1
|
Roberts JD. Nitric oxide regulation of fetal and newborn lung development and function. Nitric Oxide 2024; 147:13-25. [PMID: 38588917 PMCID: PMC11148871 DOI: 10.1016/j.niox.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.
Collapse
Affiliation(s)
- Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services and the Departments of Anesthesia, Critical Care and Pain Medicine, Pediatrics, and Medicine, Massachusetts General Hospital - East, 149 13th St, Boston, MA, USA; Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Tan H, Miao MX, Luo RX, So J, Peng L, Zhu X, Leung EHW, Zhu L, Chan KM, Cheung M, Chan SY. TSPYL1 as a Critical Regulator of TGFβ Signaling through Repression of TGFBR1 and TSPYL2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306486. [PMID: 38588050 PMCID: PMC11151076 DOI: 10.1002/advs.202306486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFβ causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFβ signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFβ signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFβ to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFβ signaling is also unraveled.
Collapse
Affiliation(s)
- Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mia Xinfang Miao
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rylee Xu Luo
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lina Zhu
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Callaway DA, Penkala IJ, Zhou S, Knowlton JJ, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice. J Clin Invest 2024; 134:e172095. [PMID: 38488000 PMCID: PMC10947970 DOI: 10.1172/jci172095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-β signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-β signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Ian J. Penkala
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
| | - Su Zhou
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Knowlton
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Fabian Cardenas-Diaz
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P. Morley
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariana Lopes
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Hirani DV, Thielen F, Mansouri S, Danopoulos S, Vohlen C, Haznedar-Karakaya P, Mohr J, Wilke R, Selle J, Grosch T, Mizik I, Odenthal M, Alvira CM, Kuiper-Makris C, Pryhuber GS, Pallasch C, van Koningsbruggen-Rietschel S, Al-Alam D, Seeger W, Savai R, Dötsch J, Alejandre Alcazar MA. CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia. Inflamm Regen 2023; 43:52. [PMID: 37876024 PMCID: PMC10594718 DOI: 10.1186/s41232-023-00301-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.
Collapse
Affiliation(s)
- Dharmesh V Hirani
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
| | - Florian Thielen
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Siavash Mansouri
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christina Vohlen
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Pinar Haznedar-Karakaya
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Rebecca Wilke
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Thomas Grosch
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Ivana Mizik
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
- Institute for Pathology, University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
| | - Gloria S Pryhuber
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Cologne, Germany
| | - S van Koningsbruggen-Rietschel
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Denise Al-Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster On Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Ullrich SJ, Yung NK, Bauer-Pisani TJ, Maassel NL, Guerra ME, Freedman-Weiss M, Ahle SL, Ricciardi AS, Sauler M, Saltzman WM, Piotrowski-Daspit AS, Stitelman DH. In utero delivery of miRNA induces epigenetic alterations and corrects pulmonary pathology in congenital diaphragmatic hernia. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:594-602. [PMID: 37200861 PMCID: PMC10185702 DOI: 10.1016/j.omtn.2023.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Structural fetal diseases, such as congenital diaphragmatic hernia (CDH) can be diagnosed prenatally. Neonates with CDH are healthy in utero as gas exchange is managed by the placenta, but impaired lung function results in critical illness from the time a baby takes its first breath. MicroRNA (miR) 200b and its downstream targets in the TGF-β pathway are critically involved in lung branching morphogenesis. Here, we characterize the expression of miR200b and the TGF-β pathway at different gestational times using a rat model of CDH. Fetal rats with CDH are deficient in miR200b at gestational day 18. We demonstrate that novel polymeric nanoparticles loaded with miR200b, delivered in utero via vitelline vein injection to fetal rats with CDH results in changes in the TGF-β pathway as measured by qRT-PCR; these epigenetic changes improve lung size and lung morphology, and lead to favorable pulmonary vascular remodeling on histology. This is the first demonstration of in utero epigenetic therapy to improve lung growth and development in a pre-clinical model. With refinement, this technique could be applied to fetal cases of CDH or other forms of impaired lung development in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sarah J. Ullrich
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | - Nicholas K. Yung
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | - Samantha L. Ahle
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | - Adele S. Ricciardi
- Department of Surgery, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Maor Sauler
- Department of Medicine, Yale University, New Haven, CT 06510, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | | | | |
Collapse
|
7
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
8
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
9
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Gorgisen G, Aydin M, Mboma O, Gökyildirim MY, Chao CM. The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. Int J Mol Sci 2022; 23:ijms231710113. [PMID: 36077511 PMCID: PMC9456457 DOI: 10.3390/ijms231710113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.
Collapse
Affiliation(s)
- Gokhan Gorgisen
- Department of Medical Genetics, Faculty of Medicine, Van Yüzüncü Yil University, Van 65080, Turkey
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Olivier Mboma
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35390 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9946735
| |
Collapse
|
12
|
Heydarian M, Schulz C, Stoeger T, Hilgendorff A. Association of immune cell recruitment and BPD development. Mol Cell Pediatr 2022; 9:16. [PMID: 35917002 PMCID: PMC9346035 DOI: 10.1186/s40348-022-00148-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
In the neonatal lung, exposure to both prenatal and early postnatal risk factors converge into the development of injury and ultimately chronic disease, also known as bronchopulmonary dysplasia (BPD). The focus of many studies has been the characteristic inflammatory responses provoked by these exposures. Here, we review the relationship between immaturity and prenatal conditions, as well as postnatal exposure to mechanical ventilation and oxygen toxicity, with the imbalance of pro- and anti-inflammatory regulatory networks. In these conditions, cytokine release, protease activity, and sustained presence of innate immune cells in the lung result in pathologic processes contributing to lung injury. We highlight the recruitment and function of myeloid innate immune cells, in particular, neutrophils and monocyte/macrophages in the BPD lung in human patients and animal models. We also discuss dissimilarities between the infant and adult immune system as a basis for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Motaharehsadat Heydarian
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christian Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Tobias Stoeger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany. .,Center for Comprehensive Developmental Care (CDeCLMU) at the interdisciplinary Social Pediatric Center, (iSPZ), University Hospital Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
13
|
Holzfurtner L, Shahzad T, Dong Y, Rekers L, Selting A, Staude B, Lauer T, Schmidt A, Rivetti S, Zimmer KP, Behnke J, Bellusci S, Ehrhardt H. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol Cell Pediatr 2022; 9:7. [PMID: 35445327 PMCID: PMC9021337 DOI: 10.1186/s40348-022-00137-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies and describes novel approaches to prevent BPD.
Collapse
Affiliation(s)
- Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Lisa Rekers
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ariane Selting
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Birte Staude
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Annesuse Schmidt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Stefano Rivetti
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Xia J, Chen S, Li Y, Li H, Gan M, Wu J, Prohaska CC, Bai Y, Gao L, Gu L, Zhang D. Immune Response Is Key to Genetic Mechanisms of SARS-CoV-2 Infection With Psychiatric Disorders Based on Differential Gene Expression Pattern Analysis. Front Immunol 2022; 13:798538. [PMID: 35185890 PMCID: PMC8854505 DOI: 10.3389/fimmu.2022.798538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-β signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuhan Chen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yaping Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Minghong Gan
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Clare Colette Prohaska
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lu Gao
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Li Gu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Schmiedl A, Wagener I, Jungen M, von Hörsten S, Stephan M. Lung development and immune status under chronic LPS exposure in rat pups with and without CD26/DPP4 deficiency. Cell Tissue Res 2021; 386:617-636. [PMID: 34606000 PMCID: PMC8595150 DOI: 10.1007/s00441-021-03522-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26- pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26- pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625, Hannover, Germany.
| | - Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy University Hospital Erlangen and Preclinical Experimental Center (PETZ), Friedrich-Alexander-University Erlangen-Nürnberg, Bavaria, Germany
| | - Michael Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
16
|
Developmental Pathways Underlying Lung Development and Congenital Lung Disorders. Cells 2021; 10:cells10112987. [PMID: 34831210 PMCID: PMC8616556 DOI: 10.3390/cells10112987] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Lung organogenesis is a highly coordinated process governed by a network of conserved signaling pathways that ultimately control patterning, growth, and differentiation. This rigorously regulated developmental process culminates with the formation of a fully functional organ. Conversely, failure to correctly regulate this intricate series of events results in severe abnormalities that may compromise postnatal survival or affect/disrupt lung function through early life and adulthood. Conditions like congenital pulmonary airway malformation, bronchopulmonary sequestration, bronchogenic cysts, and congenital diaphragmatic hernia display unique forms of lung abnormalities. The etiology of these disorders is not yet completely understood; however, specific developmental pathways have already been reported as deregulated. In this sense, this review focuses on the molecular mechanisms that contribute to normal/abnormal lung growth and development and their impact on postnatal survival.
Collapse
|
17
|
Mous DS, Buscop-van Kempen MJ, Wijnen RMH, Tibboel D, Morty RE, Rottier RJ. Opposing Effects of TGFβ and BMP in the Pulmonary Vasculature in Congenital Diaphragmatic Hernia. Front Med (Lausanne) 2021; 8:642577. [PMID: 33777983 PMCID: PMC7991367 DOI: 10.3389/fmed.2021.642577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Pulmonary hypertension is the major cause of morbidity and mortality in congenital diaphragmatic hernia (CDH). Mutations in several genes that encode signaling molecules of the transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) pathways have previously been associated with CDH. Since studies on the activation of these pathways in CDH are scarce, and have yielded inconsistent conclusions, the downstream activity of both pathways was assessed in the nitrofen-CDH rat model. Methods and Results: Pregnant Sprague-Dawley rats were treated with nitrofen at embryonic day (E) 9.5 to induce CDH in offspring. At E21, lungs were screened for the expression of key factors of both signaling pathways, at both the mRNA transcript and protein levels. Subsequently, paying particular attention to the pulmonary vasculature, increased phosphorylation of SMAD2, and decreased phosphorylation of Smad5 was noted in the muscular walls of small pulmonary vessels, by immunohistochemistry. This was accompanied by increased proliferation of constituent cells of the smooth muscle layer of these vessels. Conclusions: Increased activation of the TGFβ pathway and decreased activation of the BMP pathway in the pulmonary vasculature of rats with experimentally-induced CDH, suggesting that the deregulated of these important signaling pathways may underlie the development of pulmonary hypertension in CDH.
Collapse
Affiliation(s)
- Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Lange S, Arisan ED, Grant GH, Uysal-Onganer P. MicroRNAs for Virus Pathogenicity and Host Responses, Identified in SARS-CoV-2 Genomes, May Play Roles in Viral-Host Co-Evolution in Putative Zoonotic Host Species. Viruses 2021; 13:117. [PMID: 33467206 PMCID: PMC7830670 DOI: 10.3390/v13010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative roles of these miRs in zoonosis, we assessed their conservation, compared with humans, in some key wild and domestic animal carriers of zoonotic viruses, including bat, pangolin, pig, cow, rat, and chicken. Out of the seven miRs under study, miR-3611 was the most strongly conserved across all species; miR-5197 was the most conserved in pangolin, pig, cow, bat, and rat; miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human; miR-3691-3p in pangolin, cow, and human; miR-3934-3p in pig and cow, followed by pangolin and bat; miR-1468 was most conserved in pangolin, pig, and bat; while miR-8066 was most conserved in pangolin and pig. In humans, miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197, miR-3334-3p and miR-1468 were least conserved, compared with pangolin, pig, cow, and bat. Furthermore, we identified that changes in the miR-5197 nucleotides between pangolin and human can generate three new miRs, with differing tissue distribution in the brain, lung, intestines, lymph nodes, and muscle, and with different downstream regulatory effects on KEGG pathways. This may be of considerable importance as miR-5197 is localized in the spike protein transcript area of the SARS-CoV-2 genome. Our findings may indicate roles for these miRs in viral-host co-evolution in zoonotic hosts, particularly highlighting pangolin, bat, cow, and pig as putative zoonotic carriers, while highlighting the miRs' roles in KEGG pathways linked to viral pathogenicity and host responses in humans. This in silico study paves the way for investigations into the roles of miRs in zoonotic disease.
Collapse
Affiliation(s)
- Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
19
|
Lung and Eye Disease Develop Concurrently in Supplemental Oxygen-Exposed Neonatal Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1801-1812. [PMID: 32526165 DOI: 10.1016/j.ajpath.2020.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022]
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two debilitating disorders that develop in preterm infants exposed to supplemental oxygen to prevent respiratory failure. Both can lead to lifelong disabilities, such as chronic obstructive pulmonary disease and vision loss. Due to the lack of a standard experimental model of coincident disease, the underlying associations between BPD and ROP are not well characterized. To address this gap, we used the robust mouse model of oxygen-induced retinopathy exposing C57BL/6 mice to 75% oxygen from postnatal day 7 to 12. The cardinal features of ROP were replicated by this strategy, and the lungs of the same mice were simultaneously examined for evidence of BPD-like lung injury, investigating both the short- and long-term effects of early-life supplemental oxygen exposure. At postnatal days 12 and 18, mild lung disease was evident by histopathologic analysis together with the expected vasculopathy in the inner retina. At later time points, the lung lesion had progressed to severe airspace enlargement and alveolar simplification, with concurrent thinning in the outer layer of the retina. In addition, critical angiogenic oxidative stress and inflammatory factors reported to be dysregulated in ROP were similarly impaired in the lungs. These data shed new light on the interconnectedness of these two neonatal disorders, holding potential for the discovery of novel targets to treat BPD and ROP.
Collapse
|
20
|
Arisan ED, Dart A, Grant GH, Arisan S, Cuhadaroglu S, Lange S, Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses 2020; 12:v12060614. [PMID: 32512929 PMCID: PMC7354481 DOI: 10.3390/v12060614] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Alwyn Dart
- Institute of Medical and Biomedical Education, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Serdar Arisan
- Department of Urology, Şişli Hamidiye Etfal Research and Training Hospital, 34360 Istanbul, Turkey;
| | - Songul Cuhadaroglu
- Thoracic Surgery Clinic, Memorial Hospital Sisli, Kaptanpasa Mah. Piyalepasa Bulvarı, 434385 Istanbul, Turkey;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
21
|
Wagener I, Jungen M, von Hörsten S, Stephan M, Schmiedl A. Postnatal morphological lung development of wild type and CD26/DPP4 deficient rat pups in dependency of LPS exposure. Ann Anat 2019; 229:151423. [PMID: 31654734 DOI: 10.1016/j.aanat.2019.151423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Rodents are born with morphological immature lungs and an intact surfactant system. CD26/DPP4 is a multifactorial transmembrane integral type II protein, which is involved in physiological and pathophysiological processes and is already expressed during development. CD26/DPP4, called CD26 in the following, is able to enhance or dampen differently triggered inflammation. LPS exposure often used to simulate perinatal infection delays lung development. OBJECTIVE A perinatal LPS rat model was used to test the hypothesis that CD26 deficiency modulates LPS-induced retardation in morphological lung development. METHODS New born Fischer CD26 positive (CD26+) and deficient (CD26-) rats were exposed to LPS on postnatal day (day post partum, dpp) 3 and 5. Morphological parameters of lung development were determined stereologically. Lung development was analysed in 7, 10 14 and 21day old rats. RESULTS Compared to controls LPS application resulted (1) in a mild inflammation independent of the strain, (2) in significantly lower total surface and volume of alveolar septa combined with significantly higher total volume of airspaces and alveolar size on dpp 7 in both substrains. However, compared to controls in LPS treated CD26- rats significant lower values of total septal surface and volume combined with higher values of total parenchymal airspaces and alveolar size were found until the end of classical alveolarization (dpp14). In LPS treated CD26+ rat pups the retardation was abolished already on dpp 10. CONCLUSION In absence of CD26, LPS enhances the delay of morphological lung development. Morphological recovery was slower after the end of LPS exposure in CD26 deficient lungs.
Collapse
Affiliation(s)
- Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Stephan von Hörsten
- Franz-Penzoldt-Centre, Experimental Therapy, Friedrich-Alexander-University of Erlangen, Germany.
| | - Michael Stephan
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
23
|
Abstract
Rates of bronchopulmonary dysplasia (BPD) are increasing. After preterm birth, there are important developmental periods in which neonates are more vulnerable to stressful events. These periods are opportunities for pharmacologic interventions. Many drugs remain inadequately tested and no new drugs have been approved in more than 25 years for BPD prevention or therapy. More progress is needed in defining appropriate end points based on the pathophysiology of BPD and postdischarge chronic pulmonary insufficiency of prematurity and to develop effective new drugs. In addition, much work is needed to better define perinatal factors, early postnatal findings, and physiologic phenotypes or endotypes.
Collapse
|
24
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
25
|
Circulating microRNAs are associated with Pulmonary Hypertension and Development of Chronic Lung Disease in Congenital Diaphragmatic Hernia. Sci Rep 2018; 8:10735. [PMID: 30013141 PMCID: PMC6048121 DOI: 10.1038/s41598-018-29153-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/28/2018] [Indexed: 01/16/2023] Open
Abstract
Pulmonary hypertension (PH) contributes to high mortality in congenital diaphragmatic hernia (CDH). A better understanding of the regulatory mechanisms underlying the pathology in CDH might allow the identification of prognostic biomarkers and potential therapeutic targets. We report the results from an expression profiling of circulating microRNAs (miRNAs) in direct post-pulmonary blood flow of 18 CDH newborns. Seven miRNAs differentially expressed in children that either died or developed chronic lung disease (CLD) up to 28 days after birth, compared to those who survived without developing CLD during this period, were identified. Target gene and pathway analyses indicate that these miRNAs functions include regulation of the cell cycle, inflammation and morphogenesis, by targeting molecules responsive to growth factors, cytokines and cellular stressors. Furthermore, we identified hub molecules by constructing a protein-protein interaction network of shared targets, and ranked the relative importance of the identified miRNAs. Our results suggest that dysregulations in miRNAs let-7b-5p, -7c-5p, miR-1307-3p, -185-3p, -8084, -331-3p and -210-3p may be detrimental for the development and function of the lungs and pulmonary vasculature, compromise cardiac function and contribute to the development of CLD in CDH. Further investigation of the biomarker and therapeutic potential of these circulating miRNAs is encouraged.
Collapse
|
26
|
Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells. PLoS One 2018; 13:e0200661. [PMID: 30001393 PMCID: PMC6042760 DOI: 10.1371/journal.pone.0200661] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
The effect of endogenous progesterone and/or exogenous pre- or postnatal progesterone application on lung function of preterm infants is poorly defined. While prenatal progesterone substitution may prevent preterm birth, in vitro and in vivo data suggest a benefit of postnatal progesterone replacement on the incidence and severity of bronchopulmonary dysplasia (BPD). However, the molecular mechanisms responsible for progesterone's effects are undefined. Numerous factors are involved in lung development, airway inflammation, and airway remodeling: the transforming growth factor beta (TGF-β)/mothers against decapentaplegic homolog (Smad) signaling pathway and TGF-β-regulated genes, such as connective tissue growth factor (CTGF), transgelin (TAGLN), and plasminogen activator inhibitor-1 (PAI-1). These processes contribute to the development of BPD. The aim of the present study was to clarify whether progesterone could affect TGF-β1-activated Smad signaling and CTGF/transgelin/PAI-1 expression in lung epithelial cells. The pharmacological effect of progesterone on Smad signaling was investigated using a TGF-β1-inducible luciferase reporter and western blotting analysis of phosphorylated Smad2/3 in A549 lung epithelial cells. The regulation of CTGF, transgelin, and PAI-1 expression by progesterone was studied using a promoter-based luciferase reporter, quantitative real-time PCR, and western blotting in the same cell line. While progesterone alone had no direct effect on Smad signaling in lung epithelial cells, it dose-dependently inhibited TGF-β1-induced Smad3 phosphorylation, as shown by luciferase assays and western blotting analysis. Progesterone also antagonized the TGF-β1/Smad-induced upregulation of CTGF, transgelin, and PAI-1 at the promoter, mRNA, and/or protein levels. The present study highlights possible new molecular mechanisms involving progesterone, including inhibition of TGF-β1-activated Smad signaling and TGF-β1-regulated genes involved in BPD pathogenesis, which are likely to attenuate the development of BPD by inhibiting TGF-β1-mediated airway remodeling. Understanding these mechanisms might help to explain the effects of pre- or postnatal application of progesterone on lung diseases of preterm infants.
Collapse
|
27
|
Mižíková I, Pfeffer T, Nardiello C, Surate Solaligue DE, Steenbock H, Tatsukawa H, Silva DM, Vadász I, Herold S, Pease RJ, Iismaa SE, Hitomi K, Seeger W, Brinckmann J, Morty RE. Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 2018; 285:3056-3076. [PMID: 29935061 DOI: 10.1111/febs.14596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
The generation, maturation and remodelling of the extracellular matrix (ECM) are essential for the formation of alveoli during lung development. Alveoli formation is disturbed in preterm infants that develop bronchopulmonary dysplasia (BPD), where collagen fibres are malformed, and perturbations to lung ECM structures may underlie BPD pathogenesis. Malformed ECM structures might result from abnormal protein cross-linking, in part attributable to the increased expression and activity of transglutaminase 2 (TGM2) that have been noted in affected patient lungs, as well as in hyperoxia-based BPD animal models. The objective of the present study was to assess whether TGM2 plays a causal role in normal and aberrant lung alveolarization. Targeted deletion of Tgm2 in C57BL/6J mice increased septal thickness and reduced gas-exchange surface area in otherwise normally developing lungs. During aberrant lung alveolarization that occurred under hyperoxic conditions, collagen structures in Tgm2-/- mice were partially protected from the impact of hyperoxia, where normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance was restored; however, the lung alveolar architecture remained abnormal. Inhibition of transglutaminases (including TGM2) with cysteamine appreciably reduced transglutaminase activity in vivo, as assessed by Nε -(γ-l-glutamyl)-l-lysine abundance and TGM catalytic activity, and restored normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance under pathological conditions. Furthermore, a moderate improvement in alveoli size and gas-exchange surface density was noted in cysteamine-treated mouse lungs in which BPD was modelled. These data indicate that TGM2 plays a role in normal lung alveolarization, and contributes to the formation of aberrant ECM structures during disordered lung alveolarization.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Diogo M Silva
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Richard J Pease
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Germany.,Department of Dermatology, University of Lübeck, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
28
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
29
|
Mous DS, Kool HM, Wijnen R, Tibboel D, Rottier RJ. Pulmonary vascular development in congenital diaphragmatic hernia. Eur Respir Rev 2018; 27:27/147/170104. [DOI: 10.1183/16000617.0104-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterised by a diaphragmatic defect, persistent pulmonary hypertension (PH) and lung hypoplasia. The relative contribution of these three elements can vary considerably in individual patients. Most affected children suffer primarily from the associated PH, for which the therapeutic modalities are limited and frequently not evidence based. The vascular defects associated with PH, which is characterised by increased muscularisation of arterioles and capillaries, start to develop early in gestation. Pulmonary vascular development is integrated with the development of the airway epithelium. Although our knowledge is still incomplete, the processes involved in the growth and expansion of the vasculature are beginning to be unravelled. It is clear that early disturbances of this process lead to major pulmonary growth abnormalities, resulting in serious clinical challenges and in many cases death in the newborn. Here we provide an overview of the current molecular pathways involved in pulmonary vascular development. Moreover, we describe the abnormalities associated with CDH and the potential therapeutic approaches for this severe abnormality.
Collapse
|
30
|
The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity 2017; 47:903-912.e4. [PMID: 29126797 DOI: 10.1016/j.immuni.2017.10.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/25/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs.
Collapse
|
31
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
32
|
Guo H, Kazadaeva Y, Ortega FE, Manjunath N, Desai TJ. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol 2017; 430:214-223. [PMID: 28811219 PMCID: PMC5634525 DOI: 10.1016/j.ydbio.2017.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFβ family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFβ1 and TGFβR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFβ family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFβ family gene expression.
Collapse
Affiliation(s)
- Hua Guo
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Yana Kazadaeva
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Fabian E Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Narasimaswamy Manjunath
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Tushar J Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
33
|
Chen X, Orriols M, Walther FJ, Laghmani EH, Hoogeboom AM, Hogen-Esch ACB, Hiemstra PS, Folkerts G, Goumans MJTH, Ten Dijke P, Morrell NW, Wagenaar GTM. Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Front Physiol 2017; 8:486. [PMID: 28751863 PMCID: PMC5507999 DOI: 10.3389/fphys.2017.00486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Aim: Effective treatment of premature infants with bronchopulmonary dysplasia (BPD) is lacking. We hypothesize that bone morphogenetic protein 9 (BMP9), a ligand of the TGF-β family that binds to the activin receptor-like kinase 1 (ALK1)-BMP receptor type 2 (BMPR2) receptor complex, may be a novel therapeutic option for BPD. Therefore, we investigated the cardiopulmonary effects of BMP9 in neonatal Wistar rats with hyperoxia-induced BPD. Methods: Directly after birth Wistar rat pups were exposed to 100% oxygen for 10 days. From day 2 rat pups received BMP9 (2.5 μg/kg, twice a day) or 0.9% NaCl by subcutaneous injection. Beneficial effects of BMP9 on aberrant alveolar development, lung inflammation and fibrosis, and right ventricular hypertrophy (RVH) were investigated by morphometric analysis and cytokine production. In addition, differential mRNA expression of BMP9 and its receptor complex: ALK1, BMPR2, and Endoglin, and of the ALK1 downstream target transmembrane protein 100 (TMEM100) were studied during the development of experimental BPD. Expression of the BMP9 receptor complex and TMEM100 was studied in human endothelial and epithelial cell cultures and the effect of BMP9 on inflammatory cytokine production and TMEM100 expression was studied in endothelial cell cultures. Results:ALK1, ALK2, BMPRII, TMEM100, and Endoglin were differentially expressed in experimental BPD, suggesting a role for BMP9-dependent signaling in the development of (experimental) BPD. TMEM100 was expressed in the wall of blood vessels, showing an elastin-like expression pattern in arterioles. Expression of TMEM100 mRNA and protein was decreased after exposure to hyperoxia. BMP9 treatment of rat pups with hyperoxia-induced experimental BPD reduced alveolar enlargement, lung septal thickness and fibrosis, and prevented inflammation, but did not attenuate vascular remodeling and RVH. The anti-inflammatory effect of BMP9 was confirmed in vitro. Highest expression of ALK1, BMPR2, and TMEM100 was observed in human endothelial cell cultures. Stimulation of human endothelial cell cultures with BMP9 reduced their pro-inflammatory cytokine response and induced TMEM100 expression in pulmonary arterial endothelial cells. Conclusion: BMP9 protects against neonatal hyperoxia-induced BPD by improving aberrant alveolar development, inflammation and fibrosis, demonstrating its therapeutic potential for premature infants with severe BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Mar Orriols
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Frans J Walther
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands.,Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical CenterTorrance, CA, United States
| | - El Houari Laghmani
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Annemarie M Hoogeboom
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Anne C B Hogen-Esch
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeiden, Netherlands
| | - Gert Folkerts
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Marie-José T H Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth HospitalsCambridge, United Kingdom
| | - Gerry T M Wagenaar
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
34
|
Gurugubelli Krishna R, Vishnu Bhat B. Molecular mechanisms of intrauterine growth restriction. J Matern Fetal Neonatal Med 2017. [PMID: 28651476 DOI: 10.1080/14767058.2017.1347922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.
Collapse
Affiliation(s)
| | - B Vishnu Bhat
- a Department of Neonatology , JIPMER , Pondicherry , India
| |
Collapse
|
35
|
Havrilak JA, Melton KR, Shannon JM. Endothelial cells are not required for specification of respiratory progenitors. Dev Biol 2017; 427:93-105. [PMID: 28501476 PMCID: PMC5551037 DOI: 10.1016/j.ydbio.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk-/- embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature.
Collapse
Affiliation(s)
- Jamie A Havrilak
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229, United States; Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, United States
| | - Kristin R Melton
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, United States
| | - John M Shannon
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229, United States; Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, United States.
| |
Collapse
|
36
|
Zhang H, Du L, Zhong Y, Flanders KC, Roberts JD. Transforming growth factor-β stimulates Smad1/5 signaling in pulmonary artery smooth muscle cells and fibroblasts of the newborn mouse through ALK1. Am J Physiol Lung Cell Mol Physiol 2017. [PMID: 28642261 DOI: 10.1152/ajplung.00079.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intracellular signaling mechanisms through which TGF-β regulates pulmonary development are incompletely understood. Canonical TGF-β signaling involves Smad2/3 phosphorylation, Smad2/3·Smad4 complex formation and nuclear localization, and gene regulation. Here, we show that physiologically relevant TGF-β1 levels also stimulate Smad1/5 phosphorylation, which is typically a mediator of bone morphogenetic protein (BMP) signaling, in mouse pup pulmonary artery smooth muscle cells (mPASMC) and lung fibroblasts and other interstitial lung cell lines. This cross-talk mechanism likely has in vivo relevance because mixed Smad1/5/8·Smad2/3 complexes, which are indicative of TGF-β-stimulated Smad1/5 activation, were detected in the developing mouse lung using a proximity ligation assay. Although mixed Smad complexes have been shown not to transduce nuclear signaling, we determined that TGF-β stimulates nuclear localization of phosphorylated Smad1/5 and induces the expression of prototypical BMP-regulated genes in the mPASMC. Small-molecule kinase inhibitor studies suggested that TGF-β-regulated Smad1/5 phosphorylation in these cells is mediated by TGF-β-type I receptors, not BMP-type I receptors, but possibly the accessory activin-like kinase (ALK1) receptor. Although work by others suggested that ALK1 is expressed exclusively in endothelial cells in the vasculature, we detected ALK1 mRNA and protein expression in mPASMC in vitro and in mouse pup lungs. Moreover, using an antimurine ALK1 antibody and mPASMC, we determined that ALK1 regulates Smad1/5 phosphorylation by TGF-β. Together, these studies characterize an accessory TGF-β-stimulated BMP R-Smad signaling mechanism in interstitial cells of the developing lung. They also indicate the importance of considering alternate Smad pathways in studies directed at determining how TGF-β regulates newborn lung development.
Collapse
Affiliation(s)
- Huili Zhang
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts; .,Department of Anesthesia and the Division of Newborn Medicine in the Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
37
|
Fehrholz M, Glaser K, Speer CP, Seidenspinner S, Ottensmeier B, Kunzmann S. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts. Respir Res 2017; 18:51. [PMID: 28330503 PMCID: PMC5363056 DOI: 10.1186/s12931-017-0535-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
Background Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. Methods The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Results Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p < 0.0001) and IMR-90 cells (p < 0.01). Upon simultaneous exposure to caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p < 0.0001). Of note, 24 h exposure to caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and TGF-β3 mRNA was detected upon exposure to dexamethasone or dexamethasone and caffeine, respectively. Moreover, caffeine increased TNF-α mRNA in H441 cells (6.5 ± 2.2-fold, p < 0.05) which has been described as potent inhibitor of CTGF expression. Conclusions In addition to well-known anti-inflammatory features, glucocorticoids may have adverse effects on long-term remodeling by TGF-β1-independent induction of CTGF in lung cells. Simultaneous treatment with caffeine may attenuate glucocorticoid-induced expression of CTGF, thereby promoting restoration of lung homeostasis.
Collapse
Affiliation(s)
- Markus Fehrholz
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Silvia Seidenspinner
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Barbara Ottensmeier
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Steffen Kunzmann
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.,Clinic of Neonatology, Buergerhospital Frankfurt am Main, Nibelungenallee 37-41, 60318, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Clair G, Piehowski PD, Nicola T, Kitzmiller JA, Huang EL, Zink EM, Sontag RL, Orton DJ, Moore RJ, Carson JP, Smith RD, Whitsett JA, Corley RA, Ambalavanan N, Ansong C. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples. Sci Rep 2016; 6:39223. [PMID: 28004771 PMCID: PMC5177886 DOI: 10.1038/srep39223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Paul D Piehowski
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Teodora Nicola
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Joseph A Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric L Huang
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ryan L Sontag
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Daniel J Orton
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard D Smith
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
39
|
Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:777-93. [PMID: 26878215 DOI: 10.1016/j.ajpath.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022]
Abstract
Septation of the gas-exchange saccules of the morphologically immature mouse lung requires regulated timing, spatial direction, and dosage of transforming growth factor (TGF)-β signaling. We found that neonatal hyperoxia acutely initially diminished saccular TGF-β signaling coincident with alveolar simplification. However, sustained hyperoxia resulted in a biphasic response and subsequent up-regulation of TGF-β signaling, ultimately resulting in bronchopulmonary dysplasia. Significantly, we found that the TGF-β-induced matricellular protein (TGFBI) was similarly biphasically altered in response to hyperoxia. Moreover, genetic ablation revealed that TGFBI was required for normal alveolar structure and function. Although the phenotype was not neonatal lethal, Tgfbi-deficient lungs were morphologically abnormal. Mutant septal tips were stunted, lacked elastin-positive tips, exhibited reduced proliferation, and contained abnormally persistent alveolar α-smooth muscle actin myofibroblasts. In addition, Tgfbi-deficient lungs misexpressed TGF-β-responsive follistatin and serpine 1, and transiently suppressed myofibroblast platelet-derived growth factor α differentiation marker. Finally, despite normal lung volume, Tgfbi-null lungs displayed diminished elastic recoil and gas exchange efficiency. Combined, these data demonstrate that initial suppression of the TGF-β signaling apparatus, as well as loss of key TGF-β effectors (like TGFBI), underlies early alveolar structural defects, as well as long-lasting functional deficits routinely observed in chronic lung disease of infancy patients. These studies underline the complex (and often contradictory) role of TGF-β and indicate a need to design studies to associate alterations with initial appearance of phenotypical changes suggestive of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Wang
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Gao
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paige Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
40
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Ruehl IM, Votino C, Segers V, Benachi A, Martinovic J, Nowakowska D, Dzieniecka M, Jani JC. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? Am J Physiol Lung Cell Mol Physiol 2015; 310:L311-27. [PMID: 26637634 DOI: 10.1152/ajplung.00122.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ina M Ruehl
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carmela Votino
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Segers
- Unit of Pediatric Pathology, Pathology Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology and Centre de Maladie Rare: Hernie de Coupole Diaphragmatique, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland; and
| | - Monika Dzieniecka
- Department of Clinical Pathology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
41
|
Oliphant S, Lines JL, Hollifield ML, Garvy BA. Regulatory T Cells Are Critical for Clearing Influenza A Virus in Neonatal Mice. Viral Immunol 2015; 28:580-9. [PMID: 26501792 PMCID: PMC4677544 DOI: 10.1089/vim.2015.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that neonatal mice infected with influenza A virus (IAV) develop interstitial pneumonia characterized by reduced lung cytokine and chemokine responses. The failure of T cells to infiltrate the airways of neonates correlated with delayed clearance of sublethal IAV infections compared to adults. We hypothesized that negative regulators in the neonatal lungs such as cytokines or T regulatory (Treg) cells are responsible for these differences. Neonates either deficient in interleukin-10 (IL-10) or with T cells unresponsive to transforming growth factor-β signaling due to absence of SMAD family member 4 (Smad4) had similar IAV clearance kinetics to wild-type pups and no difference in T-cell responses. In contrast, functional depletion of Treg cells with anti-CD25 monoclonal antibody resulted in increased proportions of activated CD4(+) T cells in the lungs, but failure to clear IAV. Similarly, scurfy pups (mutation in forkhead box P3 [Foxp3] rendering them deficient in Treg cells) had increased proportions of activated T cells in the lungs compared to littermate controls. Scurfy pups also had increased proportions of IL-13-producing CD4(+) T cells. Interestingly, like anti-CD25-treated pups, scurfy pups had significantly elevated viral loads compared to controls. Based on these data, we conclude that Tregs are critical for clearance of IAV in neonatal mice.
Collapse
Affiliation(s)
- Samantha Oliphant
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky
- VA Medical Center, Lexington, Kentucky
| | - J. Louise Lines
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky
- VA Medical Center, Lexington, Kentucky
| | - Melissa L. Hollifield
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky
- VA Medical Center, Lexington, Kentucky
| | - Beth A. Garvy
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky
- VA Medical Center, Lexington, Kentucky
- Department of Internal Medicine, Division of Infectious Diseases, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
42
|
Obeidat M, Hao K, Bossé Y, Nickle DC, Nie Y, Postma DS, Laviolette M, Sandford AJ, Daley DD, Hogg JC, Elliott WM, Fishbane N, Timens W, Hysi PG, Kaprio J, Wilson JF, Hui J, Rawal R, Schulz H, Stubbe B, Hayward C, Polasek O, Järvelin MR, Zhao JH, Jarvis D, Kähönen M, Franceschini N, North KE, Loth DW, Brusselle GG, Smith AV, Gudnason V, Bartz TM, Wilk JB, O'Connor GT, Cassano PA, Tang W, Wain LV, Soler Artigas M, Gharib SA, Strachan DP, Sin DD, Tobin MD, London SJ, Hall IP, Paré PD. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. THE LANCET. RESPIRATORY MEDICINE 2015; 3:782-95. [PMID: 26404118 PMCID: PMC5021067 DOI: 10.1016/s2213-2600(15)00380-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48,201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. METHODS The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. FINDINGS SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. INTERPRETATION The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. FUNDING The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS.
Collapse
Affiliation(s)
- Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Ke Hao
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, QC, Canada; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, MA, USA
| | - Yunlong Nie
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - Andrew J Sandford
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Denise D Daley
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James C Hogg
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Mark Elliott
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nick Fishbane
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College, London, UK
| | - Jaakko Kaprio
- Department of Public Health, and Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jennie Hui
- Busselton Population Medical Research Institute, Busselton, WA, Australia; PathWest Laboratory Medicine of Western Australia, Nedlands, WA, Australia; School of Population Health and School of Pahology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Genetic Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Beate Stubbe
- University Hospital, Department of Internal Medicine B, Greifswald, Germany
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; Faculty of Medicine, University of Split, Croatia
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Center for Life Course Epidemiology, Faculty of Medicine, Biocenter Oulu, and Unit of Primary Care, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge UK
| | - Deborah Jarvis
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; University of North Carolina Center for Genome Sciences, Chapel Hill, NC, USA
| | - Daan W Loth
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Guy G Brusselle
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Jemma B Wilk
- Human Genetics & Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA; NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, NY, USA
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Louise V Wain
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - María Soler Artigas
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Don D Sin
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin D Tobin
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Ian P Hall
- University of Nottingham Division of Respiratory Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Peter D Paré
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Madurga A, Golec A, Pozarska A, Ishii I, Mižíková I, Nardiello C, Vadász I, Herold S, Mayer K, Reichenberger F, Fehrenbach H, Seeger W, Morty RE. The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol 2015; 309:L710-24. [PMID: 26232299 DOI: 10.1152/ajplung.00134.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine β-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization.
Collapse
Affiliation(s)
- Alicia Madurga
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anita Golec
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Isao Ishii
- Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Ivana Mižíková
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Frank Reichenberger
- Department of Pulmonology, Asklepios Lung Centre, Munich-Gauting, Germany; and
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Area Asthma and Allergy, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Werner Seeger
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| |
Collapse
|
44
|
Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1145-58. [DOI: 10.1152/ajplung.00039.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
45
|
Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q, Padmanabhan A, Manderfield LJ, Gupta M, Li D, Li L, Trivedi CM, Hogan BLM, Epstein JA. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun 2015; 6:6727. [PMID: 25865356 PMCID: PMC4396689 DOI: 10.1038/ncomms7727] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
The plasticity of differentiated cells in adult tissues undergoing repair is an area of intense research. Pulmonary alveolar type II cells produce surfactant and function as progenitors in the adult, demonstrating both self-renewal and differentiation into gas exchanging type I cells. In vivo, type I cells are thought to be terminally differentiated and their ability to give rise to alternate lineages has not been reported. Here we show that Hopx becomes restricted to type I cells during development. However, unexpectedly, lineage-labelled Hopx(+) cells both proliferate and generate type II cells during adult alveolar regrowth following partial pneumonectomy. In clonal 3D culture, single Hopx(+) type I cells generate organoids composed of type I and type II cells, a process modulated by TGFβ signalling. These findings demonstrate unanticipated plasticity of type I cells and a bidirectional lineage relationship between distinct differentiated alveolar epithelial cell types in vivo and in single-cell culture.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke Medicine, Durham, North Carolina 27710, USA
| | - Norifumi Takeda
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily J Bowie
- Department of Cell Biology, Duke Medicine, Durham, North Carolina 27710, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qiaohong Wang
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arun Padmanabhan
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lauren J Manderfield
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mudit Gupta
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Deqiang Li
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Li Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke Medicine, Durham, North Carolina 27710, USA
| | - Chinmay M Trivedi
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, North Carolina 27710, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Alejandre Alcazar MA, Kaschwich M, Preuss S, Ertsey R, Mujahid S, Rother E, Dinger K, Dötsch J, Rabinovitch M, Bland R. Pursuing novel molecular mechanisms and treatment strategies to enhance lung growth in neonatal chronic lung disease (CLD). Mol Cell Pediatr 2015. [PMCID: PMC4715030 DOI: 10.1186/2194-7791-2-s1-a30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Alcázar MAA, Dinger K, Rother E, Östreicher I, Vohlen C, Plank C, Dötsch J. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction. J Nutr 2014; 144:1943-51. [PMID: 25411031 DOI: 10.3945/jn.114.197657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. OBJECTIVE The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. METHODS IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). RESULTS Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. CONCLUSIONS This study demonstrates a dual mechanism in IUGR-associated lung disease that is 1) IUGR-dependent and 2) HA-mediated and thereby offers new avenues to develop innovative preventive strategies for perinatal programming of adult lung diseases.
Collapse
Affiliation(s)
| | - Katharina Dinger
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Eva Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Iris Östreicher
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Christian Plank
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| |
Collapse
|
48
|
Kwon H, Lee YS, Kim MO, Chang MY, Won BM, Jin BS, Park S. Smad-induced alterations of matrix metabolism by a myristoyl tetra peptide. Cell Biochem Funct 2014; 32:665-74. [PMID: 25289880 DOI: 10.1002/cbf.3070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022]
Abstract
Regulation of extracellular matrix (ECM) components is essential for tissue homeostasis and function. We screened a small peptide that induces ECM protein synthesis for its usefulness in protecting keratinocytes. In this report, we demonstrate that myristoyl tetrapeptide Ala-Ala-Pro-Val (mAAPV) stimulates the expression of ECM proteins and inhibits the expression of metalloproteinases (MMPs) that degrade ECM proteins in Hs68 human fibroblast cells. In order to elucidate the underlying molecular mechanisms for the effects of mAAVP, we investigated the changes in gene expression in the presence of mAAPV using a cDNA microarray. Treatment with mAAPV resulted in decreased expression of MMP-related genes such as MMP1, MMP3, TIMP1 and TIMP3 and increased expression of collagen genes, including COL1A1, COL1A2, COL3A1, COL5A1 and COL6A3. The pattern of gene expression regulated by mAAPV was very similar to that of gene expression induced by transforming growth factor (TGF)-β, indicating that the TGF-β signaling pathway is crucial for simultaneous activation of several ECM-related genes by mAAPV. We examined whether the activation of SMAD, a downstream protein of TGF-β receptor, is involved in the signal transduction pathway induced by mAAPV. The results demonstrate that mAAVP directly activates SMAD2 and induces SMAD3 to bind to DNA. In conclusion, our results demonstrate that mAAPV both enhances the expression of collagen and inhibits its degradation via production of protease inhibitors that prevent enzymatic breakdown of the ECM. The results suggest that mAAPV would be a useful ECM-protecting agent.
Collapse
Affiliation(s)
- Haeyoung Kwon
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Caffeine and rolipram affect Smad signalling and TGF-β1 stimulated CTGF and transgelin expression in lung epithelial cells. PLoS One 2014; 9:e97357. [PMID: 24828686 PMCID: PMC4020861 DOI: 10.1371/journal.pone.0097357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/18/2014] [Indexed: 12/23/2022] Open
Abstract
Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-β1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF-β1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF-β1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-β1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An understanding of these mechanisms might help to explain the protective effects of caffeine in prevention of BPD and suggests rolipram to be a potent replacement for caffeine.
Collapse
|
50
|
Witsch TJ, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, Mayer K, Vadász I, Roberts JD, Seeger W, Morty RE. Transglutaminase 2: a new player in bronchopulmonary dysplasia? Eur Respir J 2014; 44:109-21. [PMID: 24603819 DOI: 10.1183/09031936.00075713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aberrant remodelling of the extracellular matrix in the developing lung may underlie arrested alveolarisation associated with bronchopulmonary dysplasia (BPD). Transglutaminases are regulators of extracellular matrix remodelling. Therefore, the expression and activity of transglutaminases were assessed in lungs from human neonates with BPD and in a rodent model of BPD. Transglutaminase expression and localisation were assessed by RT-PCR, immunoblotting, activity assay and immunohistochemical analyses of human and mouse lung tissues. Transglutaminase regulation by transforming growth factor (TGF)-β was investigated in lung cells by luciferase-based reporter assay and RT-PCR. TGF-β signalling was neutralised in vivo in an animal model of BPD, to determine whether TGF-β mediated the hyperoxia-induced changes in transglutaminase expression. Transglutaminase 2 expression was upregulated in the lungs of preterm infants with BPD and in the lungs of hyperoxia-exposed mouse pups, where lung development was arrested. Transglutaminase 2 localised to the developing alveolar septa. TGF-β was identified as a regulator of transglutaminase 2 expression in human and mouse lung epithelial cells. In vivo neutralisation of TGF-β signalling partially restored normal lung structure and normalised lung transglutaminase 2 mRNA expression. Our data point to a role for perturbed transglutaminase 2 activity in the arrested alveolarisation associated with BPD.
Collapse
Affiliation(s)
- Thilo J Witsch
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Gero Niess
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elpidoforos Sakkas
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tatyana Likhoshvay
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Simone Becker
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Konstantin Mayer
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - István Vadász
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Werner Seeger
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|