1
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
2
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
3
|
Ghadiali RS, Guimond SE, Turnbull JE, Pisconti A. Dynamic changes in heparan sulfate during muscle differentiation and ageing regulate myoblast cell fate and FGF2 signalling. Matrix Biol 2017; 59:54-68. [PMID: 27496348 PMCID: PMC5380652 DOI: 10.1016/j.matbio.2016.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Satellite cells (SCs) are skeletal muscle stem cells residing quiescent around healthy muscle fibres. In response to injury or disease SCs activate, proliferate and eventually differentiate and fuse to one another to form new muscle fibres, or to existing damaged fibres to repair them. The sulfated polysaccharide heparan sulfate (HS) is a highly variable biomolecule known to play key roles in the regulation of cell fate decisions, though the changes that muscle HS undergoes during SC differentiation are unknown. Here we show that the sulfation levels of HS increase during SC differentiation; more specifically, we observe an increase in 6-O and 2-O-sulfation in N-acetylated disaccharides. Interestingly, a specific increase in 6-O sulfation is also observed in the heparanome of ageing muscle, which we show leads to promotion of FGF2 signalling and satellite cell proliferation, suggesting a role for the heparanome dynamics in age-associated loss of quiescence. Addition of HS mimetics to differentiating SC cultures results in differential effects: an oversulfated HS mimetic increases differentiation and inhibits FGF2 signalling, a known major promoter of SC proliferation and inhibitor of differentiation. In contrast, FGF2 signalling is promoted by an N-acetylated HS mimetic, which inhibits differentiation and promotes SC expansion. We conclude that the heparanome of SCs is dynamically regulated during muscle differentiation and ageing, and that such changes might account for some of the phenotypes and signalling events that are associated with these processes.
Collapse
Affiliation(s)
- R S Ghadiali
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - S E Guimond
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - J E Turnbull
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - A Pisconti
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
4
|
Abstract
Sulf-1 and Sulf-2 are endo-acting extracellular sulfatases. The Sulfs liberate 6-O sulfate groups, mainly from N, 6-O, and 2-O trisulfated disaccharides of heparan sulfate (HS)/heparin chains. The Sulfs have been shown to modulate the interaction of a number of protein ligands including growth factors and morphogens with HS/heparin and thus regulate the signaling of these ligands. They also play important roles in development and are dysregulated in many cancers. The establishment of the expression of the Sulfs and methods of assaying them has been desirable to investigate these enzymes. In this chapter, methods to express and purify recombinant Sulfs and to analyze HS structures in an extracellular fraction of HSulf-transfected HEK293 cells are described. The application of these enzymes for ex vivo degradation of an anti-HS epitope accumulated in the brain of a neurodegenerative disease model mouse is also described.
Collapse
Affiliation(s)
- Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan,
| |
Collapse
|
5
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
6
|
Role of skeletal muscle proteoglycans during myogenesis. Matrix Biol 2013; 32:289-97. [PMID: 23583522 DOI: 10.1016/j.matbio.2013.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.
Collapse
|
7
|
Nagamine S, Tamba M, Ishimine H, Araki K, Shiomi K, Okada T, Ohto T, Kunita S, Takahashi S, Wismans RGP, van Kuppevelt TH, Masu M, Keino-Masu K. Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J Biol Chem 2012; 287:9579-90. [PMID: 22298771 DOI: 10.1074/jbc.m111.290262] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.
Collapse
Affiliation(s)
- Satoshi Nagamine
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Heparin and heparan sulfate share the same polysaccharide backbone structure but differ in sulfation degree and expression pattern. Whereas heparan sulfate is found in virtually all cells of the human body, heparin expression is restricted to mast cells, where it has a function in storage of granular components such as histamine and mast cell specific proteases. Although differing in charge and sulfation pattern, current knowledge indicates that the same pathway is used for synthesis of heparin and heparan sulfate, with a large number of different enzymes taking part in the process. At present, little is known about how the individual enzymes are coordinated and how biosynthesis is regulated. These questions are addressed in this chapter together with a review of the basic enzymatic steps involved in initiation, elongation, and modification of the polysaccharides.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Hosono-Fukao T, Ohtake-Niimi S, Nishitsuji K, Hossain MM, van Kuppevelt TH, Michikawa M, Uchimura K. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature. J Neurosci Res 2011; 89:1840-8. [PMID: 21805491 DOI: 10.1002/jnr.22690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 11/10/2022]
Abstract
RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytokines in central nervous tissues. Chemically modified heparins that lack the trisulfated disaccharides failed to inhibit the RB4CD12 recognition of HS chains. To determine the localization of the RB4CD12 anti-HS epitope in the brain, we performed an immunohistochemical analysis for cryocut sections of mouse brain. The RB4CD12 staining signals were colocalized with laminin and were detected abundantly in the vascular basement membrane. Bacterial heparinases eliminated the RB4CD12 staining signals. The RB4CD12 epitope localization was confirmed by immunoelectron microscopy. Western blotting analysis revealed that the size of a major RB4CD12-positive molecule is ∼460 kDa in a vessel-enriched fraction of the mouse brain. Disaccharide analysis with reversed-phase ion-pair HPLC showed that [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-] trisulfated disaccharide residues are present in HS purified from the vessel-enriched brain fraction. These results indicated that the RB4CD12 anti-HS epitope exists in large quantities in the brain vascular basement membrane.
Collapse
Affiliation(s)
- Tomomi Hosono-Fukao
- Section of Pathophysiology and Neurobiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
McCarty DM, DiRosario J, Gulaid K, Killedar S, Oosterhof A, van Kuppevelt TH, Martin PT, Fu H. Differential distribution of heparan sulfate glycoforms and elevated expression of heparan sulfate biosynthetic enzyme genes in the brain of mucopolysaccharidosis IIIB mice. Metab Brain Dis 2011; 26:9-19. [PMID: 21225451 PMCID: PMC3070083 DOI: 10.1007/s11011-010-9230-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/21/2010] [Indexed: 12/17/2022]
Abstract
The primary pathology in mucopolysaccharidosis (MPS) IIIB is lysosomal storage of heparan sulfate (HS) glycosaminoglycans, leading to complex neuropathology and dysfunction, for which the detailed mechanisms remain unclear. Using antibodies that recognize specific HS glycoforms, we demonstrate differential cell-specific and domain-specific lysosomal HS-GAG distribution in MPS IIIB mouse brain. We also describe a novel neuron-specific brain HS epitope with broad, non-specific increase in the expression in all neurons in MPS IIIB mouse brain, including cerebellar granule neurons, which do not exhibit lysosomal storage pathology. This suggests that biosynthesis of certain HS glycoforms is enhanced throughout the CNS of MPS IIIB mice. Such a conclusion is further supported by demonstration of increased expression of multiple genes encoding enzymes essential in HS biosynthesis, including HS sulfotransferases and epimerases, as well as FGFs, for which HS serves as a co-receptor, in MPS IIIB brain. These data suggest that lysosomal storage of HS may lead to the increase in HS biosyntheses, which may contribute to the neuropathology of MPS IIIB by exacerbating the lysosomal HS storage.
Collapse
Affiliation(s)
- Douglas M. McCarty
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Julianne DiRosario
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kadra Gulaid
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Smruti Killedar
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Arie Oosterhof
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul T. Martin
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Haiyan Fu
- The Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
11
|
Ly M, Laremore TN, Linhardt RJ. Proteoglycomics: recent progress and future challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:389-99. [PMID: 20450439 DOI: 10.1089/omi.2009.0123] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteoglycomics is a systematic study of structure, expression, and function of proteoglycans, a posttranslationally modified subset of a proteome. Although relying on the established technologies of proteomics and glycomics, proteoglycomics research requires unique approaches for elucidating structure-function relationships of both proteoglycan components, glycosaminoglycan chain, and core protein. This review discusses our current understanding of structure and function of proteoglycans, major players in the development, normal physiology, and disease. A brief outline of the proteoglycomic sample preparation and analysis is provided along with examples of several recent proteoglycomic studies. Unique challenges in the characterization of glycosaminoglycan component of proteoglycans are discussed, with emphasis on the many analytical tools used and the types of information they provide.
Collapse
Affiliation(s)
- Mellisa Ly
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | |
Collapse
|
12
|
Uchimura K, Lemjabbar-Alaoui H, van Kuppevelt TH, Rosen SD. Use of a Phage Display Antibody to Measure the Enzymatic Activity of the Sulfs. Methods Enzymol 2010; 480:51-64. [DOI: 10.1016/s0076-6879(10)80003-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Thompson SM, Fernig DG, Jesudason EC, Losty PD, van de Westerlo EMA, van Kuppevelt TH, Turnbull JE. Heparan sulfate phage display antibodies identify distinct epitopes with complex binding characteristics: insights into protein binding specificities. J Biol Chem 2009; 284:35621-31. [PMID: 19837661 PMCID: PMC2790993 DOI: 10.1074/jbc.m109.009712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/02/2009] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) binds and modulates the transport and activity of a large repertoire of regulatory proteins. The HS phage display antibodies are powerful tools for the analysis of native HS structure in situ; however, their epitopes are not well defined. Analysis of the binding specificities of a set of HS antibodies by competitive binding assays with well defined chemically modified heparins demonstrates that O-sulfates are essential for binding; however, increasing sulfation does not necessarily correlate with increased antibody reactivity. IC50 values for competition with double modified heparins were not predictable from IC50 values with corresponding singly modified heparins. Binding assays and immunohistochemistry revealed that individual antibodies recognize distinct epitopes and that these are not single linear sequences but families of structurally similar motifs in which subtle variations in sulfation and conformation modify the affinity of interaction. Modeling of the antibodies demonstrates that they possess highly basic CDR3 and surrounding surfaces, presenting a number of possible orientations for HS binding. Unexpectedly, there are significant differences between the existence of epitopes in tissue sections and observed in vitro in dot blotted tissue extracts, demonstrating that in vitro specificity does not necessarily correlate with specificity in situ/vivo. The epitopes are therefore more complex than previously considered. Overall, these data have significance for structure-activity relationships of HS, because the model of one antibody recognizing multiple HS structures and the influence of other in situ HS-binding proteins on epitope availability are likely to reflect the selectivity of many HS-protein interactions in vivo.
Collapse
Affiliation(s)
- Sophie M. Thompson
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David G. Fernig
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Edwin C. Jesudason
- the Division of Child Health, School of Reproductive and Developmental Medicine, Royal Liverpool Children's Hospital, Alder Hey, Liverpool L12 2AP, United Kingdom, and
| | - Paul D. Losty
- the Division of Child Health, School of Reproductive and Developmental Medicine, Royal Liverpool Children's Hospital, Alder Hey, Liverpool L12 2AP, United Kingdom, and
| | - Els M. A. van de Westerlo
- the Department of Matrix Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- the Department of Matrix Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jeremy E. Turnbull
- From the School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
14
|
Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K. Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology 2009; 20:175-86. [PMID: 19822709 DOI: 10.1093/glycob/cwp159] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heparan sulfates (HS) bind a diversity of protein ligands on the cell surface and in the extracellular matrix and thus can modulate cell signaling. The state of sulfation in glucosamines and uronic acids within the chains strongly influences their binding. We have previously cloned and characterized two human extracellular endoglucosamine 6-sulfatases, HSulf-1 and HSulf-2, which selectively liberate the 6-O sulfate groups on glucosamines present in N, 6-O, and 2-O trisulfated disaccharides of intact HS and heparins. These enzymes serve important roles in development and are upregulated in a number of cancers. To determine whether the Sulfs act on the trisulfated disaccharides that exist on the cell surface, we expressed HSulfs in cultured cells and performed a flow cytometric analysis with the RB4CD12, an anti-HS antibody that recognizes N- and O-sulfated HS saccharides. The endogenously expressed level of the cell surface RB4CD12 epitope was greatly diminished in CHO, HEK293, and HeLa cells transfected with HSulf-1 or HSulf-2 cDNA. In correspondence with the RB4CD12 finding, the N, 6-O, and 2-O trisulfated disaccharides of the HS isolated from the cell surface/extracellular matrix were dramatically reduced in the Sulf-expressed HEK293 cells. We then developed an ELISA and confirmed that the RB4CD12 epitope in immobilized heparin was degraded by purified recombinant HSulf-1 and HSulf-2, and conditioned medium (CM) of MCF-7 breast carcinoma cells, which contain a native form of HSulf-2. Furthermore, HSulf-1 and HSulf-2 exerted activity against the epitope expressed on microvessels of mouse brains. Both HSulf activities were potently inhibited by PI-88, a sulfated heparin mimetic with anti-cancer activities. These findings provide new strategies for monitoring the extracellular remodeling of HS by Sulfs during normal and pathophysiological processes.
Collapse
Affiliation(s)
- Md Motarab Hossain
- Section of Pathophysiology and Neurobiology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ikeda Y, Siñeriz F, Bultel L, Grand E, Kovensky J, Papy-Garcia D. Synthesis of a trisulfated heparan sulfate disaccharide analog and its use as a template for preliminary molecular imprinting studies. Carbohydr Res 2008; 343:587-95. [DOI: 10.1016/j.carres.2007.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
|
16
|
Toward an alternative for specific recognition of sulfated sugars. Preparation of highly specific molecular imprinted polymers. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Kim MJ, Liu IH, Song Y, Lee JA, Halfter W, Balice-Gordon RJ, Linney E, Cole GJ. Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish. Glycobiology 2006; 17:231-47. [PMID: 17110391 DOI: 10.1093/glycob/cwl069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although recent studies have extended our understanding of agrin's function during development, its function in the central nervous system (CNS) is not clearly understood. To address this question, zebrafish agrin was identified and characterized. Zebrafish agrin is expressed in the developing CNS and in nonneural structures such as somites and notochord. In agrin morphant embryos, acetylcholine receptor (AChR) cluster number and size on muscle fibers at the choice point were unaffected, whereas AChR clusters on muscle fibers in the dorsal and ventral regions of the myotome were reduced or absent. Defects in the axon outgrowth by primary motor neurons, subpopulations of branchiomotor neurons, and Rohon-Beard sensory neurons were also observed, which included truncation of axons and increased branching of motor axons. Moreover, agrin morphants exhibit significantly inhibited tail development in a dose-dependent manner, as well as defects in the formation of the midbrain-hindbrain boundary and reduced size of eyes and otic vesicles. Together these results show that agrin plays an important role in both peripheral and CNS development and also modulates posterior development in zebrafish.
Collapse
Affiliation(s)
- Min Jung Kim
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gomes RR, Van Kuppevelt TH, Farach-Carson MC, Carson DD. Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development. Histochem Cell Biol 2006; 126:713-22. [PMID: 16835755 DOI: 10.1007/s00418-006-0203-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are abundant in the pericellular matrix of both developing and mature cartilage. Increasing evidence suggests the action of numerous chondroregulatory molecules depends on HSPGs. In addition to specific functions attributed to their core protein, the complexity of heparan sulfate (HS) synthesis provides extraordinary structural and functional heterogeneity. Understanding the interactions of chondroregulatory molecules with HSPGs and their subsequent outcomes has been limited by the absence of a detailed analysis of HS species in cartilage. In this study, we characterize the distribution and variety of HS species in developing cartilage of normal mice. Cryo-sections of femur and tibia from normal mouse embryos were evaluated using immunostaining techniques. A panel of unique phage display antibodies specific to particular HS species were employed and visualized with secondary antibodies conjugated to Alexa-fluor dyes. Confocal microscopy demonstrates that HS species are dynamic structures within developing growth plate cartilage and the perichondrium. GlcNS6S-IdoUA2S-GlcNS6S species are down regulated and localization of GlcNS6S-IdoUA-GlcNS6S species within the hypertrophic zone of the growth plate is lost during normal development. Regional differences in HS structures are present within developing growth plates, implying that interactions with and responses to HS-binding proteins also may display regional specialization.
Collapse
Affiliation(s)
- Ronald R Gomes
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
19
|
Smits NC, Lensen JFM, Wijnhoven TJM, Ten Dam GB, Jenniskens GJ, van Kuppevelt TH. Phage Display‐Derived Human Antibodies Against Specific Glycosaminoglycan Epitopes. Methods Enzymol 2006; 416:61-87. [PMID: 17113860 DOI: 10.1016/s0076-6879(06)16005-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosaminoglycans (GAGs) are long unbranched polysaccharides, most of which are linked to a core protein to form proteoglycans. Depending on the nature of their backbone, one can discern galactosaminoglycans (chondroitin sulfate [CS] and dermatan sulfate [DS]) and glucosaminoglycans (heparan sulfate [HS], heparin, hyaluronic acid, and keratan sulfate). Modification of the backbone by sulfation, deacetylation, and epimerization results in unique sequences within GAG molecules, which are instrumental in the binding of a large number of proteins. Investigating the exact roles of GAGs has long been hampered by the lack of appropriate tools, but we have successfully implemented phage display technology to generate a large panel of antibodies against CS, DS, HS, and heparin epitopes. These antibodies provide unique and highly versatile tools to study the topography, structure, and function of specific GAG domains. In this chapter, we describe the selection, characterization, and application of antibodies against specific GAG epitopes.
Collapse
Affiliation(s)
- Nicole C Smits
- Department of Biochemistry, Raboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Jenniskens GJ, Veerkamp JH, van Kuppevelt TH. Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 2005; 206:283-94. [PMID: 15991249 DOI: 10.1002/jcp.20450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have seen an emerging interest in the composition of the skeletal muscle extracellular matrix (ECM) and in the developmental and physiological roles of its constituents. Many cell surface-associated and ECM-embedded molecules occur in highly organized spatiotemporal patterns, suggesting important roles in the development and functioning of skeletal muscle. Glycans are historically underrepresented in the study of skeletal muscle ECM, even though studies from up to 30 years ago have demonstrated specific carbohydrates and glycoproteins to be concentrated in neuromuscular junctions (NMJs). Changes in glycan profile and distribution during myogenesis and synaptogenesis hint at an active involvement of glycoconjugates in muscle development. A modest amount of literature involves glycoconjugates in muscle ion housekeeping, but a recent surge of evidence indicates that glycosylation defects are causal for many congenital (neuro)muscular disorders, rendering glycosylation essential for skeletal muscle integrity. In this review, we focus on a single class of ECM-resident glycans and their emerging roles in muscle development, physiology, and pathology: heparan sulfate proteoglycans (HSPGs), notably their heparan sulfate (HS) moiety.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands
| | | | | |
Collapse
|
21
|
Barbosa I, Morin C, Garcia S, Duchesnay A, Oudghir M, Jenniskens G, Miao HQ, Guimond S, Carpentier G, Cebrian J, Caruelle JP, van Kuppevelt T, Turnbull J, Martelly I, Papy-Garcia D. A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis. J Cell Sci 2005; 118:253-64. [PMID: 15615789 DOI: 10.1242/jcs.01607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Crucial events in myogenesis rely on the highly regulated spatiotemporal distribution of cell surface heparan sulfate proteoglycans to which are associated growth factors, thus creating a specific microenvironment around muscle cells. Most growth factors involved in control of myoblast growth and differentiation are stored in the extracellular matrix through interaction with specific sequences of glycosaminoglycan oligosaccharides, mainly heparan sulfate (HS). Different HS subspecies revealed by specific antibodies, have been shown to provide spatiotemporal regulation during muscle development. We have previously shown that glycosaminoglycan (GAG) mimetics called RGTA (ReGeneraTing Agent), stimulate muscle precursor cell growth and differentiation. These data suggest an important role of GAGs during myogenesis; however, little is yet known about the different species of GAGs synthesized during myogenesis and their metabolic regulation. We therefore quantified GAGs during myogenesis of C2.7 cells and show that the composition of GAG species was modified during myogenic differentiation. In particular, HS levels were increased during this process. In addition, the GAG mimetic RGTA, which stimulated both growth and differentiation of C2.7 cells, increased the total amount of GAG produced by these cells without significantly altering their rate of sulfation. RGTA treatment further enhanced HS levels and changed its sub-species composition. Although mRNA levels of the enzymes involved in HS biosynthesis were almost unchanged during myogenic differentiation, heparanase mRNA levels decreased. RGTA did not markedly alter these levels. Here we show that the effects of RGTA on myoblast growth and differentiation are in part mediated through an alteration of GAG species and provide an important insight into the role of these molecules in normal or pathologic myogenic processes.
Collapse
Affiliation(s)
- Isabelle Barbosa
- Laboratoire CRRET, CNRS UMR 7149, Université Paris 12-Val de Marne, 61 Avenue du Général de Gaulle, 94010 Créteil CEDEX, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 2004; 131:3627-36. [PMID: 15229180 DOI: 10.1242/dev.01239] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we demonstrated that loss of Fgf9 results in a block of testis development and a male to female sex-reversed phenotype; however, the function of Fgf9 in sex determination was unknown. We now show that Fgf9 is necessary for two steps of testis development just downstream of the male sex-determining gene, Sry: (1) for the proliferation of a population of cells that give rise to Sertoli progenitors; and (2) for the nuclear localization of an FGF receptor (FGFR2) in Sertoli cell precursors. The nuclear localization of FGFR2 coincides with the initiation of Sry expression and the nuclear localization of SOX9 during the early differentiation of Sertoli cells and the determination of male fate.
Collapse
Affiliation(s)
- Jennifer Schmahl
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Heparan sulfate (HS) binds numerous extracellular ligands, including cell-cell signaling molecules and their signal-transducing receptors. Ligand binding sites in HS have specific sulfation patterns; and several observations suggest that the HS sulfation pattern is the same for every HS chain that a cell synthesizes, regardless of the core protein to which it is attached. Nonetheless, virtually every Drosophila, zebrafish, Xenopus, and mouse that lacks a specific HS core protein has a mutant phenotype, even though other HS core proteins are expressed in the affected cells. Genetic manipulation of HS core protein genes is beginning to indicate that HS core proteins have functional specificities that are required during distinct stages of development.
Collapse
Affiliation(s)
- Kenneth L Kramer
- Center for Children, Huntsman Cancer Institute, Department of Oncological Sciences and Department of Pediatrics, University of Utah, Salt Lake City, Utah 84112-0550, USA.
| | | |
Collapse
|
24
|
Allen BL, Rapraeger AC. Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. ACTA ACUST UNITED AC 2004; 163:637-48. [PMID: 14610064 PMCID: PMC2173664 DOI: 10.1083/jcb.200307053] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate (HS) interacts with diverse growth factors, including Wnt, Hh, BMP, VEGF, EGF, and FGF family members, and is a necessary component for their signaling. These proteins regulate multiple cellular processes that are critical during development. However, a major question is whether developmental changes occur in HS that regulate the activity of these factors. Using a ligand and carbohydrate engagement assay, and focusing on FGF1 and FGF8b interactions with FGF receptor (FR)2c and FR3c, this paper reveals global changes in HS expression in mouse embryos during development that regulate FGF and FR complex assembly. Furthermore, distinct HS requirements are identified for both complex formation and signaling for each FGF and FR pair. Overall, these results suggest that changes in HS act as critical temporal regulators of growth factor and morphogen signaling during embryogenesis.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- CHO Cells
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cricetinae
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Female
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 1/pharmacology
- Fibroblast Growth Factor 8
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/pharmacology
- Heparitin Sulfate/metabolism
- Mice/embryology
- Mice/metabolism
- Pregnancy
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Time Factors
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|