, were harvested and reperfused onto an NMP (LiverAssist®, XVIVO) using autologous whole blood at 38 °C. 4-Cl-PVP and eutylone were administered as a bolus in the circulating blood at T0 with the aim of achieving a concentration of 1 μg/mL in the reperfusion system. The assays were carried out on plasma and bile between 0 and 120 min after cathinone administration using an targeted and untargeted approaches based on liquid chromatography coupled with high resolution mass spectrometry (Q-Exactive Thermo Scientific®). RESULTS In plasma, the concentration of 4-Cl-PVP and eutylone decreased rapidly with elimination half-lives of 4 min and 0.25 min, respectively. Their phase I and phase II metabolites were detected in plasma as early as 1 min. In bile, 4-Cl-PVP and eutylone were detected with maximum intensity between 0 and 30 min post-administration, and the main metabolites found in plasma were found in bile. Phase II derivatives showed increasing biliary excretion over time up to 120 min. CONCLUSION The pig liver model perfused ex vivo using an NMP represent a promising model in pharmaco-toxicology, particularly for toxicokinetic investigations of cathinones. This model may be of interest in the absence of authentic cases of cathinone consumption or other NPS consumption to identify relevant metabolites consumption markers. In addition, the possibility of collecting bile in this model represents an additional advantage for studying biliary excretion of NPS and their metabolites in forensic toxicology.
Collapse
Affiliation(s)
- Romain Pelletier
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Laboratoire de toxicologie biologique et Médico-légale, CHU Rennes, Rennes, France.
| | - Brendan Le Daré
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Pôle Pharmacie, CHU Rennes, Rennes, France
| | - Thomas Kerforne
- Unité Irmetist, Inserm U1313, CHU de Poitiers, Poitiers, France; Service D'anesthésie-réanimation et Médecine Périopératoire, CHU de Poitiers, Poitiers, France
| | - Nicolas Patou Parvedy
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Département Anesthésie Réanimation et Médecine Périopératoire, CHU de Rennes, Rennes, France
| | - Florian Lemaitre
- Service de Pharmacologie Clinique, Centre D'investigation Clinique, CHU de Rennes, Rue Henri Le Guilloux, 35000 Rennes, France
| | - Camille Tron
- Service de Pharmacologie Clinique, Centre D'investigation Clinique, CHU de Rennes, Rue Henri Le Guilloux, 35000 Rennes, France
| | - Kevin Maunand
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Biopredic International, Parc D'Activité de La Bretèche Bâtiment A4, Saint Grégoire, 35760, France
| | - Anne Corlu
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France
| | - Isabelle Morel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Laboratoire de toxicologie biologique et Médico-légale, CHU Rennes, Rennes, France
| | - Michel Rayar
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Service de Chirurgie Hépatobiliaire et Digestif, CHU de Rennes, Rennes, France
| | - Thomas Gicquel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Laboratoire de toxicologie biologique et Médico-légale, CHU Rennes, Rennes, France
| |
Collapse
|
2
|
Diana Lima C, Arantes LC, Machado LL, Paixão TRLC, dos Santos WTP. Synthetic Cathinones' Comprehensive Screening and Classification by Voltammetric and Chemometric Analyses: A Powerful Method for On-Site Forensic Applications. Anal Chem 2024; 96:17746-17753. [PMID: 39450980 PMCID: PMC11541890 DOI: 10.1021/acs.analchem.4c04059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The use of synthetic cathinones (SCs) has increased in recent years, posing significant public health problems due to their adverse effects and potential for fatal poisonings. The structural diversity and rapid emergence of new SC analogues create challenges for law enforcement and drug screening techniques. This work presents for the first time the electrochemical detection of SCs using differential pulse voltammetry (DPV) on a boron-doped diamond electrode (BDDE). We analyzed 15 SCs, including well-known compounds such as mephedrone, methylone, and ephylone, revealing distinct electrochemical profiles with two characteristic reduction peaks (R1 and R2). The method was optimized in Britton-Robinson buffer (0.1 mol L-1, pH 8.0) and demonstrated a high selectivity and sensitivity. Multivariate statistical methods, including principal component analysis and hierarchical cluster analysis, classified SCs into six distinct groups. The DPV optimization and analytical parameter determination, including the limit of detection (LOD), were performed for the least electroactive SC, 4'-methyl-α-pyrrolidinohexanophenone, yielding an LOD of 3.8 μmol L-1, suitable for screening street samples. Interference studies with common illicit drugs and adulterants confirmed the selectivity of the DPV-BDDE method. Preliminary identification of SCs in 46 real seized samples was successfully performed using this method with results validated by liquid chromatography-mass spectrometry (LC-MS). The method also identified three SCs not included in the original set: bupropion, benzylone, and dipentylone. The DPV-BDDE method offers a rapid, robust, and portable approach for the selective screening of SCs in forensic applications, demonstrating significant advantages over traditional colorimetric tests.
Collapse
Affiliation(s)
- Camila Diana Lima
- Departamento
de Química, Universidade Federal
dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| | - Luciano C. Arantes
- Laboratório
de Química e Física Forense, Instituto de Criminalística, Polícia Civil do Distrito
Federal, Brasília, Distrito Federal 70610-907, Brazil
| | - Lara L. Machado
- Departamento
de Farmácia, Universidade Federal
dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| | - Thiago R. L. C. Paixão
- Departamento
de Química Fundamental, Instituto
de Química, Universidade de São Paulo, São Paulo, São
Paulo 05508-000, Brazil
| | - Wallans T. P. dos Santos
- Departamento
de Farmácia, Universidade Federal
dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| |
Collapse
|
3
|
Van Wichelen N, Estévez-Danta A, Belova L, den Ouden F, Verougstraete N, Roggeman M, Boogaerts T, Quireyns M, Robeyns R, De Brabanter N, Quintana JB, Rodil R, van Nuijs ALN, Covaci A, Gys C. In vitro biotransformation of 3-methylmethcathinone (3-MMC) through incubation with human liver microsomes and cytosol and application to in vivo samples. J Pharm Biomed Anal 2024; 248:116335. [PMID: 38972226 DOI: 10.1016/j.jpba.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Synthetic cathinones are the second largest group of new psychoactive substances (NPS) monitored by the European Monitoring Centre for Drugs and Drug Addiction. Although 3-methylmethcathinone (3-MMC, C11H15NO) is legally banned in many countries, it is readily available for purchase online and on the street. Due to the scarcity of information regarding the pharmacokinetic and toxicological profile of 3-MMC, understanding its biotransformation pathways is crucial in determining its potential toxicity in humans and in the development of analytical methods for screening of human matrices. To gain more insight, Phase I and Phase II in vitro biotransformation of 3-MMC was investigated using human liver microsomes and human liver cytosol. Suspect and non-target screening approaches were employed to identify metabolites. To confirm in vitro results in an in vivo setting, human matrices (i.e., plasma, urine, saliva and hair) positive for 3-MMC (n=31) were screened. In total three biotransformation products were identified in vitro: C11H15NO2 (a hydroxylated derivate), C11H17NO (a keto-reduced derivate) and C10H13NO (an N-desmethyl derivate). All three were confirmed as human metabolites in respectively 16 %, 52 % and 42 % of the analysed human samples. In total, 61 % of the analysed samples were positive for at least one of the three metabolites. Interestingly, three urine samples were positive for all three metabolites. The presence of 3-MMC in saliva and hair indicates its potential applicability in specific settings, e.g., roadside testing or chronic consumption analysis. To our knowledge, C11H17NO was not detected before in vivo. Although some of these metabolites have been previously suggested in vitro or in a single post mortem case report, a wide in vivo confirmation including the screening of four different human matrices was performed for the first time. These metabolites could serve as potential human biomarkers to monitor human 3-MMC consumption effectively.
Collapse
Affiliation(s)
- Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.
| | - Andrea Estévez-Danta
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Nik De Brabanter
- Laboratory Medicine, AZ Delta General Hospital, Roeselare 8800, Belgium
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Alexander L N van Nuijs
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.
| |
Collapse
|
4
|
Aldubayyan AA, Castrignanò E, Elliott S, Abbate V. Short- and long-term stability of synthetic cathinones and dihydro-metabolites in human urine samples. Forensic Toxicol 2024; 42:172-180. [PMID: 38554217 PMCID: PMC11269387 DOI: 10.1007/s11419-024-00684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/25/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE Synthetic cathinones constitute the second largest group of new psychoactive substances, which are often used for recreational purposes and reported in toxicological analysis. Various factors may influence the stability of synthetic cathinones between sampling and analysis, and therefore, stability studies are required to determine the best storage conditions as well as extend the period of detection. METHODS This study involved sixteen synthetic cathinones and ten dihydro-metabolites spiked in human urine to evaluate the stability under common storage conditions to imitate real forensic toxicology samples. The samples were stored at either room temperature (22-23 °C) for up to 3 days, refrigerated (4 °C) for up to 14 days or frozen (-40 °C) for up to 12 months, and analyzed in triplicate using a validated liquid chromatography-tandem mass spectrometry method. RESULTS Analytes' concentrations decreased over time, although slower when stored frozen. All analytes remained stable (> 80%) for 1 month when stored frozen before losses in content were more apparent for some compounds, depending on their chemical structure. Under all storage conditions, the highest instability was observed for analytes containing halogens (i.e., chlorine or fluorine). Thus, halogenated analytes were further investigated by using liquid chromatography coupled to quadruple time-of-flight mass spectrometry to attempt identifying degradation products. CONCLUSIONS Irrespective of parent analytes, dihydro-metabolites had improved stability at each tested temperature, which highlights their importance as appropriate urine biomarkers when retesting is required after a long period of storage.
Collapse
Affiliation(s)
- Abdulaziz A Aldubayyan
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Toxicology, Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Erika Castrignanò
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Simon Elliott
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Elliott Forensic Consulting, Birmingham, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Che P, Davidson JT, Kool J, Kohler I. Electron activated dissociation - a complementary fragmentation technique to collision-induced dissociation for metabolite identification of synthetic cathinone positional isomers. Anal Chim Acta 2023; 1283:341962. [PMID: 37977786 DOI: 10.1016/j.aca.2023.341962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Over the last decade, a remarkable number of new psychoactive substances (NPS) have emerged onto the drug market, resulting in serious threats to both public health and society. Despite their abundance and potential toxicity, there is little information available on their metabolism, a crucial piece of information for clinical and forensic purposes. NPS metabolism can be studied using in vitro models, such as liver microsomes, cytosol, hepatocytes, etc. The tentative structural elucidation of metabolites of NPS formed using in vitro models is typically carried out using liquid chromatography combined with high-resolution tandem mass spectrometry (LC-HRMS2) with collision-induced dissociation (CID) as a fragmentation method. However, the thermally-excited ions produced with CID may not be sufficient for unambiguous identification of metabolites or their complete characterization. Electron-activated dissociation (EAD), a relatively new fragmentation approach that can be used to fragment singly-charged ions, may provide complementary structural information that can be used to further improve the confidence in metabolite identification. The aim of this study was to compare CID and EAD as fragmentation methods for the characterization and identification of synthetic cathinone positional isomers and their metabolites. The in vitro metabolism of 2-methylethcathinone (2-MEC), 3-methylethcathinone (3-MEC) and 4-methylethcathinone (4-MEC) was investigated with both CID and EAD methods using LC-HRMS2. Four, seven and six metabolites were tentatively identified for the metabolism of 2-MEC, 3-MEC and 4-MEC, respectively. Here, the metabolism of 3-MEC and 2-MEC is reported for the first time. The EAD product ion mass spectra showed different fragmentation patterns compared to CID, where unique and abundant product ions were observed in EAD but not in CID. More importantly, certain EAD exclusive product ions play a significant role in structural elucidation of some metabolites. These results highlight the important role that EAD fragmentation can play in metabolite identification workflows, by providing additional fragmentation data compared with CID and, thus, enhancing the confidence in structural elucidation of drug metabolites.
Collapse
Affiliation(s)
- Peng Che
- Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - J Tyler Davidson
- Sam Houston State University, Department of Forensic Science, Huntsville, TX, USA
| | - Jeroen Kool
- Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Isabelle Kohler
- Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Che P, Davidson JT, Still K, Kool J, Kohler I. In vitro metabolism of cathinone positional isomers: does sex matter? Anal Bioanal Chem 2023; 415:5403-5420. [PMID: 37452840 PMCID: PMC10444680 DOI: 10.1007/s00216-023-04815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.
Collapse
Affiliation(s)
- Peng Che
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - J Tyler Davidson
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| | - Kristina Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Isabelle Kohler
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.
- Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Aknouche F, Ameline A, Gheddar L, Maruejouls C, Kintz P. Fatal Rectal Injection of 3-MMC in a Sexual Context. Toxicological Investigations Including Metabolites Identification Using LC-HRMS. J Anal Toxicol 2022; 46:949-955. [PMID: 35767277 DOI: 10.1093/jat/bkac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The dead body of a 59-year-old man was found at his home by his father. The subject was naked in the corridor, wearing a black hood and a collar around the neck where a dog leash was attached. An empty syringe was discovered in the decedent's rectal vein. The autopsy revealed marked asphyxia signs with no indication of violence or trauma. Femoral blood, urine and hair (4 cm, brown) were collected and submitted for comprehensive toxicological investigation. Initial screening did not indicate the presence of ethanol or any other over-the-counter or prescription pharmaceuticals. Routine toxicology screening by liquid chromatography-tandem mass spectrometry (LC-MS-MS) tentatively identified only the cathinone stereoisomer(s), 3-methylmethcathinone (3-MMC) or mephedrone (4-MMC). Analysis by GC-MS to distinguish between the isomers revealed the presence of 3-MMC, which was subsequently quantified by LC-MS-MS. Femoral blood and urine concentrations were 1437 ng/mL and 16733 ng/mL, respectively. In 4 x 1 cm hair segments, 3-MMC was detected at less than 10 pg/mg (LOQ). Further analysis by high-resolution mass spectrometry (LC-HRMS) allowed identification of two metabolites in both blood and urine: desmethyl-3-MMC and hydroxyl-3-MMC. The pathologist established the cause of death in this case as acute 3-MMC poisoning in the context of ChemSex.
Collapse
Affiliation(s)
| | - Alice Ameline
- Institut de médecine légale, 11 rue Humann, F-67000 Strasbourg, France
| | - Laurie Gheddar
- Institut de médecine légale, 11 rue Humann, F-67000 Strasbourg, France
| | | | - Pascal Kintz
- Institut de médecine légale, 11 rue Humann, F-67000 Strasbourg, France.,X-Pertise Consulting, 42 rue principale, F-67206 Mittelhausbergen, France
| |
Collapse
|
8
|
A Quantitative LC–MS/MS Method for the Detection of 16 Synthetic Cathinones and 10 Metabolites and Its Application to Suspicious Clinical and Forensic Urine Samples. Pharmaceuticals (Basel) 2022; 15:ph15050510. [PMID: 35631341 PMCID: PMC9145040 DOI: 10.3390/ph15050510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Synthetic cathinones currently represent one of the most predominant (sub)-classes of new psychoactive substance (NPS) in illicit drug markets. Despite the increased concerns caused by the constant introduction of new analogues, these drugs are not commonly assayed in routine drug testing procedures and may not be detected in standard screening procedures. This study presents a validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the detection and quantification of 16 synthetic cathinones and 10 metabolites in human urine. Methods: The method was validated for all analytes using published guidelines. The evaluated parameters achieved acceptable values according to the set criteria. Potential abuse of synthetic cathinones was investigated in suspicious urine samples from Saudi Arabia originating from workplace drug testing, pre-employment and Accident & Emergency (A&E). Such samples generated a presumptive positive immunoassay for amphetamine; however, they yielded a negative LC–MS/MS confirmation for this analyte, following the recommended cutoff values of Substance of Abuse and Mental Health Services Administration (SAMHSA) guidelines. Results: 5.8% of the analyzed samples were found to contain at least one target analyte, namely mephedrone and N-ethylpentylone, as well as their dihydro-metabolites. The results also revealed polydrug use with the synthetic cathinones being present together with other classical stimulant drugs. Conclusions: This is the first report of NPS use in Saudi Arabia with respect to designer stimulant drugs. Confirmatory urine analyses for suspicious stimulant use should extend beyond classical stimulants to cover a broad range of NPSs and their metabolites in order to report any otherwise potentially undetected/new analyte.
Collapse
|
9
|
Correia B, Fernandes J, Botica MJ, Ferreira C, Quintas A. Novel Psychoactive Substances: The Razor's Edge between Therapeutical Potential and Psychoactive Recreational Misuse. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9030019. [PMID: 35323718 PMCID: PMC8950629 DOI: 10.3390/medicines9030019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Novel psychoactive substances (NPS) are compounds of natural and synthetic origin, similar to traditional drugs of abuse. NPS are involved in a contemporary trend whose origin lies in a thinner balance between legitimate therapeutic drug research and legislative control. The contemporary NPS trend resulted from the replacement of MDMA by synthetic cathinones in 'ecstasy' during the 2000s. The most common NPS are synthetic cannabinoids and synthetic cathinones. Interestingly, during the last 50 years, these two classes of NPS have been the object of scientific research for a set of health conditions. METHODS Searches were conducted in the online database PubMed using boolean equations. RESULTS Synthetic cannabinoids displayed protective and therapeutic effects for inflammatory, neurodegenerative and oncologic pathologies, activating the immune system and reducing inflammation. Synthetic cathinones act similarly to amphetamine-type stimulants and can be used for depression and chronic fatigue. CONCLUSIONS Despite the scientific advances in this field of research, pharmacological application of NPS is being jeopardized by fatalities associated with their recreational use. This review addresses the scientific achievements of these two classes of NPS and the toxicological data, ending with a reflection on Illicit and NPS control frames.
Collapse
Affiliation(s)
- Beatriz Correia
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Joana Fernandes
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Maria João Botica
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carla Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Rua Professor Lima Basto, 1099-023 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
10
|
Gavrilović I, Gelu Y, Abbate V. In Vitro Metabolic Study of Four Synthetic Cathinones: 4-MPD, 2-NMC, 4F-PHP and bk-EPDP. Metabolites 2022; 12:metabo12020115. [PMID: 35208190 PMCID: PMC8877857 DOI: 10.3390/metabo12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
The use of illicit drugs is exceedingly prevalent in society, and several of them can be illegally purchased from the internet. This occurrence is particularly augmented by the rapid emergence of novel psychoactive substances (NPS), which are sold and distributed as “legal highs”. Amongst NPS, the class of synthetic cathinones represents stimulant substances exhibiting similar effects to amphetamine and its derivatives. Despite potentially being less psychoactive than amphetamine, synthetic cathinones are harmful substances for humans, and little or no information is available regarding their pharmacology and toxicology. The present study investigated the in vitro metabolism and metabolites of four recent synthetic cathinones, namely, 1-(4-methylphenyl)-2-(methylamino)-pentanone (4-MPD), 1-(4-methylphenyl)-2-dimethylamino-propanone (2-NMC), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl-hexanone (4F-PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP). Our in vitro metabolism study resulted in 24 identified metabolites, including both phase I and phase II metabolites. All metabolites were detected and identified using liquid chromatography–high-resolution mass spectrometry and may serve as additional markers of abuse of these NPS in toxicological analyses.
Collapse
Affiliation(s)
- Ivana Gavrilović
- Drug Control Centre, King’s College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK;
| | - Yunita Gelu
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
- Correspondence: ; Tel.: +44-(0)207-83895
| |
Collapse
|
11
|
Czerwinska J, Parkin MC, George C, Kicman AT, Dargan PI, Abbate V. Excretion of mephedrone and its phase I metabolites in urine after a controlled intranasal administration to healthy human volunteers. Drug Test Anal 2022; 14:741-746. [PMID: 34984836 PMCID: PMC9306721 DOI: 10.1002/dta.3214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
Mephedrone is a stimulant drug structurally related to cathinone. At present, there are no data available on the excretion profile of mephedrone and its metabolites in urine after controlled intranasal administration to human volunteers. In this study, six healthy male volunteers nasally insufflated 100 mg of pure mephedrone hydrochloride (Day 1). Urine was collected at different timepoints on Day 1 and then on Days 2, 3 and 30. Samples were analysed for the presence of mephedrone and its metabolites, namely, dihydro‐mephedrone, nor‐mephedrone (NOR), hydroxytolyl‐mephedrone, 4‐carboxy‐mephedrone (4‐carboxy) and dihydro‐nor‐mephedrone (DHNM), by a validated liquid chromatography‐tandem mass spectrometry method. All analytes were detected in urine, where 4‐carboxy (Cmax = 29.8 μg/ml) was the most abundant metabolite followed by NOR (Cmax = 377 ng/ml). DHNM was found at the lowest concentrations (Cmax = 93.1 ng/ml). Analytes exhibited a wide range of detection windows, but only 4‐carboxy and DHNM were detectable in all samples on Day 3, extending the detection time of mephedrone use. Moreover, mephedrone had a mean renal clearance of 108 ± 140 ml/min, and 1.3 ± 1.7% of unchanged parent drug was recovered in urine in the first 6 h post administration. It is hoped that this novel information will be useful in future studies involving mephedrone and other stimulant drugs.
Collapse
Affiliation(s)
- Joanna Czerwinska
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Mark C Parkin
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.,Toxicology Department, Eurofins Forensic Services, Feltham, UK
| | - Claire George
- Toxicology Department, Abbott Toxicology Ltd, Alere Toxicology (now part of Abbott), Oxfordshire, UK
| | - Andrew T Kicman
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Kurach Ł, Chłopaś-Konowałek A, Budzyńska B, Zawadzki M, Szpot P, Boguszewska-Czubara A. Etazene induces developmental toxicity in vivo Danio rerio and in silico studies of new synthetic opioid derivative. Sci Rep 2021; 11:24269. [PMID: 34931035 PMCID: PMC8688443 DOI: 10.1038/s41598-021-03804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022] Open
Abstract
Synthetic opioids are gaining more and more popularity among recreational users as well as regular abusers. One of such novel psychoactive substance, is etazene, which is the most popular opioid drug in the darknet market nowadays. Due to limited information available concerning its activity, we aimed to characterize its developmental toxicity, including cardiotoxicity with the use of in vivo Danio rerio and in silico tools. Moreover, we aimed, for the first time, to characterize the metabolite of etazene, which could become a potential marker of its use for future forensic analysis. The results of our study proved severe dose-dependent developmental toxicity of etazene (applied concentrations 10-300 µM), including an increase in mortality, developmental malformations, and serious cardiotoxic effects, as compared with well-known and used opioid-morphine (applied concentrations 1-50 mM). In silico findings indicate the high toxic potential of etazene which may lead to drug-drug interactions and accumulation of substances. Furthermore, phase I metabolite of etazene resulting from N-dealkylation reaction was identified, and therefore it should be considered as a target for toxicological screening. Nonetheless, the exact mechanism of observed effects in response to etazene should be further examined.
Collapse
Affiliation(s)
- Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland.
| | | | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| | - Marcin Zawadzki
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| |
Collapse
|
13
|
Camuto C, Guglielmelli A, De-Giorgio F, de la Torre X, Mazzarino M, Marti M, Botrè F. In vitro metabolic profile of mexedrone, a mephedrone analog, studied by high- and low-resolution mass spectrometry. Drug Test Anal 2021; 14:269-276. [PMID: 34652887 PMCID: PMC9298855 DOI: 10.1002/dta.3179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
Mexedrone is a synthetic cathinone structurally related to mephedrone, which belongs to the class of N‐alkyl cathinone derivatives, whose metabolic profile has not been fully clarified yet. This study considers the in vitro phase I metabolism of mexedrone, to pre‐select the most appropriate marker(s) of intake. Mexedrone was incubated in the presence of either human liver microsomes or single recombinant CYP450 isoforms. The metabolic profile was outlined by ultra‐high‐performance liquid chromatography coupled to both high‐ and low‐resolution mass spectrometry. In detail, the phase I metabolic profile of mexedrone was initially defined by a time‐of‐flight analyzer, while the chemical structures of the detected metabolites and the potential presence of minor metabolites were subsequently studied by tandem mass spectrometry, using a triple quadrupole analyzer. The main phase I metabolic reactions were hydroxylation and N‐ and O‐dealkylation. The CYP450 isoforms most involved were CYP2C19, responsible for the formation of both hydroxylated and dealkylated metabolites, followed by CYP2D6 and CYP1A2, involved in the hydroxylation reactions only. Finally, a significant fraction of mexedrone unchanged was also detected. Based on this evidence, the most appropriate markers of intake are mexedrone unchanged and the hydroxylated metabolites.
Collapse
Affiliation(s)
| | | | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Matteo Marti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, FMSI, Rome, Italy.,REDs-Research and Expertise in anti-Doping Sciences, ISSUL-Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
15
|
Gearlds C, Bouldin JB, McKinney M, Schreiner S, Brown SD, Pond BB. Pharmacokinetics of Synthetic Cathinones Found in Bath Salts in Mouse Brain and Plasma Using High-Pressure Liquid Chromatography-Tandem Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2021; 46:771-778. [PMID: 34427910 DOI: 10.1007/s13318-021-00712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Approximately 10 years ago, "bath salts" became popular as legal alternatives to the psychostimulants cocaine and the amphetamines. These products contained synthetic cathinones, including 3,4-methylenedioxypyrovalerone (MDPV), 4-methylmethcathinone (mephedrone), and 3,4-methylenedioxymethcathinone (methylone). Most preclinical investigations have only assessed the effects of these synthetic cathinones independently; however, case reports and Drug Enforcement Administration (DEA) studies indicate that bath salts contain mixtures of these substances. In this study, we examine the pharmacokinetic interactions of the drug combination. We hypothesized that combined exposure to MDPV, mephedrone, and methylone would result in increased drug concentrations and enhanced total drug concentrations when compared to individual administration. METHODS Adolescent male Swiss-Webster mice were injected intraperitoneally with either 10 mg/kg MDPV, 10 mg/kg mephedrone, 10 mg/kg methylone, or 10 mg/kg combined MDPV, mephedrone, and methylone. Following injection, brains and plasma were collected at 1, 10, 15, 30, 60, and 120 min. Drugs were extracted via solid-phase extraction, and concentrations were determined using a previously published high-pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. RESULTS All drugs crossed the blood-brain barrier quickly. For methylone, the maximal concentration (Cmax) and the total drug exposure [as represented by the area under the concentration-time curve (AUC)] were significantly higher when combined with mephedrone and MDPV in both matrices (2.89-fold increase for both Cmax and AUC with combined treatment). For mephedrone, the Cmax was unchanged, but the AUC in brain was increased when in combination by approximately 34%. Interestingly, for MDPV, the Cmax was unchanged, yet the AUC was higher when MDPV was administered individually (there was a 62% decrease in AUC with combined treatment). CONCLUSIONS The pharmacokinetics of methylone, mepedrone, and MDPV are altered when the drugs are used in combination. These data provide insight into the consequences of co-exposure to synthetic cathinones in popular bath salt products.
Collapse
Affiliation(s)
- Courtney Gearlds
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA
| | - Jessica Brooke Bouldin
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA
| | - Mariah McKinney
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA
| | - Shannon Schreiner
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA
| | - Stacy D Brown
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA
| | - Brooks B Pond
- Department of Pharmaceutical Sciences, East Tennessee State University Bill Gatton College of Pharmacy, Box 70594, Johnson City, TN, 37614, USA.
| |
Collapse
|
16
|
Czerwinska J, Parkin MC, George C, Kicman AT, Dargan PI, Abbate V. Pharmacokinetics of Mephedrone and Its Metabolites in Whole Blood and Plasma after Controlled Intranasal Administration to Healthy Human Volunteers. J Anal Toxicol 2021; 45:730-738. [PMID: 32986113 DOI: 10.1093/jat/bkaa134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mephedrone is a popular synthetic cathinone, known for its psychostimulant effects. At present, there is no data available on the pharmacokinetics of mephedrone and its metabolites in concurrently collected whole blood and plasma samples after a controlled intranasal administration to healthy volunteers. In this study, six healthy male volunteers nasally insufflated 100 mg of pure mephedrone hydrochloride (Day 1). Whole blood and plasma samples were collected at different time points after the administration and were analyzed for the presence of mephedrone and its metabolites, dihydro-mephedrone (DHM), nor-mephedrone (NOR), hydroxytolyl-mephedrone (HYDROXY), 4-carboxy-mephedrone (4-CARBOXY) and dihydro-nor-mephedrone (DHNM), by validated liquid chromatography-tandem mass spectrometry methods. All analytes were detected in whole blood and plasma for 6 h post administration, with mephedrone and NOR also being detectable on Day 2 in some participants. 4-CARBOXY, followed by NOR, was the most abundant metabolite in both matrices. Compared to other psychostimulants, mephedrone showed rapid absorption (mean Tmax of 52.5 ± 20.7 min in plasma and 55.0 ± 18.2 min in whole blood) and elimination (mean t1/2 of 1.98 ± 0.30 h in plasma and 2.12 ± 0.33 h in whole blood). In addition, statistical analysis showed that median whole blood to plasma distribution ratios, reported here for the first time, were statistically different from 1 (unity) for mephedrone (median: 1.11), DHM (median: 1.30) and NOR (median: 0.765). It is hoped that the study will aid forensic and clinical toxicologists in detection, identification and interpretation of cases associated with mephedrone use.
Collapse
Affiliation(s)
- Joanna Czerwinska
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Mark C Parkin
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.,Eurofins Forensic Services, Toxicology Department, Teddington, UK
| | | | - Andrew T Kicman
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK.,Clinical Toxicology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vincenzo Abbate
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| |
Collapse
|
17
|
Belsey SL, Flanagan RJ. Analytical Detection of Novel Stimulants by Immunoassay and Liquid Chromatography-High Resolution Mass Spectrometry: Case Studies on Ethylphenidate and Mephedrone. J Anal Toxicol 2021; 45:521-528. [PMID: 32816012 DOI: 10.1093/jat/bkaa102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
The advent of hundreds of new compounds aimed at the substance misuse market has posed new analytical challenges. A semi-quantitative liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method has been developed to detect exposure to two novel stimulants, mephedrone and ethylphenidate, and selected metabolites. Centrifuged urine (50 µL) was diluted with LC eluent containing internal standards (mephedrone-d3, methylphenidate-d9 and ritalinic acid-d10; all 0.02 mg/L) (450 µL). Intra- and inter-assay accuracy and precision were within ±15% and <6%, respectively, for all analytes. The limit of detection was 0.01 mg/L for all analytes. Urine samples from mephedrone and ethylphenidate users were analyzed using immunoassay (amphetamine-group cloned enzyme donor immunoassay [CEDIA]) and LC-HRMS. Ethylphenidate, mephedrone and selected metabolites all had low cross-reactivity (<1%) with the immunoassay. The median (range) amphetamine-group CEDIA concentration in urine samples from mephedrone users (n = 11) was 0.30 (<0.041-3.04) mg/L, with only 1 sample giving a positive CEDIA result. The amphetamine-group CEDIA concentration in the urine sample from an ethylphenidate user was <0.041 mg/L. Improving the detection of novel compounds is of increasing importance to enable accurate diagnosis and treatment. Immunoassay methods used for drug screening may be inappropriate and lead to false-negative results. Conversely, detection of these compounds is possible through use of LC-HRMS and can provide information on the metabolites present after exposure to these drugs.
Collapse
Affiliation(s)
- Sarah L Belsey
- Toxicology Unit, Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Robert J Flanagan
- Department of Precision Medicine, Networked Services, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
18
|
Palazzoli F, Santunione AL, Verri P, Vandelli D, Silingardi E. Post-mortem distribution of mephedrone and its metabolites in body fluids and organ tissues of an intoxication case. J Pharm Biomed Anal 2021; 201:114093. [PMID: 33957364 DOI: 10.1016/j.jpba.2021.114093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
New psychoactive substances (NPS) are substances that continue to appear on the drug market to bypass controlled substance legislation. Mephedrone or 4-methylmethcathinone is becoming the most popular new psychoactive substance among youth as a recreational drug. The present study describes the optimization and validation of a sensitive method that combined clean up procedure and LC-MS/MS technique designed to simultaneously determine the presence of Mephedrone and its two metabolites (normephedrone as active metabolite and dyhidromephedrone) in post-mortem specimens (body fluids and organ tissues). To date, this is the first determination of Mephedrone metabolites in post-mortem specimens. The validated method was applied to a fatal Mephedrone intoxication case. The distribution of the three analytes in different post-mortem matrices was presented. The toxicological results of the studied case are discussed, along with autopsy, histopathological evidence and crime-scene information. The toxicological results presented in the study provide new data relative to mephedrone and the distribution of its metabolites in post-mortem specimens. In our opinion, the metabolite concentration database must be developed because the metabolites may be linked to toxicity. The pattern of parent drug and its metabolites can be helpful in the interpretation of fatal cases involving mephedrone, which will contribute to the currently limited knowledge about mephedrone and metabolites concentrations.
Collapse
Affiliation(s)
- F Palazzoli
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - A L Santunione
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - P Verri
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - D Vandelli
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - E Silingardi
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Niello M, Cintulová D, Raithmayr P, Holy M, Jäntsch K, Colas C, Ecker GF, Sitte HH, Mihovilovic MD. Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Front Pharmacol 2021; 12:654061. [PMID: 33897439 PMCID: PMC8063026 DOI: 10.3389/fphar.2021.654061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Mephedrone is a largely abused psychostimulant. It elicits the release of monoamines via the high affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). Stereoselective metabolic reactions are involved in the inactivation and the elimination of its chemical structure. However, during these processes, several structures are generated and some of them have been reported to be still pharmacologically active. In this study 1) we have newly synthetized several putative mephedrone metabolites, 2) compared their activity at monoamine transporters, 3) generated quantitative structure activity relationships, and 4) exploited the chemical structure of the putative metabolites to screen a urine sample from a drug user and dissect mephedrone metabolism. We have found that most of the tested metabolites are weak inhibitors of monoamine transporters and that all of them are more potent at DAT and NET in comparison to SERT. The only exception is represented by the COOH-metabolite which shows no pharmacological activity at all three monoamine transporters. The enantioselectivity of mephedrone and its metabolites is present mainly at SERT, with only minor effects at DAT and NET being introduced when the β-keto group is reduced to an OH-group. Importantly, while at DAT the putative metabolites did not show changes in inhibitory potencies, but rather changes in their substrate/blocker profile, at SERT they showed mainly changes in inhibitory potencies. Molecular modeling suggests that the hydrophobic nature of a specific SERT subpocket may be involved in such loss of affinity. Finally, the assessment of the putative metabolites in one urine sample of mephedrone user displayed two previously uncharacterized metabolites, 4-COOH-nor-mephedrone (4-COOH-MC) and dihydro-4- nor-mephedrone (dihydro-4-MC). These results confirm and expand previous studies highlighting the importance of the stereochemistry in the pharmacodynamics of phase-1 metabolites of mephedrone, established their structure-activity relationships at DAT, NET and SERT and pave the way for a systematic dissection of mephedrone metabolic routes. Given the number of structures found having residual and modified pharmacological profiles, these findings may help in understanding the complex subjective effects of administered mephedrone. Moreover, the dissection of mephedrone metabolic routes may help in developing new therapies for treating psychostimulants acute intoxications.
Collapse
Affiliation(s)
- Marco Niello
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | | - Philip Raithmayr
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Kathrin Jäntsch
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Claire Colas
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | |
Collapse
|
20
|
Frison G, Zancanaro F, Frasson S, Quadretti L, Agnati M, Vlassich F, Gagliardi G, Salerno TMG, Donato P, Mondello L. Analytical Characterization of 3-MeO-PCP and 3-MMC in Seized Products and Biosamples: The Role of LC-HRAM-Orbitrap-MS and Solid Deposition GC-FTIR. Front Chem 2021; 8:618339. [PMID: 33628763 PMCID: PMC7897676 DOI: 10.3389/fchem.2020.618339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Among the phencyclidine (PCP) and synthetic cathinone analogs present on the street market, 3-methoxyphencyclidine (3-MeO-PCP) is one of the most popular dissociative hallucinogen drugs, while 3-methylmethcathinone (3-MMC) is a commonly encountered psychostimulant. Numerous 3-MeO-PCP- and 3-MMC-related intoxication cases have been reported worldwide. Identification of the positional isomers of MeO-PCP and MMC families are particularly challenging for clinical and forensic laboratories; this is mostly due to their difficult chromatographic separation (particularly when using liquid chromatography–LC) and similar mass spectrometric behaviors. 3-MeO-PCP and 3-MMC were identified in two powders, detained by two subjects and seized by the police, by different analytical techniques, including liquid chromatography-high-resolution accurate-mass Orbitrap mass spectrometry (LC-HRAM-Orbitrap-MS), and solid deposition gas chromatography-Fourier transform infrared spectroscopy (sd-GC-FTIR). LC-HRAM-Orbitrap-MS allowed us to assign the elemental formulae C18H27NO (MeO-PCP) and C11H15NO (MMC) through accurate mass measurement of the two MH+ ions, and the comparison of experimental and calculated MH+ isotopic patterns. However, MH+ collision-induced product ions spectra were not conclusive in discriminating between the positional isomers [(3-MeO-PCP vs. 4-MeO-PCP) and (3-MMC vs. 4-MMC and 2-MMC)]. Likewise, sd-GC-FTIR easily allowed us to differentiate between the MeO-PCP and MMC positional isomers unambiguously, confirming the presence of 3-MeO-PCP and 3-MMC, due to the high-quality match factor of the experimental FTIR spectra against the target FTIR spectra of MeO-PCP and MMC isomers in a dedicated library. 3-MeO-PCP (in contrast to 3-MMC) was also detected in blood and urine samples of both subjects and analyzed in the context of routine forensic casework by LC-HRAM-Orbitrap-MS following a simple deproteinization step. In addition, this untargeted approach allowed us to detect dozens of phase I and phase II 3-MeO-PCP metabolites in all biological specimens. Analysis of the extracted samples by sd-GC-FTIR revealed the presence of 3-MeO-PCP, thus confirming the intake of such specific methoxy-PCP isomer in both cases. These results highlight the effectiveness of LC-HRAM-Orbitrap-MS and sd-GC-FTIR data in attaining full structural characterization of the psychoactive drugs, even in absence of reference standards, in both non-biological and biological specimens.
Collapse
Affiliation(s)
- Giampietro Frison
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Flavio Zancanaro
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Samuela Frasson
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Laura Quadretti
- Emergency Department Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Michele Agnati
- Emergency Department Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Francesca Vlassich
- Intensive Care Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Giuseppe Gagliardi
- Department of Anesthesiology and Intensive Care, AULSS 5, Porto Viro (Rovigo), Italy
| | - Tania Maria Grazia Salerno
- BeSep S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- BeSep S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Chromaleont S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Research Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
21
|
From street to lab: in vitro hepatotoxicity of buphedrone, butylone and 3,4-DMMC. Arch Toxicol 2021; 95:1443-1462. [PMID: 33550444 DOI: 10.1007/s00204-021-02990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.
Collapse
|
22
|
Acute Pharmacological Effects of Oral and Intranasal Mephedrone: An Observational Study in Humans. Pharmaceuticals (Basel) 2021; 14:ph14020100. [PMID: 33525579 PMCID: PMC7912650 DOI: 10.3390/ph14020100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Mephedrone (4-methylmethcathinone) is a synthetic cathinone with psychostimulant properties which remains one of the most popular new psychoactive substances (NPS). It is frequently used orally and/or intranasally. To date, no studies have evaluated the acute effects and pharmacokinetics after self-administration of mephedrone orally (ingestion) and intranasally (insufflation) in naturalistic conditions. An observational study was conducted to assess and compare the acute pharmacological effects, as well as the oral fluid (saliva) concentrations of mephedrone self-administered orally and intranasally. Ten healthy experienced drug users (4 females and 6 males) self-administered a single dose of mephedrone, orally (n = 5, 100–200 mg; mean 150 mg) or intranasally (n = 5, 50–100 mg, mean 70 mg). Vital signs (blood pressure, heart rate, and cutaneous temperature) were measured at baseline (0), 1, 2, and 4 h after self-administration. Each participant completed subjective effects questionnaires: A set of Visual Analogue Scales (VAS), the 49-item Addiction Research Centre Inventory (ARCI), and Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) at baseline, 1, 2, and 4 h after self-administration. Oral fluid and urine were collected during 4 h. Both routes of mephedrone self-administration enhanced ratings of euphoria and well-being effects and increased cardiovascular effects in humans. Although it was at times assessed that the oral route produced greater and larger effects than the intranasal one, concentrations of mephedrone in oral fluid and also the total amount of mephedrone and metabolites in urine showed that concentrations of mephedrone are considerably higher when self-administered intranasally in comparison to orally. Controlled clinical trials are needed to confirm our observational results.
Collapse
|
23
|
Investigation of Biotransformation Products of p-Methoxymethylamphetamine and Dihydromephedrone in Wastewater by High-Resolution Mass Spectrometry. Metabolites 2021; 11:metabo11020066. [PMID: 33503865 PMCID: PMC7912097 DOI: 10.3390/metabo11020066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023] Open
Abstract
There is a paucity of information on biotransformation and stability of new psychoactive substances (NPS) in wastewater. Moreover, the fate of NPS and their transformation products (TPs) in wastewater treatment plants is not well understood. In this study, batch reactors seeded with activated sludge were set up to evaluate biotic, abiotic, and sorption losses of p-methoxymethylamphetamine (PMMA) and dihydromephedrone (DHM) and identify TPs formed during these processes. Detection and identification of all compounds was performed with target and suspect screening approaches using liquid chromatography quadrupole-time-of-flight mass spectrometry. Influent and effluent 24 h composite wastewater samples were collected from Athens from 2014 to 2020. High elimination rates were found for PMMA (80%) and DHM (97%) after a seven-day experiment and degradation appeared to be related to biological activity in the active bioreactor. Ten TPs were identified and the main reactions were O- and N-demethylation, oxidation, and hydroxylation. Some TPs were reported for the first time and some were confirmed by reference standards. Identification of some TPs was enhanced by the use of an in-house retention time prediction model. Mephedrone and some of its previously reported human metabolites were formed from DHM incubation. Retrospective analysis showed that PMMA was the most frequently detected compound.
Collapse
|
24
|
Lopes BT, Caldeira MJ, Gaspar H, Antunes AMM. Metabolic Profile of Four Selected Cathinones in Microsome Incubations: Identification of Phase I and II Metabolites by Liquid Chromatography High Resolution Mass Spectrometry. Front Chem 2021; 8:609251. [PMID: 33511100 PMCID: PMC7835677 DOI: 10.3389/fchem.2020.609251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
Consumption of synthetic cathinones, the second largest class of new psychoactive substances (NPS) reported worldwide, represents a serious public health risk. One of the biggest challenges created by the rapid spread of NPS on the illegal drug market is the discovery of selective biomarkers for their detection in biological matrices, which is only possible through the study of their metabolic profile. The synthetic cathinones 4'-methyl-N,N-dimethylcathinone (4-MDMC), 4'-methyl-N,N-diethylcathinone (4-MDEC), 4'-chloro-α-pyrrolidinovalerophenone (4Cl-PVP), and 4'-chloroethylcathinone (4-CEC) are NPS recently seized in Europe, and, with the exception of 4-CEC, no metabolism study was reported for these cathinones. With the ultimate goal of overcoming this gap, these cathinones were incubated in vitro in human and rat liver microsomes in the presence of Phase I and II (glucuronidation) co-factors, using α-pyrrolidinovalerophenone (α-PVP) as positive control. The metabolite identification was performed by liquid chromatography coupled to tandem high resolution mass spectrometry (LC-HRMS/MS). This allowed the identification of multiple Phase I and glucuronide metabolites of the selected cathinones. Additionally, a new glucuronide conjugate, derived from the recreational drug α-PVP, was herein identified for the first time. Importantly, we have demonstrated that 4-MDMC and 4-MDEC can act as prodrugs of the controlled substances 4-MMC and 4-MEC, respectively. The metabolites herein identified are expected to play an important role not only by acting as potential selective biomarkers of the intake of the synthetic cathinones selected for this study but also to understand their potential adverse effects and link these causative agents to toxicities, thereby helping in the treatment of non-fatal intoxications.
Collapse
Affiliation(s)
- Beatriz T. Lopes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), ULisboa, Lisboa, Portugal
- BioISI – Biosystems & Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Maria João Caldeira
- Laboratório de Polícia Científica da Polícia Judiciária (LPC/PJ), Novo edifício Sede da Polícia Judiciária, Lisboa, Portugal
| | - Helena Gaspar
- BioISI – Biosystems & Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre - Polytechnic of Leiria, Peniche, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), ULisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Trujillo Uruena M, York R, Philp M, Kuzhiumparambil U, Wei Z, Yun K, Fu S. Identification of Unique 4-Methylmethcathinone (4-MMC) Degradation Markers in Putrefied Matrices†. J Anal Toxicol 2020; 44:803-810. [PMID: 33313885 DOI: 10.1093/jat/bkaa041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Drug degradation as a consequence of putrefactive bacterial activity is a well-known factor that affects the identification and quantitation of certain substances of forensic interest. Current knowledge on putrefaction-mediated degradation of drugs is, however, significantly lacking. This study aimed to investigate the degradation of 4-methylmethcathinone (4-MMC or mephedrone) and to detect its degradation products in putrefied biological matrices containing 4-MMC. The bacteria species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris were grown in brain-heart infusion broth, spiked with 4-MMC and incubated at 37°C for 24 h. Postmortem human blood and fresh porcine liver macerate were also left to putrefy in sample tubes at room temperature for 1 week. Structural elucidation was based on modern spectroscopic analyses including the use of high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. All four putrefactive bacteria were capable of degrading 4-MMC extensively under the experimental conditions explored. Of particular interest was the discovery of a novel degradation product common to all four bacterial species, which was assigned as 2-hydroxy-1-(4-methylphenyl)propan-1-one (HMP) based on the spectroscopic data. This degradation product was detectable in both postmortem human blood and porcine liver samples. The stability of the identified degradation products, especially HMP, should be further investigated to assess their validity of serving as marker analytes for monitoring 4-MMC in postmortem toxicology.
Collapse
Affiliation(s)
- Melissa Trujillo Uruena
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Rebekah York
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Morgan Philp
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
| | | | - Zhiwen Wei
- School of Forensic Medicine, Shanxi Medical University, 98 University Street, Yuci District, Jinzhong City 030606, Shanxi, People's Republic of China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, 98 University Street, Yuci District, Jinzhong City 030606, Shanxi, People's Republic of China
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia.,School of Forensic Medicine, Shanxi Medical University, 98 University Street, Yuci District, Jinzhong City 030606, Shanxi, People's Republic of China
| |
Collapse
|
26
|
Affiliation(s)
- Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
27
|
Mercurio I, Pellegrino A, Panata L, Filippucci F, Melai P, Gili A, Capano D, Troiano G, Rettagliata G, Lancia M, Bacci M. Toxicological findings in fatal intoxications from synthetic cathinones: a narrative review. AUST J FORENSIC SCI 2020. [DOI: 10.1080/00450618.2020.1841291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isabella Mercurio
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | | | - Laura Panata
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | | | | | - Alessio Gili
- Department of Experimental Medicine, Hygiene and Public Health Section, University of Perugia, Perugia, Italy
| | | | | | - George Rettagliata
- Former Clinical Assistant Professor of Medicine at New York Medical College, New York, NY, USA
| | - Massimo Lancia
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| | - Mauro Bacci
- Section of Legal Medicine, Forensic Science and Sports Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Biodistribution and metabolic profile of 3,4-dimethylmethcathinone (3,4-DMMC) in Wistar rats through gas chromatography–mass spectrometry (GC–MS) analysis. Toxicol Lett 2020; 320:113-123. [DOI: 10.1016/j.toxlet.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022]
|
29
|
LC‐MS/MS method for the quantification of new psychoactive substances and evaluation of their urinary detection in humans for doping control analysis. Drug Test Anal 2020; 12:785-797. [DOI: 10.1002/dta.2768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 02/03/2023]
|
30
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
31
|
Gonçalves JL, Alves VL, Aguiar J, Teixeira HM, Câmara JS. Synthetic cathinones: an evolving class of new psychoactive substances. Crit Rev Toxicol 2019; 49:549-566. [PMID: 31747318 DOI: 10.1080/10408444.2019.1679087] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic cathinones (SCat) are amphetamine-like psychostimulants that emerged onto drug markets as "legal" alternatives to illicit drugs such as ecstasy, cocaine, and amphetamines. Usually they are sold as "bath salts," "plant food," or "research chemicals," and rapidly gained popularity amongst drugs users due to their potency, low cost, and availability. In addition, internet drug sales have been replacing the old way of supplying drugs of abuse, contributing to their rapid spread. Despite the legislative efforts to control SCat, new derivatives continue to emerge on the recreational drugs market and their abuse still represents a serious public health issue. To date, about 150 SCat have been identified on the clandestine drugs market, which are one of the largest groups of new psychoactive substances (NPS) monitored by the United Nations Office on Drugs and Crime and the European Monitoring Center for Drugs and Drug Addiction. Similar to the classical stimulants, SCat affect the levels of catecholamines in the central nervous system, which results in their psychological, behavioral and toxic effects. Generally, the effects of SCat greatly differ from drug to drug and relatively little information is available about their pharmacology. The present work provides a review on the development of SCat as substances of abuse, current patterns of abuse and their legal status, chemical classification, known mechanisms of action, and their toxicological effects.
Collapse
Affiliation(s)
- João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, IP, Delegação Centro, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
32
|
Dias da Silva D, Ferreira B, Roque Bravo R, Rebelo R, Duarte de Almeida T, Valente MJ, Silva JP, Carvalho F, Bastos MDL, Carmo H. The new psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone) induces oxidative stress, apoptosis, and autophagy in primary rat hepatocytes at human-relevant concentrations. Arch Toxicol 2019; 93:2617-2634. [PMID: 31468101 DOI: 10.1007/s00204-019-02539-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
3-Methylmethcathinone (3-MMC or metaphedrone) has become one of the most popular recreational drugs worldwide after the ban of mephedrone, and was recently deemed responsible for several intoxications and deaths. This study aimed at assessing the hepatotoxicity of 3-MMC. For this purpose, Wistar rat hepatocytes were isolated by collagenase perfusion, cultured and exposed for 24 h at a concentration range varying from 31 nM to 10 mM 3-MMC. The modulatory effects of cytochrome P450 (CYP) inhibitors on 3-MMC hepatotoxicity were evaluated. 3-MMC-induced toxicity was perceived at the lysosome at lower concentrations (NOEC 312.5 µM), compared to mitochondria (NOEC 379.5 µM) and cytoplasmic membrane (NOEC 1.04 mM). Inhibition of CYP2D6 and CYP2E1 diminished 3-MMC cytotoxicity, yet for CYP2E1 inhibition this effect was only observed for concentrations up to 1.3 mM. A significant concentration-dependent increase of intracellular reactive species was observed from 10 μM 3-MMC on; a concentration-dependent decrease in antioxidant glutathione defences was also observed. At 10 μM, caspase-3, caspase-8, and caspase-9 activities were significantly elevated, corroborating the activation of both intrinsic and extrinsic apoptosis pathways. Nuclear morphology and formation of cytoplasmic acidic vacuoles suggest prevalence of necrosis and autophagy at concentrations higher than 10 μM. No significant alterations were observed in the mitochondrial membrane potential, but intracellular ATP significantly decreased at 100 μM. Our data point to a role of metabolism in the hepatotoxicity of 3-MMC, which seems to be triggered both by autophagic and apoptotic/necrotic mechanisms. This work is the first approach to better understand 3-MMC toxicology.
Collapse
Affiliation(s)
- Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Bárbara Ferreira
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rita Roque Bravo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rita Rebelo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tomás Duarte de Almeida
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria João Valente
- UCIBIO, REQUIMTE, Laboratory of Biochemistry Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
33
|
Pharmacokinetics, pharmacodynamics, and toxicity of the new psychoactive substance 3,4-dimethylmethcathinone (3,4-DMMC). Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Olesti E, Farré M, Carbó ML, Papaseit E, Perez-Mañá C, Torrens M, Yubero-Lahoz S, Pujadas M, Pozo ÓJ, de la Torre R. Dose-Response Pharmacological Study of Mephedrone and Its Metabolites: Pharmacokinetics, Serotoninergic Effects, and Impact of CYP2D6 Genetic Variation. Clin Pharmacol Ther 2019; 106:596-604. [PMID: 30815856 DOI: 10.1002/cpt.1417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/11/2022]
Abstract
Mephedrone (MEPH), the most widely consumed synthetic cathinone, has been associated with acute toxicity episodes. The aim of this report was to study its metabolic disposition and the impact of genetic variation of CYP2D6 on MEPH metabolism, in a dose range compatible with its recreational use. A randomized, crossover, phase I clinical trial was performed. Subjects received 50 and 100 mg (n = 3) and 150 and 200 mg (n = 6) of mephedrone and were genetically and phenotypically characterized for the CYP2D6 allelic variation. Our results showed a linear kinetics of mephedrone at the dose range assayed: plasma concentrations, cardiovascular and subjective effects, and blood serotonin concentrations all correlated in a dose-dependent manner. Mephedrone metabolic disposition is mediated by CYP2D6. Mephedrone pharmacology presented a linear dose-dependence within the range of doses tested. The metabolism of mephedrone by CYP2D6 implies that recreational users with no or low CYP2D6 functionality are exposed to unwanted acute toxicity episodes.
Collapse
Affiliation(s)
- Eulàlia Olesti
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Magí Farré
- School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marcel Lí Carbó
- Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Esther Papaseit
- School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Clara Perez-Mañá
- School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marta Torrens
- School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Samanta Yubero-Lahoz
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Madrid, Spain
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Madrid, Spain
| |
Collapse
|
35
|
Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter. Neuropharmacology 2019; 148:199-209. [DOI: 10.1016/j.neuropharm.2018.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022]
|
36
|
Calinski DM, Kisor DF, Sprague JE. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology (Berl) 2019; 236:881-890. [PMID: 30069588 DOI: 10.1007/s00213-018-4985-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE The synthetic cathinones are a class of designer drugs of abuse that share a common core scaffold. The pharmacokinetic profiles of the synthetic cathinones vary based on the substitutions to the core scaffold. OBJECTIVES To provide a summary of the literature regarding the pharmacokinetic characteristics of the synthetic cathinones, with a focus on the impact of the structural modifications to the pharmacokinetics. RESULTS In many, but not all, instances the pharmacokinetic characteristics of the synthetic cathinones can be reasonably predicted based on the substitutions to the core scaffold. Mephedrone and methylone are chemically alike and have similar Tmax and t1/2 in male rats. MDPV, a structurally distinct synthetic cathinone from mephedrone and methylone, has a lower Tmax and t1/2. Increasing the length of the alkyl chain on the α position of methylone, to produce pentylone, results in increased plasma concentrations and longer t1/2. Metabolism of the synthetic cathinones is reasonably predictable based on the chemical structure, and several phase I metabolites retain pharmacodynamic activity. CYP2D6 is implicated in the metabolism of all of the synthetic cathinones, and other P450s (CYP1A2, CYP2B6, and CYP2C19) are known to contribute variably to the metabolism of specific synthetic cathinones. CONCLUSIONS Continued research will lead to a better understanding of the pharmacokinetic changes associated with structural modifications to the cathinone scaffold, and potentially in the long range, enhanced overdose and addiction therapy. Additionally, the areas of polydrug use and pharmacogenetics have been largely overlooked with regard to synthetic cathinones.
Collapse
Affiliation(s)
- Diane M Calinski
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, IN, 46845, USA
| | - David F Kisor
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, IN, 46845, USA
| | - Jon E Sprague
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, IN, 46845, USA. .,The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
37
|
Czerwinska J, Parkin MC, Dargan PI, George C, Kicman AT, Abbate V. Stability of mephedrone and five of its phase I metabolites in human whole blood. Drug Test Anal 2018; 11:586-594. [DOI: 10.1002/dta.2525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Joanna Czerwinska
- Analytical, Environmental and Forensic SciencesKing's College London London UK
| | - Mark C. Parkin
- Analytical, Environmental and Forensic SciencesKing's College London London UK
- Now at Eurofins Forensic Services Teddington UK
| | - Paul I. Dargan
- Clinical ToxicologyGuy's and St Thomas' NHS Foundation Trust and King's Health Partners London UK
- Clinical Toxicology, Faculty of Life Sciences and MedicineKing's College London London UK
| | | | - Andrew T. Kicman
- Analytical, Environmental and Forensic SciencesKing's College London London UK
| | - Vincenzo Abbate
- Analytical, Environmental and Forensic SciencesKing's College London London UK
| |
Collapse
|
38
|
Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF. DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chem Neurosci 2018; 9:2379-2394. [PMID: 29714473 DOI: 10.1021/acschemneuro.8b00147] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These "synthetic cathinones" include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs. This Review will thus detail (i) historical context of cathinone use and the rise of "dark" synthetic derivatives, (ii) structural features and mechanisms of synthetic cathinones, (iii) behavioral effects observed clinically and in animals under controlled laboratory conditions, and (iv) neurotransmitters and circuits that may be targeted to manage synthetic cathinone abuse in humans.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | | | - Chicora F. Oliver
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Callum Hicks
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John W. Muschamp
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Scott M. Rawls
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
39
|
Kinyua J, Negreira N, McCall AK, Boogaerts T, Ort C, Covaci A, van Nuijs ALN. Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:331-340. [PMID: 29627557 DOI: 10.1016/j.scitotenv.2018.03.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/24/2023]
Abstract
Recent studies have demonstrated the role of biofilms on the stability of drug residues in wastewater. These factors are pertinent in wastewater-based epidemiology (WBE) when estimating community-level drug use. However, there is scarce information on the biotransformation of drug residues in the presence of biofilms and the potential use of transformation products (TPs) as biomarkers in WBE. The purpose of this work was to investigate the formation of TPs in sewage reactors in the presence of biofilm mimicking conditions during in-sewer transport. Synthetic cathinones (methylenedioxypyrovalerone, methylone, mephedrone) and phenethylamines (4-methoxy-methamphetamine and 4-methoxyamphetamine) were incubated in individual reactors over a 24h period. Analysis of parent species and TPs was carried out using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToFMS). Identification of TPs was done using suspect and non-target workflows. In total, 18 TPs were detected and identified with reduction of β-keto group, demethylenation, demethylation, and hydroxylation reactions observed for the synthetic cathinones. For the phenethylamines, N- and O-demethylation reactions were identified. Overall, the experiments showed varying stability for the parent species in wastewater in the presence of biofilms. The newly identified isomeric forms of TPs particularly for methylone and mephedrone can be used as potential target biomarkers for WBE studies due to their specificity and detectability within a 24h residence time.
Collapse
Affiliation(s)
- Juliet Kinyua
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Noelia Negreira
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Tim Boogaerts
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
40
|
Abstract
INTRODUCTION The second largest group of new drugs monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) is synthetic cathinones. Substances that are controlled by the law are immediately replaced by new uncontrolled derivatives that cause constant and dynamic changes on the drug market. Some of the most recent synthetic cathinones that have appeared on the "legal highs" market are 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) and α-pyrrolidinohexanophenone (α-PHP). CASE HISTORY A 21-year-old woman in the 36th week of pregnancy presented with psychomotor agitation. Fetal demise was demonstrated and a caesarean delivery performed. METHODS The analyses were carried out by liquid chromatography with mass spectrometry (LC-MS/MS). The analytes were isolated from the biological material by liquid-liquid extraction with n-butyl chloride. RESULTS 3,4-MDPHP and α-PHP were detected and quantified in both the fetus' and the mothers blood, as well as in the mothers urine samples. The determined concentrations of 3,4-MDPHP and α-PHP were, 76 ng/mL and 12 ng/mL in the fetal blood sample, 16 ng/mL and traces in the mothers blood, and 697 mg/mL and 136 ng/mL in the mothers urine, respectively. DISCUSSION The presented case demonstrates that 3,4-MDPHP and α-PHP transfers from maternal blood to fetal blood. Blood concentrations of these compounds were higher in the fetus than in the mother. Based on the known effects of these substances and the patient's presentation and clinical course, it would seem that these substances contributed to the fetal death. CONCLUSIONS The detected substances transfer from maternal to fetal circulation, and synthetic cathinone blood concentration can be higher in the fetus than in the mother. This along with the fact immature metabolic ability makes a fetus more vulnerable to cathinones intoxication than adults.
Collapse
Affiliation(s)
- Piotr Adamowicz
- a Department of Forensic Toxicology , Institute of Forensic Research , Kraków , Poland
| | - Piotr Hydzik
- b Department of Clinical Toxicology , Jagiellonian University Medical College , Kraków , Poland
| |
Collapse
|
41
|
Tarkowski P, Jankowski K, Budzyńska B, Biała G, Boguszewska-Czubara A. Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol Rep 2018; 70:1097-1104. [PMID: 30308460 DOI: 10.1016/j.pharep.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Mephedrone is a recreationally used synthetic cathinone, relatively new abusive substances with molecular structure similar to amphetamine. As there is still lack of scientific data regarding mechanisms of action as well as metabolism of mephedrone, especially in aspects other than neurotoxicity, addiction or behavioral changes, therefore we aimed, for the first time, to investigate potential pro-oxidative actions of a single dose of mephedrone in organs other than brain and its structures, i.e. in liver, kidneys, heart and spleen of Swiss mice. METHODS The following biomarkers of oxidative stress were measured: concentration of ascorbic acid (AA) and malondialdehyde (MDA) as well as total antioxidant capacity (TAC) of the tissues homogenates. RESULTS Our study revealed that mephedrone intoxication induces oxidative stress by reducing concentration of AA and TAC and increasing concentration of MDA in these organs. CONCLUSIONS Such occurred state of antioxidant-oxidant imbalance may be etiopathological factor of a number of severe diseases within cardiovascular, digestive as well as immunological systems.
Collapse
Affiliation(s)
- Piotr Tarkowski
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jankowski
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Barbara Budzyńska
- Department of Pharmacology and Pharmacokinetics, Medical University of Lublin, Lublin, Poland
| | - Grażyna Biała
- Department of Pharmacology and Pharmacokinetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
42
|
Long-term stability of synthetic cathinones in dried blood spots and whole blood samples: a comparative study. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0418-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Glicksberg L, Rana S, Kerrigan S. Cathinone stability in authentic urine specimens. Forensic Sci Int 2018; 286:54-60. [DOI: 10.1016/j.forsciint.2018.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
|
44
|
|
45
|
Castrignanò E, Mardal M, Rydevik A, Miserez B, Ramsey J, Shine T, Pantoș GD, Meyer MR, Kasprzyk-Hordern B. A new approach towards biomarker selection in estimation of human exposure to chiral chemicals: a case study of mephedrone. Sci Rep 2017; 7:13009. [PMID: 29097766 PMCID: PMC5693930 DOI: 10.1038/s41598-017-12581-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022] Open
Abstract
Wastewater-based epidemiology is an innovative approach to estimate public health status using biomarker analysis in wastewater. A new compound detected in wastewater can be a potential biomarker of an emerging trend in public health. However, it is currently difficult to select new biomarkers mainly due to limited human metabolism data. This manuscript presents a new framework, which enables the identification and selection of new biomarkers of human exposure to drugs with scarce or unknown human metabolism data. Mephedrone was targeted to elucidate the assessment of biomarkers for emerging drugs of abuse using a four-step analytical procedure. This framework consists of: (i) identification of possible metabolic biomarkers present in wastewater using an in-vivo study; (ii) verification of chiral signature of the target compound; (iii) confirmation of human metabolic residues in in-vivo/vitro studies and (iv) verification of stability of biomarkers in wastewater. Mephedrone was selected as a suitable biomarker due to its high stability profile in wastewater. Its enantiomeric profiling was studied for the first time in biological and environmental matrices, showing stereoselective metabolism of mephedrone in humans. Further biomarker candidates were also proposed for future investigation: 4′-carboxy-mephedrone, 4′-carboxy-normephedrone, 1-dihydro-mephedrone, 1-dihydro-normephedrone and 4′-hydroxy-normephedrone.
Collapse
Affiliation(s)
- Erika Castrignanò
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Marie Mardal
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg(Saar), 66421, Germany
| | - Axel Rydevik
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Bram Miserez
- TICTAC Communications, St George's University of London, Cranmer Terrace, London, SW170RE, United Kingdom
| | - John Ramsey
- TICTAC Communications, St George's University of London, Cranmer Terrace, London, SW170RE, United Kingdom
| | - Trevor Shine
- TICTAC Communications, St George's University of London, Cranmer Terrace, London, SW170RE, United Kingdom
| | - G Dan Pantoș
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg(Saar), 66421, Germany
| | | |
Collapse
|
46
|
Olesti E, Farré M, Papaseit E, Krotonoulas A, Pujadas M, de la Torre R, Pozo ÓJ. Pharmacokinetics of Mephedrone and Its Metabolites in Human by LC-MS/MS. AAPS JOURNAL 2017; 19:1767-1778. [DOI: 10.1208/s12248-017-0132-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022]
|
47
|
White CM. Mephedrone and 3,4-Methylenedioxypyrovalerone (MDPV): Synthetic Cathinones With Serious Health Implications. J Clin Pharmacol 2017; 56:1319-1325. [PMID: 27029951 DOI: 10.1002/jcph.742] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 11/10/2022]
Abstract
This article presents information on the predominant synthetic cathinones used in the Western world, mephedrone and methylenedioxypyrovalerone (MDPV). Synthetic cathinones are commonly used drugs of abuse in the United States and Europe, with numerous cases of patient harm and death. Patients exhibit many neurological, cardiovascular, and muscular adverse events and frequently require therapy to control psychotic or agitated states and acute kidney injury resulting from myopathy or rhabdomyolysis. There are potential genetic polymorphisms and drug interactions that might accentuate risk, but there are no studies evaluating to what extent this occurs or if it is clinically relevant. Clinicians should be aware of the known pharmacology, pharmacokinetics, and reports of effects to detect potential issues and treat patients presenting with these adverse effects.
Collapse
Affiliation(s)
- C Michael White
- University of Connecticut School of Pharmacy & Hartford Hospital Department of Pharmacy, Storrs, CT, USA.
| |
Collapse
|
48
|
Strange LG, Kochelek K, Keasling R, Brown SD, Pond BB. The pharmacokinetic profile of synthetic cathinones in a pregnancy model. Neurotoxicol Teratol 2017; 63:9-13. [PMID: 28811141 DOI: 10.1016/j.ntt.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 11/25/2022]
Abstract
In recent years, the abuse of synthetic cathinones or 'bath salts' has become a major public health concern. Although these compounds were initially sold legally and labeled "not for human consumption", the 'bath salts' are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the 'bath salts' in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive presence of methylone, mephedrone, and MDPV in the fetal brain following prenatal exposure, fetal risk is definitely a concern. As there are currently no prenatal studies available on the teratogenicity of these agents, pregnant patients should be informed about the potential risks that these substances may have.
Collapse
Affiliation(s)
- Lauren G Strange
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, Box 70594, East Tennessee State University, Johnson City, TN, United States
| | - Kerri Kochelek
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, Box 70594, East Tennessee State University, Johnson City, TN, United States
| | - Robert Keasling
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, Box 70594, East Tennessee State University, Johnson City, TN, United States
| | - Stacy D Brown
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, Box 70594, East Tennessee State University, Johnson City, TN, United States
| | - Brooks B Pond
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, Box 70594, East Tennessee State University, Johnson City, TN, United States.
| |
Collapse
|
49
|
Luethi D, Liechti ME, Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 2017. [PMID: 28645576 DOI: 10.1016/j.tox.2017.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are a new class of psychostimulant substances. Rarely, they can cause liver injury but associated mechanisms are not completely elucidated. In order to increase our knowledge about mechanisms of hepatotoxicity, we investigated the effect of five frequently used cathinones on two human cell lines. Bupropion was included as structurally related drug used therapeutically. In HepG2 cells, bupropion, MDPV, mephedrone and naphyrone depleted the cellular ATP content at lower concentrations (0.2-1mM) than cytotoxicity occurred (0.5-2mM), suggesting mitochondrial toxicity. In comparison, methedrone and methylone depleted the cellular ATP pool and induced cytotoxicity at similar concentrations (≥2mM). In HepaRG cells, cytotoxicity and ATP depletion could also be demonstrated, but cytochrome P450 induction did not increase the toxicity of the compounds investigated. The mitochondrial membrane potential was decreased in HepG2 cells by bupropion, MDPV and naphyrone, confirming mitochondrial toxicity. Bupropion, but not the other compounds, uncoupled oxidative phosphorylation. Bupropion, MDPV, mephedrone and naphyrone inhibited complex I and II of the electron transport chain, naphyrone also complex III. All four mitochondrial toxicants were associated with increased mitochondrial ROS and increased lactate production, which was accompanied by a decrease in the cellular total GSH pool for naphyrone and MDPV. In conclusion, bupropion, MDPV, mephedrone and naphyrone are mitochondrial toxicants impairing the function of the electron transport chain and depleting cellular ATP stores. Since liver injury is rare in users of these drugs, affected persons must have susceptibility factors rendering them more sensitive for these drugs.
Collapse
Affiliation(s)
- Dino Luethi
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland.
| |
Collapse
|
50
|
Olesti E, Pujadas M, Papaseit E, Pérez-Mañá C, Pozo ÓJ, Farré M, de la Torre R. GC-MS Quantification Method for Mephedrone in Plasma and Urine: Application to Human Pharmacokinetics. J Anal Toxicol 2017; 41:100-106. [PMID: 27798075 DOI: 10.1093/jat/bkw120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
Increasing consumption has been observed among young people of new psychoactive substances, including synthetic cathinone derivatives. The most well known of these is mephedrone whose use has been related to acute intoxication and fatality. Several methods able to detect mephedrone have been reported, although to date, none have been applied to human pharmacokinetic studies in a controlled setting. We developed a gas chromatography-mass spectrometry technique for mephedrone quantification in human plasma and urine. Plasma after deproteinization and urine were submitted to a liquid-liquid extraction and derivatization of the extract with MSTFA prior to analysis. Calibration curves covered concentration ranges in plasma between 5 and 300 ng/mL and in urine between 20 and 1,500 ng/mL. The method has been successfully applied to biological samples obtained from a pilot clinical trial intended to evaluate the human pharmacology of mephedrone and its relative bioavailability and pharmacokinetics. Six healthy males were administered 150 mg of mephedrone by the oral route in a randomized, double-blind, cross-over controlled trial. Peak plasma concentration (Cmax = 122.6 ± 32.9 ng/mL) was reached at 1 hour (0.5-2 h) post-drug administration. Mephedrone showed a rapid elimination half-life (t1/2 = 2.2 h) compared to other psychostimulants. Less than 15% of the dose was excreted in urine as a free-form. Mephedrone concentrations displayed a relevant inter-subject variability.
Collapse
Affiliation(s)
- Eulàlia Olesti
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain.,Pompeu Fabra University (CEXS-UPF), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Madrid, Spain
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Clara Pérez-Mañá
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain.,School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Óscar J Pozo
- Bioanalysis Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain.,Pompeu Fabra University (CEXS-UPF), Dr. Aiguader 88, Barcelona 08003, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Madrid, Spain
| |
Collapse
|