1
|
Macwan RS, Ferrero G, Pardini B, Naccarati A, Kozlowski PB, Papetti MJ. TPM4 overexpression drives colon epithelial cell tumorigenesis by suppressing differentiation and promoting proliferation. Neoplasia 2025; 59:101093. [PMID: 39608123 PMCID: PMC11636349 DOI: 10.1016/j.neo.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE The high morbidity and mortality associated with colorectal cancer (CRC) and the recent increases in early-onset CRC obviate the need for novel methods to detect and treat this disease, particularly at early stages. We hypothesize that aberrant expression of genes involved in the crypt-luminal migration of colon epithelial cells, a process necessary for their growth arrest and maturation, may disrupt differentiation and transition cells from a normal to tumorigenic state. METHODS We searched for contractility- and motility-related genes that are dysregulated in human CRC relative to normal colon. RNA expression of one such gene, tropomyosin 4 (TPM4), was measured by qRT-PCR and RNA-seq in human colorectal tissues at various stages of tumorigenesis: CRC, adenoma, and at-risk (grossly normal mucosa from a patient with Familial Adenomatous Polyposis, or FAP), relative to controls. Effects of aberrant TPM4 expression on colon epithelial cell proliferation and maturation were determined by overexpression using stable transfection in spontaneously differentiating Caco2 cells or silencing using siRNA in proliferating cells. RESULTS TPM4 is overexpressed at various stages of tumorigenesis, including CRC, adenoma, and grossly normal FAP colon tissue, as well as in proliferating versus differentiating Caco2 cells. TPM4.2 overexpression in differentiating Caco2 cells markedly inhibits certain aspects of maturation, notably sucrase isomaltase and glutathione-S-transferase alpha1 expression, and causes morphological and cell junction abnormalities. Conversely, siRNA-mediated suppression of TPM4.2 inhibits Caco2 proliferation. CONCLUSIONS TPM4 overexpression attenuates colon epithelial cell differentiation and promotes proliferation. Therefore, TPM4 expression may be a biomarker to enhance strategies for CRC diagnosis and treatment.
Collapse
Affiliation(s)
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Department of Computer Science, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo 10060, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo 10060, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Turin, Italy
| | | | - Michael J Papetti
- Touro College of Pharmacy, New York, NY 10036, USA; Touro College of Osteopathic Medicine, New York, NY 10027, USA.
| |
Collapse
|
2
|
Wilken MB, Fonar G, Qiu R, Bennett L, Tober J, Nations C, Pavani G, Tsao V, Garifallou J, Petit C, Maguire JA, Gagne A, Okoli N, Gadue P, Chou ST, French DL, Speck NA, Thom CS. Tropomyosin 1 deficiency facilitates cell state transitions and enhances hemogenic endothelial cell specification during hematopoiesis. Stem Cell Reports 2024; 19:1264-1276. [PMID: 39214082 PMCID: PMC11411305 DOI: 10.1016/j.stemcr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Tropomyosins coat actin filaments to impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. TPM1 has been shown to regulate blood cell formation in vitro, but it remains unclear how or when TPM1 affects hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, we found that TPM1 knockout augmented developmental cell state transitions and key signaling pathways, including tumor necrosis factor alpha (TNF-α) signaling, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses revealed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced HE formation during embryogenesis, without increasing the number of hematopoietic stem cells. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.
Collapse
Affiliation(s)
- Madison B Wilken
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gennadiy Fonar
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rong Qiu
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriana Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Victor Tsao
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - James Garifallou
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chayanne Petit
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nkemdilim Okoli
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wilken MB, Fonar G, Nations C, Pavani G, Tsao V, Garifallou J, Tober J, Bennett L, Maguire JA, Gagne A, Okoli N, Gadue P, Chou ST, Speck NA, French DL, Thom CS. Tropomyosin 1 deficiency facilitates cell state transitions to enhance hemogenic endothelial cell specification during hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555861. [PMID: 37693628 PMCID: PMC10491315 DOI: 10.1101/2023.09.01.555861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.
Collapse
Affiliation(s)
- Madison B Wilken
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gennadiy Fonar
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Catriana Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Victor Tsao
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - James Garifallou
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nkemdilim Okoli
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Kopylova GV, Kochurova AM, Yampolskaya DS, Nefedova VV, Tsaturyan AK, Koubassova NA, Kleymenov SY, Levitsky DI, Bershitsky SY, Matyushenko AM, Shchepkin DV. Structural and Functional Properties of Kappa Tropomyosin. Int J Mol Sci 2023; 24:ijms24098340. [PMID: 37176047 PMCID: PMC10179609 DOI: 10.3390/ijms24098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Daria S Yampolskaya
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Victoria V Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | - Sergey Y Kleymenov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | | | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| |
Collapse
|
5
|
Staehr C, Rohde PD, Krarup NT, Ringgaard S, Laustsen C, Johnsen J, Nielsen R, Beck HC, Morth JP, Lykke‐Hartmann K, Jespersen NR, Abramochkin D, Nyegaard M, Bøtker HE, Aalkjaer C, Matchkov V. Migraine-Associated Mutation in the Na,K-ATPase Leads to Disturbances in Cardiac Metabolism and Reduced Cardiac Function. J Am Heart Assoc 2022; 11:e021814. [PMID: 35289188 PMCID: PMC9075430 DOI: 10.1161/jaha.121.021814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.
Collapse
Affiliation(s)
| | - Palle Duun Rohde
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | | | - Steffen Ringgaard
- MR Research CentreDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Jacob Johnsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rikke Nielsen
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
| | - Hans Christian Beck
- Department for Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Jens Preben Morth
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Karin Lykke‐Hartmann
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | | | - Denis Abramochkin
- Department of Human and Animal PhysiologyBiological FacultyLomonosov Moscow State UniversityMoscowRussia
| | - Mette Nyegaard
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | | | - Christian Aalkjaer
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | |
Collapse
|
6
|
Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol 2022; 101:151215. [PMID: 35306452 PMCID: PMC9081161 DOI: 10.1016/j.ejcb.2022.151215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mario Lewis
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Teekakirikul P, Zhu W, Xu X, Young CB, Tan T, Smith AM, Wang C, Peterson KA, Gabriel GC, Ho S, Sheng Y, Moreau de Bellaing A, Sonnenberg DA, Lin JH, Fotiou E, Tenin G, Wang MX, Wu YL, Feinstein T, Devine W, Gou H, Bais AS, Glennon BJ, Zahid M, Wong TC, Ahmad F, Rynkiewicz MJ, Lehman WJ, Keavney B, Alastalo TP, Freckmann ML, Orwig K, Murray S, Ware SM, Zhao H, Feingold B, Lo CW. Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Rep Med 2022; 3:100501. [PMID: 35243414 PMCID: PMC8861813 DOI: 10.1016/j.xcrm.2021.100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.
Collapse
Affiliation(s)
- Polakit Teekakirikul
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cardiovascular Genomics & Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenjuan Zhu
- Centre for Cardiovascular Genomics & Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Medical Sciences, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinxiu Xu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cullen B. Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tuantuan Tan
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda M. Smith
- Department of Pediatrics and Department of Medical and Molecular Genetics, and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chengdong Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - George C. Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sebastian Ho
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi Sheng
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Moreau de Bellaing
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel A. Sonnenberg
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiuann-huey Lin
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elisavet Fotiou
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gennadiy Tenin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael X. Wang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy Feinstein
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Devine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Abha S. Bais
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin J. Glennon
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy C. Wong
- UPMC Heart and Vascular Institute and Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - William J. Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | | - Kyle Orwig
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Stephanie M. Ware
- Department of Pediatrics and Department of Medical and Molecular Genetics, and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Feingold
- Heart Institute and Division of Pediatric Cardiology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Latham SL, Weiß N, Schwanke K, Thiel C, Croucher DR, Zweigerdt R, Manstein DJ, Taft MH. Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics. Cell Rep 2021; 32:108090. [PMID: 32877672 DOI: 10.1016/j.celrep.2020.108090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
MYO18B loss-of-function mutations and depletion significantly compromise the structural integrity of striated muscle sarcomeres. The molecular function of the encoded protein, myosin-18B (M18B), within the developing muscle is unknown. Here, we demonstrate that recombinant M18B lacks motor ATPase activity and harbors previously uncharacterized N-terminal actin-binding domains, properties that make M18B an efficient actin cross-linker and molecular brake capable of regulating muscle myosin-2 contractile forces. Spatiotemporal analysis of M18B throughout cardiomyogenesis and myofibrillogenesis reveals that this structural myosin undergoes nuclear-cytoplasmic redistribution during myogenic differentiation, where its incorporation within muscle stress fibers coincides with actin striation onset. Furthermore, this analysis shows that M18B is directly integrated within the muscle myosin thick filament during myofibril maturation. Altogether, our data suggest that M18B has evolved specific biochemical properties that allow it to define and maintain sarcomeric organization from within the thick filament via its dual actin cross-linking and motor modulating capabilities.
Collapse
Affiliation(s)
- Sharissa L Latham
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Nadine Weiß
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
9
|
Wang Y, Jiang T, Xu J, Gu Y, Zhou Y, Lin Y, Wu Y, Li W, Wang C, Shen B, Mo X, Wang X, Zhou B, Ding C, Hu Z. Mutations in RNA Methyltransferase Gene NSUN5 Confer High Risk of Outflow Tract Malformation. Front Cell Dev Biol 2021; 9:623394. [PMID: 33968922 PMCID: PMC8097101 DOI: 10.3389/fcell.2021.623394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
NSUN5, encoding a cytosine-5 RNA methyltransferase and located in the 7q11.23 locus, is a candidate gene for tetralogy of Fallot (TOF). Deletion of the 7q11.23 locus in humans is linked to cardiac outflow tract (OFT) disorders including TOF. We identified four potential pathogenic mutations in the coding region of NSUN5 and which were enriched in TOF patients by an association study of 132 TOF patients and 2,000 in-house controls (P = 1.44 × 10-5). We then generated a Nsun5 null (Nsun5 -/-) mouse model to validate the human findings by defining the functions of Nsun5 in OFT morphogenesis. The OFT did not develop properly in the Nsun5 deletion embryonic heart. We found a misalignment of the aorta and septum defects caused by the delayed fusion of the membraneous ventricular spetum as an OFT development delay. This caused OFT development delay in 27 of 64 (42.2%) Nsun5 -/- mice. Moreover, we also found OFT development delay in 8 of 51 (15.7%) Nsun5 +/- mice. Further functional experiments showed that the loss of Nsun5 function impaired the 5-methylcytosine (m5C) modification and translation efficiency of essential cardiac genes. Nsun5 is required for normal OFT morphogenesis and it regulates the m5C modification of essential cardiac genes. Our findings suggest the involvement of NSUN5 in the pathogenesis of TOF.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Chenyue Ding
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Wang F, Li Z, Song T, Jia Y, Qi L, Ren L, Chen S. Proteomics study on the effect of silybin on cardiomyopathy in obese mice. Sci Rep 2021; 11:7136. [PMID: 33785854 PMCID: PMC8009917 DOI: 10.1038/s41598-021-86717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Due to the increase in the number of obese individuals, the incidence of obesity-related complications such as cardiovascular disease and type 2 diabetes is higher. The aim of the present study was to explore the effects of silybin on protein expression in obese mice. Firstly, serum was collected, and it was used to detect serum lipids and other serological indicators. Secondly, total protein from epididymal adipose tissue was extracted for differential expression analysis by quantitative tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatics and protein-protein interaction (PPI) network analyses of these proteins. Lastly, real-time polymerase chain reaction (RT-PCR) and parallel reaction monitoring (PRM) were used to further validate the expression of identified differentially expressed proteins (DEPs) at the mRNA and protein level, respectively. The results revealed that silybin could improve abnormal lipid metabolism caused by the high fat diet in obese mice. A total of 341, 538 and 243 DEPs were found in the high fat/control (WF/WC), silybin/high fat (WS/WF) and WS/WC groups, respectively. These DEPs mainly participated in lipid metabolism and energy metabolism. Notably, tropomyosin 1 (TPM1), myosin light chain 2 (MYL2), myosin heavy chain 11 (MYH11) and other DEPs were involved in hypertrophic cardiomyopathy, dilated cardiomyopathy and other pathways. Silybin could protect cardiac function by inducing the protein expression of TPM1, MYL2 and MYH11 in the adipose tissue of obese mice.
Collapse
Affiliation(s)
- Fei Wang
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Tiantian Song
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Yujiao Jia
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Licui Qi
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, Shijiazhaung, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhaung, 050000, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, No. 348 Heping West Road, Shijiazhaung, 050000, Hebei, China.
| |
Collapse
|
11
|
Dorsch LM, Kuster DWD, Jongbloed JDH, Boven LG, van Spaendonck-Zwarts KY, Suurmeijer AJH, Vink A, du Marchie Sarvaas GJ, van den Berg MP, van der Velden J, Brundel BJJM, van der Zwaag PA. The effect of tropomyosin variants on cardiomyocyte function and structure that underlie different clinical cardiomyopathy phenotypes. Int J Cardiol 2020; 323:251-258. [PMID: 32882290 DOI: 10.1016/j.ijcard.2020.08.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Background - Variants within the alpha-tropomyosin gene (TPM1) cause dominantly inherited cardiomyopathies, including dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathy. Here we investigated whether TPM1 variants observed in DCM and HCM patients affect cardiomyocyte physiology differently. Methods - We identified a large family with DCM carrying a recently identified TPM1 gene variant (T201M) and a child with RCM with compound heterozygote TPM1 variants (E62Q and M281T) whose family members carrying single variants show diastolic dysfunction and HCM. The effects of TPM1 variants (T201M, E62Q or M281T) and of a plasmid containing both the E62Q and M281T variants on single-cell Ca2+ transients (CaT) in HL-1 cardiomyocytes were studied. To define toxic threshold levels, we performed dose-dependent transfection of TPM1 variants. In addition, cardiomyocyte structure was studied in human cardiac biopsies with TPM1 variants. Results - Overexpression of TPM1 variants led to time-dependent progressive deterioration of CaT, with the smallest effect seen for E62Q and larger and similar effects seen for the T201M and M281T variants. Overexpression of E62Q/M281T did not exacerbate the effects seen with overexpression of a single TPM1 variant. T201M (DCM) replaced endogenous tropomyosin dose-dependently, while M281T (HCM) did not. Human cardiac biopsies with TPM1 variants revealed loss of sarcomeric structures. Conclusion - All TPM1 variants result in reduced cardiomyocyte CaT amplitudes and loss of sarcomeric structures. These effects may underlie pathophysiology of different cardiomyopathy phenotypes.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ludolf G Boven
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Parreno J, Fowler VM. Multifunctional roles of tropomodulin-3 in regulating actin dynamics. Biophys Rev 2018; 10:1605-1615. [PMID: 30430457 DOI: 10.1007/s12551-018-0481-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Tropomodulins (Tmods) are proteins that cap the slow-growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and is present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.
Collapse
Affiliation(s)
- Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Dube DK, Dube S, Shrestha R, Abbott L, Randhawa S, Muthu V, Fan Y, Wang J, Sanger JM, Sanger JW, Poiesz BJ. Qualitative and quantitative evaluation of TPM transcripts and proteins in developing striated chicken muscles indicate TPM4α is the major sarcomeric cardiac tropomyosin from early embryonic life to adulthood. Cytoskeleton (Hoboken) 2018; 75:437-449. [PMID: 30255988 PMCID: PMC6279486 DOI: 10.1002/cm.21495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022]
Abstract
The chicken has been used since the 1980s as an animal model for developmental studies regarding tropomyosin isoform diversity in striated muscles, however, the pattern of expression of transcripts as well as the corresponding TPM proteins of various tropomyosin isoforms in avian hearts are not well documented. In this study, using conventional and qRT-PCR, we report the expression of transcripts for various sarcomeric TPM isoforms in striated muscles through development. Transcripts of both TPM1α and TPM1κ, the two sarcomeric isoforms of the TPM1 gene, are expressed in embryonic chicken hearts but disappear in post hatch stages. TPM1α transcripts are expressed in embryonic and adult skeletal muscle. The sarcomeric isoform of the TPM2 gene is expressed mostly in embryonic skeletal muscles. As reported earlier, TPM3α is expressed in embryonic heart and skeletal muscle but significantly lower in adult striated muscle. TPM4α transcripts are expressed from embryonic to adult chicken hearts but not in skeletal muscle. Our 2D Western blot analyses using CH1 monoclonal antibody followed by mass spectra evaluations found TPM4α protein is the major sarcomeric tropomysin expressed in embryonic chicken hearts. However, in 7-day-old embryonic hearts, a minute quantity of TPM1α or TPM1κ is also expressed. This finding suggests that sarcomeric TPM1 protein may play some important role in cardiac contractility and/or cardiac morphogenesis during embryogenesis. Since only the transcripts of TPM4α are expressed in adult chicken hearts, it is logical to presume that TPM4α is the only sarcomeric TPM protein produced in adult cardiac tissues.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Syamalima Dube
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Runa Shrestha
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Lynn Abbott
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Samender Randhawa
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Vasundhara Muthu
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Yingli Fan
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Jushuo Wang
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Jean M Sanger
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Bernard J Poiesz
- Department of Medicine, Upatate Medical University, Syracuse, New York
| |
Collapse
|
14
|
Ushijima T, Fujimoto N, Matsuyama S, Kan-O M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. J Biol Chem 2017; 293:148-162. [PMID: 29158260 DOI: 10.1074/jbc.m117.813931] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.
Collapse
Affiliation(s)
- Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Noriko Fujimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Sho Matsuyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Meikun Kan-O
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Kobe 650-0047; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047
| | - Yohko Kage
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582; Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692.
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582.
| |
Collapse
|
15
|
England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, Brook JD, Rutland CS, Setchfield K, Gell C, Ghosh TK, Bu'Lock F, Thornborough C, Ehler E, Loughna S. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol 2017; 106:1-13. [PMID: 28359939 PMCID: PMC5441184 DOI: 10.1016/j.yjmcc.2017.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/03/2022]
Abstract
Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs. Four mutations identified in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and GATAAA/AATAAA. In vitro analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. I130V and S229F mutations caused abnormal structural properties in the sarcomere. Reduced TPM1 expression during early cardiogenesis causes aberrant gross morphology. Apoptosis, sarcomere assembly and cardiac conduction were also affected.
Collapse
Affiliation(s)
| | - Javier Granados-Riveron
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de México Federico Gómez, Mexico
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, USA
| | | | | | - J David Brook
- School of Life Sciences, University of Nottingham, UK
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | | | | | - Frances Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | | | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, The Cardiovascular Division, King's College London, UK
| | | |
Collapse
|
16
|
Dube DK, Dube S, Abbott L, Wang J, Fan Y, Alshiekh-Nasany R, Shah KK, Rudloff AP, Poiesz BJ, Sanger JM, Sanger JW. Identification, characterization, and expression of sarcomeric tropomyosin isoforms in zebrafish. Cytoskeleton (Hoboken) 2017; 74:125-142. [PMID: 27998020 PMCID: PMC5352492 DOI: 10.1002/cm.21352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Abstract
Tropomyosin is a component of thin filaments that constitute myofibrils, the contractile apparatus of striated muscles. In vertebrates, except for fish, four TPM genes TPM1, TPM2, TPM3, and TPM4 are known. In zebrafish, there are six TPM genes that include the paralogs of the TPM1 (TPM1-1 and TPM1-2), the paralogs of the TPM4 gene (TPM4-1 and TPM4-2), and the two single copy genes TPM2 and TPM3. In this study, we have identified, cloned, and sequenced the TPM1-1κ isoform of the TPM1-1 gene and also discovered a new isoform TPM1-2ν of the TPM1-2. Further, we have cloned and sequenced the sarcomeric isoform of the TPM4-2 gene designated as TPM4-2α. Using conventional RT-PCR, we have shown the expression of the sarcomeric isoforms of TPM1-1, TPM1-2, TPM2, TPM3, TPM4-1, and TPM4-2 in heart and skeletal muscles. By qRT-PCR using both relative expression as well as the absolute copy number, we have shown that TPM1-1α, TPM1-2α, and TPM1-2ν are expressed mostly in skeletal muscle; the level of expression of TPM1-1κ is significantly lower compared to TPM1-1α in skeletal muscle. In addition, both TPM4-1α and TPM4-2α are predominantly expressed in heart. 2D Western blot analyses using anti-TPM antibody followed by Mass Spectrometry of the proteins from the antibody-stained spots show that TPM1-1α and TPM3α are expressed in skeletal muscle whereas TPM4-1α and TPM3α are expressed in zebrafish heart. To the best of our knowledge, this is by far the most comprehensive analysis of tropomyosin expression in zebrafish, one of the most popular animal models for gene expression study.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Lynn Abbott
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Ruham Alshiekh-Nasany
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Kalpesh K Shah
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Alexander P Rudloff
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| |
Collapse
|
17
|
Zhang Y, Li Y, Liang X, Cao X, Huang L, Yan J, Wei Y, Gao J. Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus. PLoS One 2017; 12:e0172386. [PMID: 28212448 PMCID: PMC5315305 DOI: 10.1371/journal.pone.0172386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
RNA sequencing and short-read assembly were utilized to produce a transcriptome of livers from loaches (Misgurnus anguillicaudatus) fed with three different diets respectively containing fresh fish oil (FO group), medium oxidized fish oil (MO group) and high oxidized fish oil (HO group). A total of 60,663 unigenes were obtained in this study, with mean length 848.74 bp. 50,814, 49,584 and 49,814 unigenes were respectively obtained from FO, MO and HO groups. There were 2,343 differentially expressed genes between FO and MO, with 855 down- and 1,488 up-regulated genes in the MO group. 2,813 genes were differentially expressed between FO and HO, including 1,256 down- and 1,552 up-regulated genes in the HO group. 2,075 differentially expressed genes were found in the comparison of MO and HO, including 1,074 up- and 1,001 down-regulated genes in the MO group. Some differentially expressed genes, such as fatty acid transport protein (fatp), fatty acid binding protein (fabp), apolipoprotein (apo), peroxisome proliferator activated receptor-gamma (ppar-γ), acetyl-CoA synthetase (acs) and arachidonate 5-lipoxygenase (alox5), were involved in lipid metabolism, suggesting these genes in the loach were responsive to dietary oxidized fish oil. Results of transcriptome profilings here were validated using quantitative real time PCR in fourteen randomly selected unigenes. The present study provides insights into hepatic transcriptome profile of the loach, which is a valuable resource for studies of loach genomics. More importantly, this study identifies some important genes responsible for dietary oxidized fish oil, which will benefit researches of lipid metabolism in fish.
Collapse
Affiliation(s)
- Yin Zhang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yang Li
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People’s Republic of China
| | - Longfei Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jie Yan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yanxing Wei
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jian Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
18
|
Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol 2016; 28:1385-1399. [PMID: 26847422 PMCID: PMC5903568 DOI: 10.1017/s0954579416000055] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internationally adopted adolescents who are adopted as young children from conditions of poverty and deprivation have poorer physical and mental health outcomes than do adolescents conceived, born, and raised in the United States by families similar to those who adopt internationally. Using a sample of Russian and Eastern European adoptees to control for Caucasian race and US birth, and nonadopted offspring of well-educated and well-resourced parents to control for postadoption conditions, we hypothesized that the important differences in environments, conception to adoption, might be reflected in epigenetic patterns between groups, specifically in DNA methylation. Thus, we conducted an epigenome-wide association study to compare DNA methylation profiles at approximately 416,000 individual CpG loci from peripheral blood mononuclear cells of 50 adopted youth and 33 nonadopted youth. Adopted youth averaged 22 months at adoption, and both groups averaged 15 years at testing; thus, roughly 80% of their lives were lived in similar circumstances. Although concurrent physical health did not differ, cell-type composition predicted using the DNA methylation data revealed a striking difference in the white blood cell-type composition of the adopted and nonadopted youth. After correcting for cell type and removing invariant probes, 30 CpG sites in 19 genes were more methylated in the adopted group. We also used an exploratory functional analysis that revealed that 223 gene ontology terms, clustered in neural and developmental categories, were significantly enriched between groups.
Collapse
Affiliation(s)
- Elisa A. Esposito
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
- Widener University, One University Place, Chester, PA 19013
| | - Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
| | - Jenalee R. Doom
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
| | - Megan R. Gunnar
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, V5Z 4H4, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
- Human Early Learning Partnership, School of Population and Public Health, University of British Columbia
| |
Collapse
|
19
|
Sadiq S, Crowley TM, Charchar FJ, Sanigorski A, Lewandowski PA. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc 2016; 92:1314-1331. [DOI: 10.1111/brv.12283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Sadiq
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Fadi J. Charchar
- School of Health Sciences; Faculty of Science and Technology, Federation University; Ballarat Victoria 3353 Australia
| | - Andrew Sanigorski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Paul A. Lewandowski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
20
|
Fujimoto N, Kan-o M, Ushijima T, Kage Y, Tominaga R, Sumimoto H, Takeya R. Transgenic Expression of the Formin Protein Fhod3 Selectively in the Embryonic Heart: Role of Actin-Binding Activity of Fhod3 and Its Sarcomeric Localization during Myofibrillogenesis. PLoS One 2016; 11:e0148472. [PMID: 26848968 PMCID: PMC4744011 DOI: 10.1371/journal.pone.0148472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
Fhod3 is a cardiac member of the formin family proteins that play pivotal roles in actin filament assembly in various cellular contexts. The targeted deletion of mouse Fhod3 gene leads to defects in cardiogenesis, particularly during myofibrillogenesis, followed by lethality at embryonic day (E) 11.5. However, it remains largely unknown how Fhod3 functions during myofibrillogenesis. In this study, to assess the mechanism whereby Fhod3 regulates myofibrillogenesis during embryonic cardiogenesis, we generated transgenic mice expressing Fhod3 selectively in embryonic cardiomyocytes under the control of the β-myosin heavy chain (MHC) promoter. Mice expressing wild-type Fhod3 in embryonic cardiomyocytes survive to adulthood and are fertile, whereas those expressing Fhod3 (I1127A) defective in binding to actin die by E11.5 with cardiac defects. This cardiac phenotype of the Fhod3 mutant embryos is almost identical to that observed in Fhod3 null embryos, suggesting that the actin-binding activity of Fhod3 is crucial for embryonic cardiogenesis. On the other hand, the β-MHC promoter-driven expression of wild-type Fhod3 sufficiently rescues cardiac defects of Fhod3-null embryos, indicating that the Fhod3 protein expressed in a transgenic manner can function properly to achieve myofibril maturation in embryonic cardiomyocytes. Using the transgenic mice, we further examined detailed localization of Fhod3 during myofibrillogenesis in situ and found that Fhod3 localizes to the specific central region of nascent sarcomeres prior to massive rearrangement of actin filaments and remains there throughout myofibrillogenesis. Taken together, the present findings suggest that, during embryonic cardiogenesis, Fhod3 functions as the essential reorganizer of actin filaments at the central region of maturating sarcomeres via the actin-binding activity of the FH2 domain.
Collapse
Affiliation(s)
- Noriko Fujimoto
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
- Departments of Pharmacology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Meikun Kan-o
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
- Departments of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | - Tomoki Ushijima
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
- Departments of Pharmacology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Yohko Kage
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
- Departments of Pharmacology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Ryuji Tominaga
- Departments of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | - Hideki Sumimoto
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | - Ryu Takeya
- Departments of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
- Departments of Pharmacology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
- * E-mail:
| |
Collapse
|
21
|
Lewis RA, Yamashiro S, Gokhin DS, Fowler VM. Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton (Hoboken) 2014; 71:395-411. [PMID: 24922351 DOI: 10.1002/cm.21179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
Tropomodulins (Tmods) interact with tropomyosins (TMs) via two TM-binding sites and cap the pointed ends of TM-coated actin filaments. To study the functional interplay between TM binding and TM-actin filament capping by Tmods, we introduced disabling mutations into the first, second, or both TM-binding sites of full-length Tmod1 (Tmod1-L27G, Tmod1-I131D, and Tmod1-L27G/I131D, respectively) and full-length Tmod3 (Tmod3-L29G, Tmod3-L134D, and Tmod3-L29G/L134D, respectively). Tmod1 and Tmod3 showed somewhat different TM-binding site utilization, but nearly all TM binding was abolished in Tmod1-L27G/I131D and Tmod3-L29G/L134D. Disruption of Tmod-TM binding had a modest effect on Tmod1's ability and no effect on Tmod3's ability to stabilize TM-actin pointed ends against latrunculin A-induced depolymerization. However, disruption of Tmod-TM binding did significantly impair the ability of Tmod3 to reduce elongation rates at pointed ends with α/βTM, albeit less so with TM5NM1, and not at all with TM5b. For Tmod1, disruption of Tmod-TM binding only slightly impaired its ability to reduce elongation rates with α/βTM and TM5NM1, but not at all with TM5b. Thus, Tmod-TM binding has a greater influence on Tmods' ability to inhibit subunit association as compared to dissociation from TM-actin pointed ends, particularly for α/βTM, with Tmod3's activity being more dependent on TM binding than Tmod1's activity. Nevertheless, disruption of Tmod1-TM binding precluded Tmod1 targeting to thin filament pointed ends in cardiac myocytes, suggesting that the functional effects of Tmod-TM binding on TM-coated actin filament capping can be significantly modulated by the in vivo conformation of the pointed end or other factors in the intracellular environment.
Collapse
Affiliation(s)
- Raymond A Lewis
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|