1
|
Camacho-Macorra C, Tabanera N, Sánchez-Bustamante E, Bovolenta P, Cardozo MJ. Maternal vgll4a regulates zebrafish epiboly through Yap1 activity. Front Cell Dev Biol 2024; 12:1362695. [PMID: 38444829 PMCID: PMC10912589 DOI: 10.3389/fcell.2024.1362695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/β-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/β-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
2
|
Cheng JC, Miller AL, Webb SE. Actin-mediated endocytosis in the E-YSL helps drive epiboly in zebrafish. ZYGOTE 2023; 31:517-526. [PMID: 37533161 DOI: 10.1017/s0967199423000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.
Collapse
Affiliation(s)
- Jackie C Cheng
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| |
Collapse
|
3
|
Chen Y, Wang J, Yu Z, Xiao L, Xu J, Zhao K, Zhang H, Shang X, Liu C. Transcriptomic and metabolomic analyses revealed epiboly delayed mechanisms of 2,5-dichloro-1, 4-benuinone on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27145-4. [PMID: 37165267 DOI: 10.1007/s11356-023-27145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
2,5-Dichloro-1,4-benzenediol (2,5-DCBQ) is a putative disinfection by-product that belongs to the halogenated benzoquinone class. However, its developmental toxicity and related mechanism remained unclarified. In our study, we used zebrafish embryos as the model and exposed them to graded concentrations of 2,5-DCBQ (100, 200, 300, 400 μg/L). We found that the rate of epiboly abnormalities increased significantly in a concentration-dependent manner. The results of whole-mount in situ hybridization (WISH) indicated that the expression patterns and levels of chordin (dorsoventral marker), foxa2 (endodermal marker), eve1 (ventral mesodermal marker), and foxb1a (ectodermal marker) were altered, suggesting that 2,5-DCBQ might affect the germ layer development of zebrafish embryos. Integrated transcriptomic and metabolomic analyses were adopted to explore the molecular mechanisms of embryonic developmental delays. The results showed that 2,5-DCBQ exposure induced 1163 differentially expressed genes (DEGs) and 37 differential metabolites (DEMs). Bioinformatic analysis enriched the most affected molecular pathways (Wnt signaling pathway, cell adhesion molecules, actin cytoskeleton regulation) and metabolic pathways (purine metabolism, aminoacyl-tRNA biosynthesis, arginine and proline metabolism) in zebrafish embryos. To summarize, our findings broadened the molecular mechanisms of 2,5-DCBQ embryotoxicity through multi-omics and bioinformatic analyses.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
Zhang C, Lu T, Zhang Y, Li J, Tarique I, Wen F, Chen A, Wang J, Zhang Z, Zhang Y, Shi DL, Shao M. Rapid generation of maternal mutants via oocyte transgenic expression of CRISPR-Cas9 and sgRNAs in zebrafish. SCIENCE ADVANCES 2021; 7:eabg4243. [PMID: 34362733 PMCID: PMC8346210 DOI: 10.1126/sciadv.abg4243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/21/2021] [Indexed: 05/08/2023]
Abstract
Maternal products are exclusive factors to drive oogenesis and early embryonic development. As disrupting maternal gene functions is either time-consuming or technically challenging, early developmental programs regulated by maternal factors remain mostly elusive. We provide a transgenic approach to inactivate maternal genes in zebrafish primary oocytes. By introducing three tandem single guide RNA (sgRNA) expression cassettes and a green fluorescent protein (GFP) reporter into Tg(zpc:zcas9) embryos, we efficiently obtained maternal nanog and ctnnb2 mutants among GFP-positive F1 offspring. Notably, most of these maternal mutants displayed either sgRNA site-spanning genomic deletions or unintended large deletions extending distantly from the sgRNA targets, suggesting a prominent deletion-prone tendency of genome editing in the oocyte. Thus, our method allows maternal gene knockout in the absence of viable and fertile homozygous mutant adults. This approach is particularly time-saving and can be applied for functional screening of maternal factors and generating genomic deletions in zebrafish.
Collapse
Affiliation(s)
- Chong Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaguang Li
- Shandong University Taishan College, Qingdao 266237, China
| | - Imran Tarique
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Fenfen Wen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhuoyu Zhang
- Shandong University Taishan College, Qingdao 266237, China
| | - Yanjun Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Developmental Biology Laboratory, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, Paris 75005, France
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
- Shandong University Taishan College, Qingdao 266237, China
| |
Collapse
|
5
|
González-Stegmaier R, Peña A, Villarroel-Espíndola F, Aguila P, Oliver C, MacLeod-Carey D, Rozas-Serri M, Enriquez R, Figueroa J. Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103988. [PMID: 33359361 DOI: 10.1016/j.dci.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Flagellin is the major component of the flagellum, and a ligand for Toll-like receptor 5. As reported, recombinant flagellin (rFLA) from Vibrio anguillarum and its D1 domain (rND1) are able to promote in vitro an upregulation of pro-inflammatory genes in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) macrophages. This study evaluated the in vitro and in vivo stimulatory/adjuvant effect for rFLA and rND1 during P. salmonis vaccination in Atlantic salmon (Salmo salar). We demonstrated that rFLA and rND1 are molecules able to generate an acute upregulation of pro-inflammatory cytokines (IL-1β, IL-8, IL-12β), allowing the expression of genes associated with T-cell activation (IL-2, CD4, CD8β), and differentiation (IFNγ, IL-4/13, T-bet, Eomes, GATA3), in a differential manner, tissue/time dependent way. Altogether, our results suggest that rFLA and rND1 are valid candidates to be used as an immuno-stimulant or adjuvants with existing vaccines in farmed salmon.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile.
| | - Andrea Peña
- Laboratorio Pathovet Ltda, Puerto Montt, Chile
| | - Franz Villarroel-Espíndola
- Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile
| | - Patricia Aguila
- Escuela de Tecnología Médica, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Departamento de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Desmond MacLeod-Carey
- Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center, El Llano Subercaseaux, 2801, Santiago, Chile
| | | | - Ricardo Enriquez
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Figiel DM, Elsayed R, Nelson AC. Investigating the molecular guts of endoderm formation using zebrafish. Brief Funct Genomics 2021:elab013. [PMID: 33754635 DOI: 10.1093/bfgp/elab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Collapse
Affiliation(s)
- Daniela M Figiel
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | - Randa Elsayed
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | | |
Collapse
|
7
|
Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nat Commun 2020; 11:4589. [PMID: 32917887 PMCID: PMC7486921 DOI: 10.1038/s41467-020-18146-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.
Collapse
|
8
|
Chi H, Sørmo KG, Diao J, Dalmo RA. T-box transcription factor eomesodermin/Tbr2 in Atlantic cod (Gadus morhua L.): Molecular characterization, promoter structure and function analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:28-38. [PMID: 31302288 DOI: 10.1016/j.fsi.2019.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Eomesodermin (Eomes) is a member of T-box transcription factor family and plays an important role in the regulation of a wide variety of developmental processes and immune response in animals. Here we report cloning and characterization of the full-length cDNA of Atlantic cod Eomes (GmEomes), which possesses a TBOX_3 domain similar to its counterpart in mammals. The regulated expression was observed in head kidney and spleen in response to live Vibrio anguillarum infection in vivo, and spleen leukocytes in vitro after PMA and poly I:C stimulation. Furthermore, we determined a 694 bp sequence, upstream of the transcriptional start site (TSS), to contain a number of sequence motifs that matched known transcription factor-binding sites. Activities of the presumptive regulatory gene were assessed by transfecting different 5'-deletion constructs in CHSE-214 cells. The results showed that the basal promoters and positive transcriptional regulator activities of GmEomes were dependent by sequences located from -694 to -376 bp upstream of TSS. Furthermore, we found that some Eomes binding sites were present in the 5'-flanking regions of the cod IFNγ gene predicted by bioinformatics. However, Co-transfection of eomesodermin overexpression plasmids with INFγ reporter vector into CHSE-214 cells determined that Atlantic cod eomesodermin played a minor role in activation of the INFγ promoter.
Collapse
Affiliation(s)
- Heng Chi
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China; Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, 266071, Qingdao, China.
| | - Kristian Gillebo Sørmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
9
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
10
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
11
|
Veil M, Schaechtle MA, Gao M, Kirner V, Buryanova L, Grethen R, Onichtchouk D. Maternal Nanog is required for zebrafish embryo architecture and for cell viability during gastrulation. Development 2018; 145:dev.155366. [PMID: 29180568 DOI: 10.1242/dev.155366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Nanog has been implicated in establishment of pluripotency in mammals and in zygotic genome activation in zebrafish. In this study, we characterize the development of MZnanog (maternal and zygotic null) mutant zebrafish embryos. Without functional Nanog, epiboly is severely affected, embryo axes do not form and massive cell death starts at the end of gastrulation. We show that three independent defects in MZnanog mutants contribute to epiboly failure: yolk microtubule organization required for epiboly is abnormal, maternal mRNA fails to degrade owing to the absence of miR-430, and actin structure of the yolk syncytial layer does not form properly. We further demonstrate that the cell death in MZnanog embryos is cell-autonomous. Nanog is necessary for correct spatial expression of the ventral-specifying genes bmp2b, vox and vent, and the neural transcription factor her3 It is also required for the correctly timed activation of endoderm genes and for the degradation of maternal eomesa mRNA via miR-430. Our findings suggest that maternal Nanog coordinates several gene regulatory networks that shape the embryo during gastrulation.
Collapse
Affiliation(s)
- Marina Veil
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Anna Schaechtle
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Meijiang Gao
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Viola Kirner
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Lenka Buryanova
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Rachel Grethen
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,Institute of Developmental Biology RAS, 119991 Moscow, Russia
| |
Collapse
|
12
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
|
14
|
Bruce AE. Zebrafish epiboly: Spreading thin over the yolk. Dev Dyn 2015; 245:244-58. [DOI: 10.1002/dvdy.24353] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley E.E. Bruce
- Department of Cell and Systems Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
15
|
Nelson AC, Cutty SJ, Niini M, Stemple DL, Flicek P, Houart C, Bruce AEE, Wardle FC. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. BMC Biol 2014; 12:81. [PMID: 25277163 PMCID: PMC4206766 DOI: 10.1186/s12915-014-0081-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 12/27/2022] Open
Abstract
Background Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action and how it interacts with the Nodal signalling pathway are still unclear. Results Using a combination of expression analysis and chromatin immunoprecipitation with deep sequencing (ChIP-seq) we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel role for Eomesa in repressing ectodermal genes in the early blastula. Conclusions Our data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa, therefore, regulates the formation of all three germ layers in the early zebrafish embryo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0081-5) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun 2014; 452:1-7. [PMID: 25117442 DOI: 10.1016/j.bbrc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.
Collapse
Affiliation(s)
- Shyh-Jye Lee
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for System Biology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
17
|
Takizawa F, Araki K, Ohtani M, Toda H, Saito Y, Lampe VS, Dijkstra JM, Ototake M, Moritomo T, Nakanishi T, Fischer U. Transcription analysis of two Eomesodermin genes in lymphocyte subsets of two teleost species. FISH & SHELLFISH IMMUNOLOGY 2014; 36:215-222. [PMID: 24239596 DOI: 10.1016/j.fsi.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Eomesodermin (Eomes), a T-box transcription factor, is a key molecule associated with function and differentiation of CD8(+) T cells and NK cells. Previously, two teleost Eomes genes (Eomes-a and -b), which are located on different chromosomes, were identified and shown to be expressed in zebrafish lymphocytes. For the present study, we identified these genes in rainbow trout and ginbuna crucian carp. Deduced Eomes-a and -b amino acid sequences in both fish species contain a highly conserved T-box DNA binding domain. In RT-PCR, both Eomes transcripts were readily detectable in a variety of tissues in rainbow trout and ginbuna. The high expression of Eomes-a and -b in brain and ovary suggests involvement in neurogenesis and oogenesis, respectively, while their expression in lymphoid tissues presumably is associated with immune functions. Investigation of separated lymphocyte populations from pronephros indicated that both Eomes-a and -b transcripts were few or absent in IgM(+) lymphocytes, while relatively abundant in IgM(-)/CD8α(+) and IgM(-)/CD8α(-) populations. Moreover, we sorted trout CD8α(+) lymphocytes from mucosal and non-mucosal lymphoid tissues and compared the expression profiles of Eomes-a and -b with those of other T cell-related transcription factor genes (GATA-3, T-bet and Runx3), a Th1 cytokine gene (IFN-γ) and a Th2 cytokine gene (IL-4/13A). Interestingly, the tissue distribution of Eomes-a/b, T-bet, and Runx3 versus IFN-γ transcripts did not reveal simple correlations, suggesting tissue-specific properties of CD8α(+) lymphocytes and/or multiple modes that drive IFN-γ expressions.
Collapse
Affiliation(s)
- Fumio Takizawa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany; Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kyosuke Araki
- Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima 890-0056, Japan
| | - Maki Ohtani
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hideaki Toda
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yasutaka Saito
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Veronica Soto Lampe
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany
| | | | - Mitsuru Ototake
- Aquatic Animal Health Division, National Research Institute of Aquaculture, Fisheries Research Agency, 422-1 Minami-Ise, Mie 516-0193, Japan
| | - Tadaaki Moritomo
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany.
| |
Collapse
|
18
|
Wang Y, Zhou L, Li Z, Li W, Gui J. Apolipoprotein C1 regulates epiboly during gastrulation in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2013; 56:975-84. [PMID: 24203452 DOI: 10.1007/s11427-013-4563-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/09/2013] [Indexed: 11/28/2022]
Abstract
Apolipoprotein C1 (Apoc1) is associated with lipoprotein metabolism, but its physiological role during embryogenesis is largely unknown. We reveal a new function of Apoc1b, a transcript isoform of Apoc1, in epiboly during zebrafish gastrulation. Apoc1b is expressed in yolk syncytial layers and in deep cells of the ventral and lateral region of the embryos. It displays a radial gradient with high levels in the interior layer and low levels in the superficial layer. Knockdown of Apoc1b by injecting antisense morpholino (MO) caused the epiboly arrest in deep cells. Moreover, we show that the radial intercalation and the radial gradient distribution of E-cadherin are disrupted both in Apoc1b knockdown and overexpressed embryos. Therefore, Apoc1b controls epiboly via E-cadherin-mediated radial intercalation in a gradient-dependent manner.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
19
|
Kumari J, Bøgwald J, Dalmo RA. Eomesodermin of atlantic salmon: an important regulator of cytolytic gene and interferon gamma expression in spleen lymphocytes. PLoS One 2013; 8:e55893. [PMID: 23409078 PMCID: PMC3567031 DOI: 10.1371/journal.pone.0055893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022] Open
Abstract
Eomesodermin (Eomes), a T-bet homologue expressed in activated CD8+T cells was recently proposed to act as a master regulator of cytotoxic CD8+ T cell effector function and offers an exciting avenue for future exploration. Here, we have identified and characterized the full-length Atlantic salmon Eomes cDNA (2477 bp). Promoter analysis of the salmon Eomes showed the presence of important putative transcription binding sites like SP1, FOXO, Oct-1, SMAD, STAT, IRF, and Ets-1. The basal core region responsible for the promoter activity was located between base −199 and +59. Quantitative PCR analysis revealed that the Atlantic salmon Eomes was ubiquitously expressed in all the tissues studied but strongly expressed in the ovary, spleen, brain, and the head kidney. Moreover, the involvement of Eomes in Atlantic salmon immune response and its relation with the cytolytic activity was demonstrated by investigating the early time dependent expression profile of Eomes and CD8α followed by high interferon gamma (IFN-γ) and granzyme A expression during challenge with live Aeromonas salmonicida and Infectious Pancreatic Necrosis (IPN) virus. Therefore, we further analyzed the regulated expression and function of this transcription factor in spleen lymphocytes. Overexpression of Eomes induced IFN-γ, and granzyme A expression but not perforin expression, whereas small interfering RNA (siRNA) mediated suppression of Eomes expression led to significantly reduced IFN-γ production. Thus, Eomes may be critical in cytolytic gene expression and function in fish similar to mammals. Furthermore, IFN-α, and mitogens induced Eomes expression. Taken together, this is the first study on the promoter activity and regulatory role of Eomes in fish.
Collapse
Affiliation(s)
- Jaya Kumari
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics University of Tromsø, Tromsø, Norway
- * E-mail: (JK); (RD)
| | - Jarl Bøgwald
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics University of Tromsø, Tromsø, Norway
| | - Roy A. Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics University of Tromsø, Tromsø, Norway
- * E-mail: (JK); (RD)
| |
Collapse
|
20
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
21
|
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI. Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 2012; 22:625-38. [PMID: 22421047 DOI: 10.1016/j.devcel.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022]
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Collapse
Affiliation(s)
- Cong Xu
- Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Du S, Draper BW, Mione M, Moens CB, Bruce AEE. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev Biol 2012; 362:11-23. [PMID: 22142964 PMCID: PMC3259739 DOI: 10.1016/j.ydbio.2011.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/24/2011] [Accepted: 10/19/2011] [Indexed: 01/07/2023]
Abstract
The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report for the first time the identification and characterization of an Eomesa mutant generated by TILLING. We find that Eomesa has a strictly maternal role in the initiation of epiboly, which involves doming of the yolk cell up into the overlying blastoderm. By contrast, epiboly progression is normal, demonstrating for the first time that epiboly initiation is genetically separable from progression. The yolk cell microtubules, which are required for epiboly, are defective in maternal-zygotic eomesa mutant embryos. In addition, the deep cells of the blastoderm are more tightly packed and exhibit more bleb-like protrusions than cells in control embryos. We postulate that the doming delay may be the consequence both of overly stabilized yolk cell microtubules and defects in the adhesive properties or motility of deep cells. We also show that Eomesa is required for normal expression of the endoderm markers sox32, bon and og9x; however it is not essential for endoderm formation.
Collapse
Affiliation(s)
- Susan Du
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| | - Bruce W. Draper
- Molecular and Cellular Biology University of California, Davis One Shields Avenue Davis, CA 95616 USA
| | - Marina Mione
- IFOM, Istituto FIRC di Oncologia Molecolare Via Adamello 16 Milan, I-20139 Italy
| | - Cecilia B. Moens
- Howard Hughes Medical Institute Division of Basic Science Fred Hutchinson Cancer Research Center P.O. Box 19024 1100 Fairview Avenue North Seattle, WA 98109-1024 USA
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| |
Collapse
|
23
|
Kanungo J, Paule MG. Disruption of blastomeric F-actin: a potential early biomarker of developmental toxicity in zebrafish. Mol Cell Biochem 2011; 353:283-90. [PMID: 21461911 PMCID: PMC5441551 DOI: 10.1007/s11010-011-0797-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/17/2011] [Indexed: 01/21/2023]
Abstract
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|
24
|
Liu D, Wang WD, Melville DB, Cha YI, Yin Z, Issaeva N, Knapik EW, Yarbrough WG. Tumor suppressor Lzap regulates cell cycle progression, doming, and zebrafish epiboly. Dev Dyn 2011; 240:1613-25. [PMID: 21523853 PMCID: PMC3287344 DOI: 10.1002/dvdy.22644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2011] [Indexed: 12/28/2022] Open
Abstract
Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here, we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract, and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly--the earliest morphogenetic movement in animal development--which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation.
Collapse
Affiliation(s)
- Dan Liu
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wen-Der Wang
- Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - David B. Melville
- Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yong I. Cha
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhirong Yin
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| | - Natalia Issaeva
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ela W. Knapik
- Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wendell G. Yarbrough
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Putiri E, Pelegri F. The zebrafish maternal-effect gene mission impossible encodes the DEAH-box helicase Dhx16 and is essential for the expression of downstream endodermal genes. Dev Biol 2011; 353:275-89. [PMID: 21396359 PMCID: PMC3088167 DOI: 10.1016/j.ydbio.2011.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/26/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Early animal embryonic development requires maternal products that drive developmental processes prior to the activation of the zygotic genome at the mid-blastula transition. During and after this transition, maternal products may continue to act within incipient zygotic developmental programs. Mechanisms that control maternally-inherited products to spatially and temporally restrict developmental responses remain poorly understood, but necessarily depend on posttranscriptional regulation. We report the functional analysis and molecular identification of the zebrafish maternal-effect gene mission impossible (mis). Our studies suggest requirements for maternally-derived mis function in events that occur during gastrulation, including cell movement and the activation of some endodermal target genes. Cell transplantation experiments show that the cell movement defect is cell autonomous. Within the endoderm induction pathway, mis is not required for the activation of early zygotic genes, but is essential to implement nodal activity downstream of casanova/sox 32 but upstream of sox17 expression. Activation of nodal signaling in blastoderm explants shows that the requirement for mis function in endoderm gene induction is independent of the underlying yolk cell. Positional cloning of mis, including genetic rescue and complementation analysis, shows that it encodes the DEAH-box RNA helicase Dhx16, shown in other systems to act in RNA regulatory processes such as splicing and translational control. Analysis of a previously identified insertional dhx16 mutation shows that the zygotic component of this gene is also essential for embryonic viability. Our studies provide a striking example of the interweaving of maternal and zygotic genetic functions during the egg-to-embryo transition. Maternal RNA helicases have long been known to be involved in the development of the animal germ line, but our findings add to growing evidence that these factors may also control specific gene expression programs in somatic tissues.
Collapse
Affiliation(s)
- Emily Putiri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| |
Collapse
|
26
|
Hong SK, Jang MK, Brown JL, McBride AA, Feldman B. Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development 2011; 138:787-95. [PMID: 21266414 DOI: 10.1242/dev.058974] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vertebrate mesoderm and endoderm formation requires signaling by Nodal-related ligands from the TGFβ superfamily. The factors that initiate Nodal-related gene transcription are unknown in most species and the relative contributions of Nodal-related ligands from embryonic, extraembryonic and maternal sources remain uncertain. In zebrafish, signals from the yolk syncytial layer (YSL), an extraembryonic domain, are required for mesoderm and endoderm induction, and YSL expression of nodal-related 1 (ndr1) and ndr2 accounts for a portion of this activity. A variable requirement of maternally derived Ndr1 for dorsal and anterior axis formation has also been documented. Here we show that Mxtx2 directly activates expression of ndr2 via binding to its first intron and is required for ndr2 expression in the YSL. Mxtx2 is also required for the Nodal signaling-independent expression component of the no tail a (ntla) gene, which is required for posterior (tail) mesoderm formation. Therefore, Mxtx2 defines a new pathway upstream of Nodal signaling and posterior mesoderm formation. We further show that the co-disruption of extraembryonic Ndr2, extraembryonic Ndr1 and maternal Ndr1 eliminates endoderm and anterior (head and trunk) mesoderm, recapitulating the loss of Nodal signaling phenotype. Therefore, non-embryonic sources of Nodal-related ligands account for the complete spectrum of early Nodal signaling requirements. In summary, the induction of mesoderm and endoderm depends upon the combined actions of Mxtx2 and Nodal-related ligands from non-embryonic sources.
Collapse
Affiliation(s)
- Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
27
|
The yolk syncytial layer in early zebrafish development. Trends Cell Biol 2010; 20:586-92. [DOI: 10.1016/j.tcb.2010.06.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
|
28
|
Fukazawa C, Santiago C, Park KM, Deery WJ, Gomez de la Torre Canny S, Holterhoff CK, Wagner DS. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev Biol 2010; 346:272-83. [PMID: 20692251 DOI: 10.1016/j.ydbio.2010.07.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/24/2010] [Accepted: 07/30/2010] [Indexed: 12/31/2022]
Abstract
An epidermis surrounds all vertebrates, forming a water barrier between the external environment and the internal space of the organism. In the zebrafish, the embryonic epidermis consists of an outer enveloping layer (EVL) and an inner basal layer that have distinct embryonic origins. Differentiation of the EVL requires the maternal effect gene poky/ikk1 in EVL cells prior to establishment of the basal layer. This requirement is transient and maternal Ikk1 is sufficient to allow establishment of the EVL and formation of normal skin in adults. Similar to the requirement for Ikk1 in mouse epidermis, EVL cells in poky mutants fail to exit the cell cycle or express specific markers of differentiation. In spite of the similarity in phenotype, the molecular requirement for Ikk1 is different between mouse and zebrafish. Unlike the mouse, EVL differentiation requires functioning Poky/Ikk1 kinase activity but does not require the HLH domain. Previous work suggested that the EVL was a transient embryonic structure, and that maturation of the epidermis required replacement of the EVL with cells from the basal layer. We show here that the EVL is not lost during embryogenesis but persists to larval stages. Our results show that while the requirement for poky/ikk1 is conserved, the differences in molecular activity indicate that diversification of an epithelial differentiation program has allowed at least two developmental modes of establishing a multilayered epidermis in vertebrates.
Collapse
Affiliation(s)
- Cindy Fukazawa
- Department of Biochemistry and Cell Biology, Rice University, MS-140, PO Box 1892, Houston, TX 77251, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Takeuchi M, Takahashi M, Okabe M, Aizawa S. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 2009; 332:90-102. [PMID: 19433081 DOI: 10.1016/j.ydbio.2009.05.543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
Abstract
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
30
|
A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 2009; 5:e1000413. [PMID: 19282986 PMCID: PMC2652113 DOI: 10.1371/journal.pgen.1000413] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/09/2009] [Indexed: 12/02/2022] Open
Abstract
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses. One of the earliest cell movement processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the blastoderm cells spread over and enclose the yolk cell. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. We demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the bbp mutant gene and identified it as the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved within a p38 MAP kinase pathway, thus identifying a new pathway in the regulation of this fundamental cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates F-actin contraction at the yolk cell margin circumference, allowing the gradual closure of the cells over the yolk cell as epiboly progresses.
Collapse
|
31
|
Picozzi P, Wang F, Cronk K, Ryan K. Eomesodermin requires transforming growth factor-beta/activin signaling and binds Smad2 to activate mesodermal genes. J Biol Chem 2008; 284:2397-408. [PMID: 19036723 DOI: 10.1074/jbc.m808704200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The T-box gene Eomesodermin (Eomes) is required for early embryonic mesoderm differentiation in mouse, frog (Xenopus laevis), and zebrafish, is important in late cardiac development in Xenopus, and for CD8+ T effector cell function in mouse. Eomes can ectopically activate many mesodermal genes. However, the mechanism by which Eomes activates transcription of these genes is poorly understood. We report that Eomes protein interacts with Smad2 and is capable of working in a non-cell autonomous manner via transfer of Eomes protein between adjacent embryonic cells. Blocking of Eomes protein transfer using a farnesylated red fluorescent protein (CherryF) also prevents Eomes nuclear accumulation. Transfer of Eomes protein between cells is mediated by the Eomes carboxyl terminus (456-692). A carbohydrate binding domain within the Eomes carboxyl-terminal region is sufficient for transfer and important for gene activation. We propose a novel mechanism by which Eomes helps effect a cellular response to a morphogen gradient.
Collapse
Affiliation(s)
- Paola Picozzi
- Department of Pediatrics, Division of Cardiology, Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | |
Collapse
|
32
|
Wardle FC, Papaioannou VE. Teasing out T-box targets in early mesoderm. Curr Opin Genet Dev 2008; 18:418-25. [PMID: 18778771 PMCID: PMC2700021 DOI: 10.1016/j.gde.2008.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022]
Abstract
T-box transcription factor genes are widely conserved in metazoan development and widely involved in developmental processes. With the phase of T-box gene discovery winding down, the phase of transcriptional target discovery for T-box transcription factors is finally taking off and yielding rich rewards. Mutant phenotypes in mouse and zebrafish as well as morpholino studies in zebrafish have helped to link the T-box genes to a variety of signaling pathways through diverse target genes and feedback loops. Particularly in early mesoderm development, it is emerging that a network of T-box genes interacts with Wnt/beta-catenin and Notch/Delta signaling pathways, among others, to control the important processes of mesoderm specification, somite segmentation, and left/right body axis determination.
Collapse
Affiliation(s)
- Fiona C. Wardle
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK,
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W 168 St., New York, NY 10032, USA,
| |
Collapse
|
33
|
Affiliation(s)
- Ashley E.E. Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Karuna Sampath
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Ca2+ channel-independent requirement for MAGUK family CACNB4 genes in initiation of zebrafish epiboly. Proc Natl Acad Sci U S A 2008; 105:198-203. [PMID: 18172207 DOI: 10.1073/pnas.0707948105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CACNB genes encode membrane-associated guanylate kinase (MAGUK) proteins once thought to function exclusively as auxiliary beta subunits in assembly and gating of voltage-gated Ca(2+) channels. Here, we report that zygotic deficiency of zebrafish beta4 protein blocks initiation of epiboly, the first morphogenetic movement of teleost embryos. Reduced beta4 function in the yolk syncytial layer (YSL) leads to abnormal division and dispersal of yolk syncytial nuclei, blastoderm retraction, and death, effects highly similar to microtubule disruption by nocodazole. Epiboly is restored by coinjection of human beta4 cRNA or, surprisingly, by mutant cRNA encoding beta4 subunits incapable of binding to Ca(2+) channel alpha1 subunits. This study defines a YSL-driven zygotic mechanism essential for epiboly initiation and reveals a Ca(2+) channel-independent beta4 protein function potentially involving the cytoskeleton.
Collapse
|
35
|
Wilkins SJ, Yoong S, Verkade H, Mizoguchi T, Plowman SJ, Hancock JF, Kikuchi Y, Heath JK, Perkins AC. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Dev Biol 2007; 314:12-22. [PMID: 18154948 DOI: 10.1016/j.ydbio.2007.10.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022]
Abstract
The homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown. The role of mtx2 is surprising as most mix/bix family genes are thought to have roles in mesendoderm specification. Using a transgenic sox17-promoter driven EGFP line, we show that Mtx2 is not required for endoderm specification but is required for correct morphogenetic movements of endoderm and axial mesoderm. During normal zebrafish development, mtx2 is expressed at both the blastoderm margin and in the zebrafish equivalent of visceral endoderm, the extra-embryonic yolk syncytial layer (YSL). We show that formation of the YSL is not Mtx2 dependent, but that Mtx2 directs spatial arrangement of YSL nuclei. Furthermore, we demonstrate that Mtx2 knockdown results in loss of the YSL F-actin ring, a microfilament structure previously shown to be necessary for epiboly progression. In summary, we propose that Mtx2 acts within the YSL to regulate morphogenetic movements of both embryonic and extra-embryonic tissues, independently of cell fate specification.
Collapse
Affiliation(s)
- Simon J Wilkins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Takizawa F, Araki K, Ito K, Moritomo T, Nakanishi T. Expression analysis of two Eomesodermin homologues in zebrafish lymphoid tissues and cells. Mol Immunol 2007; 44:2324-31. [PMID: 17194477 DOI: 10.1016/j.molimm.2006.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/25/2022]
Abstract
Eomesodermin (Eomes) is a T-box transcription factor that is involved in mesoderm formation in most vertebrates. Eomes is also expressed in CD8+ T cells and NK cells. No information is available on the role of Eomes in the immune system of lower vertebrates to date, although developmental studies on Eomes (Eomes1) have been performed in zebrafish. Here we report the identification of a second Eomes (Eomes2) in zebrafish and compare expression of the two Eomes genes in the immune system. Zebrafish Eomes1 and Eomes2, composed of 661 and 534 amino acids, respectively, share 49.3% amino acid identity in their coding regions and 88.7% amino acid identity in their T-box regions. Conserved synteny between regions of the human and zebrafish genomes, gene organization and phylogenetic analysis all indicate that the zebrafish Eomes2 gene is a homologue of mammalian Eomes, as previously found for zebrafish Eomes1. Eomes1 mRNA was found to be expressed in the gonad, body kidney, spleen and gill, while Eomes2 mRNA was not detected in any of these tissues. However, strong expression of both Eomes mRNAs was detected in the leukocytes from the spleen, followed by those from body kidney and peripheral blood, with expression of Eomes1 always stronger than that of Eomes2. RT-PCR analysis of body kidney cells sorted by FACS revealed that Eomes1 was expressed strongly in lymphocytes, weakly in blast cells, and was not expressed in granulocytes, while Eomes2 was expressed weakly in lymphocytes. These results suggest that both Eomes genes are involved in the zebrafish immune response, particularly in lymphocyte function as has been found in mammals.
Collapse
Affiliation(s)
- Fumio Takizawa
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | |
Collapse
|
37
|
Sakaguchi T, Kikuchi Y, Kuroiwa A, Takeda H, Stainier DYR. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 2007; 133:4063-72. [PMID: 17008449 DOI: 10.1242/dev.02581] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The roles of extra-embryonic tissues in early vertebrate body patterning have been extensively studied, yet we know little about their function during later developmental events. Here, we analyze the function of the zebrafish extra-embryonic yolk syncytial layer (YSL) specific transcription factor, Mtx1, and find that it plays an essential role in myocardial migration. Downregulating the function of Mtx1 in the YSL leads to cardia bifida, a phenotype in which the myocardial cells fail to migrate to the midline. Mtx1 in the extra-embryonic YSL appears to regulate the embryonic expression of fibronectin, a gene previously implicated in myocardial migration. We further show dosage-sensitive genetic interactions between mtx1 and fibronectin. Based on these data, we propose that the extra-embryonic YSL regulates myocardial migration, at least in part by influencing fibronectin expression and subsequent assembly of the extracellular matrix in embryonic tissues.
Collapse
Affiliation(s)
- Takuya Sakaguchi
- Department of Biochemistry and Biophysics and Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-2711, USA
| | | | | | | | | |
Collapse
|
38
|
Solnica-Krezel L. Gastrulation in zebrafish — all just about adhesion? Curr Opin Genet Dev 2006; 16:433-41. [PMID: 16797963 DOI: 10.1016/j.gde.2006.06.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
During vertebrate gastrulation, the evolutionarily conserved morphogenetic movements of epiboly, internalization, convergence and extension cooperate to generate germ layers and to sculpt the body plan. In zebrafish, these movements are driven by a variety of cell behaviors, including slow and fast directed migration, radial and mediolateral intercalation, and cell shape changes. Whereas some signaling pathways are required for a subset of these behaviors, other molecules, such as E-cadherin or Galpha12 and Galpha13 proteins, appear to have a widespread role in different gastrulation cell behaviors.
Collapse
|
39
|
Reim G, Brand M. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 2006; 133:2757-70. [PMID: 16775002 DOI: 10.1242/dev.02391] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dorsoventral (DV) axis formation of the vertebrate embryo is controlled by the maternal genome and is subsequently refined zygotically. In the zygote, repression of ventralizing Bmp activity on the dorsal side through chordin and noggin is crucial for establishment of a dorsally located organizer. This interplay generates a zygotic Bmp activity gradient that defines distinct positional values along the DV axis. The maternal processes that control expression of the zygotic genes implicated in DV patterning are largely unknown. spiel-ohne-grenzen (spg/pou2) is a maternally and zygotically expressed zebrafish gene that encodes the POU domain transcription factor Pou2, an ortholog of mammalian Oct4/Pou5f1. We show that embryos that are genetically depleted of both maternal and zygotic pou2 function (MZspg) exhibit extreme DV patterning defects and, independently, a blastoderm-specific arrest of epiboly. Dorsal tissues expand to the ventral side at the expense of ventrolateral tissue in MZspg embryos. Dorsally expressed Bmp-antagonists, such as Chd and Nog1, and Gsc are ectopically activated at ventral levels in MZspg. Lack of ventral specification is apparent very early, suggesting that maternal processes are affected in MZspg. Indeed, maternal pou2 function is necessary to initiate zygotic expression of ventrally expressed genes such as bmp2b and bmp4, and for proper activation of bmp7, vox, vent and eve1. A constitutively active Alk8-TGFbeta-receptor can ectopically induce bmp2b and bmp4 and rescues the dorsalization of MZspg. This indicates that pou2 acts upstream of Alk8, a maternally provided receptor implicated in the activation of zygotic bmp2b and bmp4 transcription. Consistent with this possibility, Bmp gene misexpression can rescue MZspg embryos, indicating that TGFbeta-mediated signal transduction itself is intact in absence of Pou2. Inhibition of Fgf signaling, another pathway with early dorsalizing activity, can also restore and even ventralize MZspg embryos. The requirement for pou2 to initiate bmp2b expression can therefore be bypassed by releasing the repressive function of Fgf signaling upon bmp2b transcription. In transplantation experiments, we find that dorsalized cells from prospective ventrolateral regions of MZspg embryos are non cell-autonomously respecified to a ventral fate within wild-type host embryos. Analysis of pou2 mRNA injected MZspg embryos shows that pou2 is required on the ventral side of cleavage stage embryos. Based on the maternal requirement for pou2 in ventral specification, we propose that ventral specification employs an active, pou2-dependent maternal induction step, rather than a default ventralizing program.
Collapse
Affiliation(s)
- Gerlinde Reim
- Biotechnology Center and Center for Regenerative Therapies, University of Technology (TU) Dresden, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | |
Collapse
|
40
|
Muto A, Arai KI, Watanabe S. Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Dev Biol 2006; 292:90-102. [PMID: 16457799 DOI: 10.1016/j.ydbio.2005.12.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 12/30/2022]
Abstract
Rab11 family interacting protein 4 (Rab11-FIP4) was initially identified in humans as an Rab11-binding protein, but its biological function has remained unknown. We cloned the zebrafish orthologue of Rab11-FIP4 (zRab11-FIP4) and analyzed its function in vivo by using antisense morpholino. zRab11-FIP4 was expressed as 2 alternative transcripts, i.e., the longer A-form predominantly expressed in neural tissues and the shorter B-form expressed ubiquitously; and in situ hybridization revealed that the A-form was the dominant form. In the developing retina, zRab11-FIP4 was expressed in progenitors throughout the retina at early stages; and then, along with the differentiation, the expression became gradually restricted to the ganglion cell layer and ciliary marginal zone. zRab11-FIP4A knockdown embryos exhibited eye phenotypes similar to those of the shh mutant, such as a small eye with impaired cell proliferation and the delay in cell-cycle exit and differentiation of retinal progenitors. The lack of induction of p57kip2 and enhanced expression of cyclin D1 were observed in the morphant retina. Importantly, the delay in cell-cycle exit was rescued by ectopic expression of either p57Kip2 or dominant-negative PKA, suggesting that Rab11-FIP4A plays pivotal roles in retinal development by regulating Shh signaling and a mechanism acting in parallel with Shh signaling in the control of cell-cycle exit.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
41
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
42
|
Stennard FA, Harvey RP. T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 2006; 132:4897-910. [PMID: 16258075 DOI: 10.1242/dev.02099] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T-box transcription factors are important players in the molecular circuitry that generates lineage diversity and form in the developing embryo. At least seven family members are expressed in the developing mammalian heart, and the human T-box genes TBX1 and TBX5 are mutated in cardiac congenital anomaly syndromes. Here, we review T-box gene function during mammalian heart development in the light of new insights into heart morphogenesis. We see for the first time how hierarchies of transcriptional activation and repression involving multiple T-box factors play out in three-dimensional space to establish the cardiac progenitors fields, to define their subservient lineages, and to generate heart form and function.
Collapse
Affiliation(s)
- Fiona A Stennard
- Victor Chang Cardiac Research Institute, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | |
Collapse
|
43
|
Bjornson CRR, Griffin KJP, Farr GH, Terashima A, Himeda C, Kikuchi Y, Kimelman D. Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev Cell 2005; 9:523-33. [PMID: 16198294 DOI: 10.1016/j.devcel.2005.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 08/22/2005] [Accepted: 08/24/2005] [Indexed: 11/23/2022]
Abstract
In zebrafish, endoderm induction occurs in marginal blastomeres and requires Casanova (Cas), the first endoderm-specific factor expressed in the embryo. Whereas the transcription factors Gata5 and Bon are necessary and sufficient for cas expression in marginal blastomeres, Bon and Gata5 are unable to induce cas in animal pole cells, suggesting that cas expression requires an additional, unidentified factor(s). Here, we show that cas expression depends upon the T box transcription factor Eomesodermin (Eomes), a maternal determinant that is localized to marginal blastomeres. Eomes synergizes potently with Bon and Gata5 to induce cas, even in animal pole blastomeres. We show that Eomes is required for endogenous endoderm induction, acting via an essential binding site in the cas promoter. Direct physical interactions between Eomes, Bon, and Gata5 suggest that Eomes promotes endoderm induction in marginal blastomeres by facilitating the assembly of a transcriptional activating complex on the cas promoter.
Collapse
|