1
|
Amato CM, Xu X, Yao HHC. An extragenital cell population contributes to urethra closure during mouse penis development. SCIENCE ADVANCES 2024; 10:eadp0673. [PMID: 39642224 PMCID: PMC11623300 DOI: 10.1126/sciadv.adp0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
The penis, the organ that bears reproductive and psychological importance, is susceptible to birth defects such as hypospadias or incomplete closure of urethra along the penis shaft. We discover that proper urethral closure in mouse embryos requires a unique mesenchymal cell population originated from outside of the penis. These "extragenital" cells, marked by a lineage marker Nr5a1, migrate from the inguinal region into the embryonic penis and facilitate urethra closure by interacting with adjacent periurethral cells via the epidermal growth factor pathway. Ablation of Nr5a1+ cells leads to severe hypospadias and alters cell differentiation in the penis. This discovery highlights the indispensable role of Nr5a1+ extragenital cells in urethra closure, shedding light on the biology of penis formation and potential implications for human hypospadias.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO 65211, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Zhang Y, Wang J, Yang H, Guan Y. The potential mechanisms underlying phthalate-induced hypospadias: a systematic review of rodent model studies. Front Endocrinol (Lausanne) 2024; 15:1490011. [PMID: 39698037 PMCID: PMC11652206 DOI: 10.3389/fendo.2024.1490011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Objectives Maternal exposure to environmental endocrine disruptors, such as phthalates, during pregnancy is a significant risk factor for the development of hypospadias. By consolidating existing research on the mechanisms by which phthalates induce hypospadias in rodent models, this systematic review aims to organize and analyze the discovered mechanisms and their potential connections. Methods The study involved all articles that explored the mechanisms of phthalate-induced hypospadias using rodent models. A comprehensive search of the PubMed and Web of Science databases was conducted using the terms "hypospadias" and "phthalates" before January 20, 2024. Then, two investigators screened for studies worthy of inclusion by setting inclusion and exclusion criteria. Results Of the initial 326 search results, 22 were included in the subsequent analysis. Based on the commonalities among different results, the mechanisms of phthalate-induced hypospadias could be categorized into the following five groups: sex steroids-related signaling pathways (n=10), epithelial-mesenchymal transition (n=6), autophagy (n=5), apoptosis (n=4) and angiogenesis (n=2). Among these, sex steroids-related signaling pathways might serve as a central regulator among all mechanisms, and reactive oxygen species (ROS) also played an important mediating role. Conclusion The systematic review indicates that phthalates may initially disrupt the balance of sex steroids-related pathways, leading to abnormally elevated levels of ROS and subsequently to other functional abnormalities, ultimately resulting in the development of hypospadias. All these findings will help to improve prevention strategies during pregnancy to reduce the adverse effects of phthalates on the offspring.
Collapse
Affiliation(s)
- Youtian Zhang
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| | - Jian Wang
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| | - Hongchao Yang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Yong Guan
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| |
Collapse
|
3
|
Amato CM, Xu X, Yao HHC. An extra-genital cell population contributes to urethra closure during mouse penis development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.564741. [PMID: 37986842 PMCID: PMC10659392 DOI: 10.1101/2023.11.09.564741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hypospadias, or incomplete closure of the urethra along the penis, is the second most common birth defect in the United States. We discovered a population of extra-genital mesenchymal cells that are essential for proper penile urethra closure in mouse embryos. This extra-genital population first appeared in the mesenchyme posterior to the hindlimb of the fetus after the onset of penis formation. These extra-genital cells, which transiently express a lineage marker Nr5a1, migrated centrally and colonized the penis bilateral to the urethra epithelium. Removal of the Nr5a1+ extra-genital cells, using a cell-type specific ablation model, resulted in severe hypospadias. The absence of extra-genital cells had the most significant impacts on another mesenchymal cells, the peri-urethra that were immediately adjacent to the Nr5a1+ extra-genital cells. Single cell mRNA sequencing revealed that the extra-genital cells extensively interact with the peri-urethra, particularly through Neuregulin 1, an epidermal Growth Factor (EGF) ligand. Disruption of Neuregulin 1 signaling in the ex-vivo slice culture system led to failure of urethra closure, recapitulating the phenotypes of extra-genital cell ablation. These results demonstrate that the Nr5a1+ extra-genital mesenchymal cells from outside of the fetal penis are indispensable for urethra closure through their interaction with the peri-urethra mesenchymal cells. This discovery provides a new entry point to understand the biology of penis formation and potential causes of hypospadias in humans.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, US
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Young JJ. In preprints: of genitalia and six-legged mice. Development 2023; 150:dev202264. [PMID: 37647032 DOI: 10.1242/dev.202264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- John J Young
- Simmons University, 300 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
5
|
Harada M, Akita K. Mouse vaginal development with lateral enlargement at late embryonic stages and caudal elongation after birth. Congenit Anom (Kyoto) 2023; 63:30-39. [PMID: 36517931 DOI: 10.1111/cga.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Müllerian ducts give rise to the oviducts, uterus, cervix, and vagina. During female reproductive tract development in mice, the bilateral Müllerian duct epithelium grows caudally until reaching the urogenital sinus epithelium. This is followed by further caudal growth with the reduction of the urogenital sinus epithelium. Finally, the vaginal epithelium of adult mice is entirely derived from the Müllerian duct epithelium. Here, we explored the mechanisms underlying mouse vaginal development via cell proliferation, apoptosis, and lineage analyses. We found that at the late embryonic stages, apoptosis occurred at the attachment site of bilateral Müllerian duct epithelia below the cervix, resulting in bilateral lumen traffic. The Müllerian duct epithelium was enclosed by the urogenital sinus epithelium at their boundary region on embryonic day (E) 16.5, whereas the Müllerian duct epithelium encased the urogenital sinus epithelium at postnatal day (P) 0 through lateral enlargement. Lateral Müllerian duct enlargement was accompanied by focal ERK activation within the curved epithelial tips and the specific localization of mitotic nuclei on the luminal side of the Müllerian duct epithelial layer at E17.5. Descent of the Müllerian duct epithelium and shortening of the urogenital sinus epithelium occurred rapidly after birth, accompanied by cell proliferation in the Müllerian duct epithelium and its peripheral mesenchymal tissues as well as intense apoptosis in the urogenital sinus epithelium around their boundary region. Urogenital sinus epithelium was localized at the base of the vagina at P7. In conclusion, the mouse vagina develops laterally at the late embryonic stages and caudally after birth.
Collapse
Affiliation(s)
- Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
7
|
Kim JH, Jin ZW, Abe H, Murakami G, Rodríguez-Vázquez JF, Hinata N. Distal vaginal atresia: a report of a rare type found a late-term fetus and its histological comparison with the normal pelvis. Anat Cell Biol 2022; 55:475-482. [PMID: 36071545 PMCID: PMC9747340 DOI: 10.5115/acb.22.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
Solitary distal vaginal atresia is generally caused by a transverse septum or an imperforate hymen. We found a novel type of distal vaginal atresia in a late-term fetus (gestational age approximately 28 weeks) in our histology collection. This fetus had a vaginal vestibule that was closed and covered by a thick subcutaneous tissue beneath the perineal skin in the immediately inferior or superficial side of the imperforate hymen. The uterus, uterine tube, anus, and anal canal had normal development. The urethral rhabdosphincters were well-developed and had a normal topographical relationship with the vagina, but the urethrovaginal sphincter was absent. Thus, vaginal descent seemed to occur normally and form the vestibule. However, the external orifice of the urethra consisted of a highly folded duct with hypertrophied squamous epithelium. Notably, the corpus cavernosum and crus of the clitoris had poor development and were embedded in the subcutaneous tissue, distant from the vestibule. Normally, the cloacal membrane shifts from the bottom of the urogenital sinus to the inferior aspect of the thick and elongated genital tubercle after establishment of the urorectal septum. Therefore, we speculate there was a failure in the transposition of the cloacal membrane caused by decreased elongation of the genital tubercle. The histology of this anomaly strongly suggested that the hymen does not represent a part of the cloacal membrane, but is instead a product that appears during the late recanalization of the distal vagina after vaginal descent. The transverse septum was also likely to form during this recanalization.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Korea,Corresponding author: Ji Hyun Kim, Department of Anatomy, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea, E-mail:
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hiroshi Abe
- Emeritus professor of Akita University, Akita, Japan
| | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Shaomei W, Yongbin P, Daiyue Y, Zhaorong H, Huirong Y, Nan L, Huanbin L, Yuzhu L, Kai W. Whole exome sequencing applied to 42 Han Chinese patients with posterior hypospadias. Steroids 2022; 184:109041. [PMID: 35561789 DOI: 10.1016/j.steroids.2022.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Hypospadias, a malformation of male external genitalia, is characterized by an aberrant opening of the urethra on the ventral side of the penis. It is considered a complex disorder with both environmental and genetic factors involved in its pathogenesis. To identify the genetic abnormality involved in the pathogenesis of hypospadias, we performed whole exome sequencing (WES) analysis in 42 hypospadias patients with karyotype 46, XY in the Nanhai Meternity&Child Health Hospital of Foshan. All the likely pathogenic variants were confirmed by Sanger sequencing and assessed by Sorting Intolerant from Tolerant (SIFT), PROVEAN, PolyPhen2, ClinPred, LRT, Mutation Assessor, FATHMM, and GERP software. We discovered 27 gene mutations in 20 patients, including eight cases of the SRD5A2 gene, 4 cases of the AR gene, 3 cases of the CYP17A1 gene, 1 case of the WT1 gene, 1 case of the ANOS1 gene, 1 case of the NR5A1 gene, 1 case of the FGFR1 gene, and one case of the DHX37 gene. Our study is the first to describe six novel missense mutations, AR(c.302G > A, c.2593G > T, and c.1705G > T), CYP17A1(c.1298 T > C), FGFR1 (c.995C > T) and DHX37(c.923G > A). In summary, genetic defect detection was useful for early diagnosis of severe hypospadias in the Han Chinese population. Nevertheless, most cases remain unexplained, and the exact pathogenesis of hypospadias still needs further study.
Collapse
Affiliation(s)
- Wang Shaomei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, Guangdong, China; Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Pan Yongbin
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Yu Daiyue
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Huang Zhaorong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lin Huanbin
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Liang Yuzhu
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
9
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, Hyuga T, Isono K, Yamada G. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom (Kyoto) 2022; 62:123-133. [PMID: 35318743 DOI: 10.1111/cga.12465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of β-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of β-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , β-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of β-catenin mutation (gain of function mutation for Wnt/β-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/β-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.
Collapse
Affiliation(s)
- Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Tarulli GA, Cripps SM, Pask AJ, Renfree MB. Spatiotemporal map of key signaling factors during early penis development. Dev Dyn 2021; 251:609-624. [PMID: 34697862 PMCID: PMC9539974 DOI: 10.1002/dvdy.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
The formation of the external genitalia is a highly complex developmental process, considering it involves a wide range of cell types and results in sexually dimorphic outcomes. Development is controlled by several secreted signalling factors produced in complex spatiotemporal patterns, including the hedgehog (HH), bone morphogenic protein (BMP), fibroblast growth factor (FGF) and WNT signalling families. Many of these factors act on or are influenced by the actions of the androgen receptor (AR) that is critical to masculinisation. This complexity of expression makes it difficult to conceptualise patterns of potential importance. Mapping expression during key stages of development is needed to develop a comprehensive model of how different cell types interact in formation of external genitalia, and the global regulatory networks at play. This is particularly true in light of the sensitivity of this process to environmental disruption during key stages of development. The goal of this review is to integrate all recent studies on gene expression in early penis development to create a comprehensive spatiotemporal map. This serves as a resource to aid in visualising potentially significant interactions involved in external genital development. Diagrams of published RNA and protein localisation data for key secreted signalling factors during early penis development. Unconventional expression patterns are identified that suggest novel signalling axes during development. Key research gaps and limitations are identified and discussed.
Collapse
Affiliation(s)
- Gerard A Tarulli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
FGF8, FGF10 and FGF receptor 2 in foreskin of children with hypospadias: an analysis of immunohistochemical expression patterns and gene transcription. J Pediatr Urol 2020; 16:41.e1-41.e10. [PMID: 31718875 DOI: 10.1016/j.jpurol.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/05/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) play a crucial role in early embryogenesis of the genital tubercle and are involved in the development of hypospadias, affecting both endo- and ectodermally derived tissues. It was hypothesized that expression of FGFs could be qualitatively or quantitatively altered in skin of children with hypospadias. OBJECTIVE The objective of the study was to investigate expression patterns and transcription levels of FGF8, FGF10, and FGF Receptor 2 (FGFR2) in patients with hypospadias compared to normal controls. PATIENTS AND METHODS Skin samples from the ventro-lateral aspect of the foreskin of 32 patients with hypospadias (17 distal and 15 proximal, mean age 25 months) and 10 normal foreskin samples (mean age 77 months) were analyzed by immunohistochemistry. Staining, localization, and distribution of positive cells in epidermis and dermis were categorized independently by two researchers. Complementary DNA (cDNA) samples prepared from messenger RNA (mRNA) isolates of the same samples were analyzed by quantitative polymerase chain reaction (qPCR), comparing expressions of FGF8, FGF10, and FGFR2 with loading controls. RESULTS Patients with hypospadias consistently showed aberrant immunohistochemical staining patterns for FGF8/FGF10/FGFR2 in epidermis and dermis compared to patients without penile malformation (p < 0.01 for all markers). qPCR displayed no difference in expression levels on mRNA level (FGFR2 p = 0.44, FGF8 p = 0.77, and FGF10 p = 0.17) comparing normal foreskin with foreskin from patients with hypospadias. Figure. DISCUSSION The results point at an impact of FGF signaling during embryological development of hypospadias on skin, as an ectodermally derived tissue. Similar to the urethral development, this might be a result of mesothelial-epithelial interactions. The differing expression patterns in immunohistochemistry are not matched by a quantitative difference in marker expression on the mRNA level, putatively caused by post-translational modifications or alterations of the downstream pathway. FGFs, particularly FGF10 and FGFR2, are critically involved in wound healing. CONCLUSIONS There are significant differences in localization and distribution of FGF8, FGF10, and FGFR2 in comparisons of normal foreskin to foreskin of patients with hypospadias, whereas there is no difference in the quantitative expression of these markers on the mRNA level. This confirms the notion that penile skin is affected as well by the embryological aberrations during the embryogenesis of hypospadias.
Collapse
|
14
|
Chen Y, Renfree MB. Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby. Genes (Basel) 2020; 11:genes11010106. [PMID: 31963388 PMCID: PMC7017150 DOI: 10.3390/genes11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32603, USA
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| |
Collapse
|
15
|
Kajioka D, Suzuki K, Nakada S, Matsushita S, Miyagawa S, Takeo T, Nakagata N, Yamada G. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto) 2020; 60:15-21. [PMID: 30714224 DOI: 10.1111/cga.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
The external genitalia are appendage organs outgrowing from the posterior body trunk. Murine genital tubercle (GT), anlage of external genitalia, initiates its outgrowth from embryonic day (E) 10.5 as a bud structure. Several growth factors such as fibroblast growth factor (FGF), Wnt and Sonic hedgehog (Shh) are essential for the GT outgrowth. However, the mechanisms of initiation of GT outgrowth are poorly understood. We previously identified bone morphogenetic protein (Bmp) signaling as a negative regulator for GT outgrowth. We show here novel aspects of Bmp4 functions for GT outgrowth. We identified the Bmp4 was already expressed in cloaca region at E9.5, before GT outgrowth. To analyze the function of Bmp4 at early stage for the initiation of GT outgrowth, we utilized the Hoxa3-Cre driver and Bmp4 flox/flox mouse lines. Hoxa3 Cre/+ ; Bmp4 flox/flox mutant mice showed the hypoplasia of GT with reduced expression of outgrowth promoting genes such as Wnt5a, Hoxd13 and p63, whereas Shh expression was not affected. Formation of distal urethral epithelium (DUE) marked by the Fgf8 expression is essential for controlling mesenchymal genes expression in GT and subsequent its outgrowth. Furthermore, Fgf8 expression was dramatically reduced in such mutant mice indicating the defective DUE formation. Hence, current results indicate that Bmp4 is an essential growth factor for the initiation of GT outgrowth independent of Shh signaling. Thus, Bmp4 positively regulates for the formation of DUE. The current study provides new insights into the function of Bmp signaling at early stage for the initiation of GT outgrowth.
Collapse
Affiliation(s)
- Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Nakada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Miyagawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
16
|
Hyuga T, Alcantara M, Kajioka D, Haraguchi R, Suzuki K, Miyagawa S, Kojima Y, Hayashi Y, Yamada G. Hedgehog Signaling for Urogenital Organogenesis and Prostate Cancer: An Implication for the Epithelial-Mesenchyme Interaction (EMI). Int J Mol Sci 2019; 21:E58. [PMID: 31861793 PMCID: PMC6982176 DOI: 10.3390/ijms21010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hedgehog (Hh) signaling is an essential growth factor signaling pathway especially in the regulation of epithelial-mesenchymal interactions (EMI) during the development of the urogenital organs such as the bladder and the external genitalia (EXG). The Hh ligands are often expressed in the epithelia, affecting the surrounding mesenchyme, and thus constituting a form of paracrine signaling. The development of the urogenital organ, therefore, provides an intriguing opportunity to study EMI and its relationship with other pathways, such as hormonal signaling. Cellular interactions of prostate cancer (PCa) with its neighboring tissue is also noteworthy. The local microenvironment, including the bone metastatic site, can release cellular signals which can affect the malignant tumors, and vice versa. Thus, it is necessary to compare possible similarities and divergences in Hh signaling functions and its interaction with other local growth factors, such as BMP (bone morphogenetic protein) between organogenesis and tumorigenesis. Additionally, this review will discuss two pertinent research aspects of Hh signaling: (1) the potential signaling crosstalk between Hh and androgen signaling; and (2) the effect of signaling between the epithelia and the mesenchyme on the status of the basement membrane with extracellular matrix structures located on the epithelial-mesenchymal interface.
Collapse
Affiliation(s)
- Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Mellissa Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan;
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan;
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan;
| | - Yutaro Hayashi
- Department of Pediatric Urology, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| |
Collapse
|
17
|
Haid B, Reider D, Nägele F, Spinoit AF, Pechriggl E, Romani N, Fritsch H, Oswald J. Langerhans cells in hypospadias: an analysis of Langerin (CD207) and HLA-DR on epidermal sheets and full thickness skin sections. BMC Urol 2019; 19:114. [PMID: 31718599 PMCID: PMC6852928 DOI: 10.1186/s12894-019-0551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients. METHODS A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests. RESULTS There was no difference in frequency of epidermal LCs, Neither on sheets (873 ± 61 vs. 940 ± 84LCs/mm2, p = 0.522) nor on sections (32 ± 3 vs. 30 ± 2LCs/mm2, p = 0.697). Likewise, the frequency of dermal LCs (5,9 ± 0,9 vs. 7.5 ± 1.3LCs/mm2, p = 0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p = 0.949), younger and older boys (p = 0.818) or considering topical dihydrotestosterone treatment prior to surgery (p = 0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations. CONCLUSIONS LCs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity.
Collapse
Affiliation(s)
- Bernhard Haid
- Department of Pediatric Urology, Hospital of the Sisters of Charity, Ordensklinikum Linz, Seilerstätte 4, 4020, Linz, Austria. .,Department of Urology, Ludwig Maximilians University, Marchioninistraße 15, 81367, Munich, Germany.
| | - Daniela Reider
- Department for Dermatology and Venereology, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Felix Nägele
- Section for clinical and functional Anatomy, Medical University Innsbruck, Müllerstraße 59, 6020, Innsbruck, Austria
| | - Anne-Françoise Spinoit
- Department of Urology, University Clinic Gent, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Elisabeth Pechriggl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University Innsbruck, Innerkoflerstraße 1, Innsbruck, Austria
| | - Nikolaus Romani
- Department for Dermatology and Venereology, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Helga Fritsch
- Section for clinical and functional Anatomy, Medical University Innsbruck, Müllerstraße 59, 6020, Innsbruck, Austria
| | - Josef Oswald
- Department of Pediatric Urology, Hospital of the Sisters of Charity, Ordensklinikum Linz, Seilerstätte 4, 4020, Linz, Austria
| |
Collapse
|
18
|
Haller M, Ma L. Temporal, spatial, and genetic regulation of external genitalia development. Differentiation 2019; 110:1-7. [PMID: 31521888 DOI: 10.1016/j.diff.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
Fertilization requires the physical combination of gametes, and terrestrial mammals necessitated the evolution of genitalia capable of successfully completing the fertilization process in a non-aqueous environment. Thus, the male mammalian external genitalia evolved as an outgrowth from the body, an appendage sufficient to fertilize eggs housed deep inside the female. In this way, sexual dimorphism of mammalian genitalia became highly pronounced. This highly complex evolutionary divergence both from aqueous fertilization, as well as divergence between the sexes of terrestrial mammals, required exquisitely coordinated, novel patterns of gene expression to regulate the spatial and temporal events governing external genitalia development. Recent studies delineating the genetic regulation of external genitalia development, largely focusing on development of the murine genital tubercle, have vastly enlightened the field of reproductive developmental biology. Murine homologs of human genes have been selectively deleted in the mouse, either in the whole body or using tissue-specific and temporally-specific genetic drivers. The defects in outgrowth and urethral tubularization subsequent to the deletion of specific genes in the developing murine external genitalia delineates which genes are required in which compartments and at what times. This review details how these murine genetic models have created a somewhat modest but rapidly growing library of knowledge detailing the spatial-temporal genetic regulation of external genitalia development.
Collapse
Affiliation(s)
- Meade Haller
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Liang Ma
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Hashimoto D, Hyuga T, Acebedo AR, Alcantara MC, Suzuki K, Yamada G. Developmental mutant mouse models for external genitalia formation. Congenit Anom (Kyoto) 2019; 59:74-80. [PMID: 30554442 DOI: 10.1111/cga.12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Development of external genitalia and perineum is the subject of developmental biology as well as toxicology and teratology researches. Cloaca forms in the lower (caudal) end of endoderm. Such endodermal epithelia and surrounding mesenchyme interact with various signals to form the external genitalia. External genitalia (the anlage termed as genital tubercle: GT) formation shows prominent sexually dimorphic morphogenesis in late embryonic stages, which is an unexplored developmental research field because of many reasons. External genitalia develop adjacent to the cloaca which develops urethra and corporal bodies. Developmental regulators including growth factor signals are necessary for epithelia-mesenchyme interaction (EMI) in posterior embryos including the cloaca and urethra in the genitalia. In the case of male type urethra, formation of tubular urethra proceeds from the lower (ventral) side of external genitalia as a masculinization process in contrast to the case of female urethra. Mechanisms for its development are not elucidated yet due to the lack of suitable mutant mouse models. Because of the recent progresses of Cre (recombinase)-mediated conditional target gene modification analyses, many developmental regulatory genes become increasingly analyzed. Conditional gene knockout mouse approaches and tissue lineage approaches are expected to offer vital information for such sexually dimorphic developmental processes. This review aims to offer recent updates on the progresses of these emerging developmental processes for the research field of congenital anomalies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
20
|
Chen Y, Kuroki Y, Shaw G, Pask AJ, Yu H, Toyoda A, Fujiyama A, Renfree MB. Androgen and Oestrogen Affect the Expression of Long Non-Coding RNAs During Phallus Development in a Marsupial. Noncoding RNA 2018; 5:E3. [PMID: 30598023 PMCID: PMC6468475 DOI: 10.3390/ncrna5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) are important for normal reproductive development, yet very few lncRNAs have been identified in phalluses so far. Unlike eutherians, phallus development in the marsupial tammar wallaby occurs post-natally, enabling manipulation not possible in eutherians in which differentiation occurs in utero. We treated with sex steroids to determine the effects of androgen and oestrogen on lncRNA expression during phallus development. Hormonal manipulations altered the coding and non-coding gene expression profile of phalluses. We identified several predicted co-regulatory lncRNAs that appear to be co-expressed with the hormone-responsive candidate genes regulating urethral closure and phallus growth, namely IGF1, AR and ESR1. Interestingly, more than 50% of AR-associated coding genes and lncRNAs were also associated with ESR1. In addition, we identified and validated three novel co-regulatory and hormone-responsive lncRNAs: lnc-BMP5, lnc-ZBTB16 and lncRSPO4. Lnc-BMP5 was detected in the urethral epithelium of male phalluses and was downregulated by oestrogen in males. Lnc-ZBTB16 was downregulated by oestrogen treatment in male phalluses at day 50 post-partum (pp). LncRSPO4 was downregulated by adiol treatment in female phalluses but increased in male phalluses after castration. Thus, the expression pattern and hormone responsiveness of these lncRNAs suggests a physiological role in the development of the phallus.
Collapse
Affiliation(s)
- Yu Chen
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Yoko Kuroki
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| |
Collapse
|
21
|
Singh N, Gupta DK, Sharma S, Sahu DK, Mishra A, Yadav DK, Rawat J, Singh AK. Single-nucleotide and copy-number variance related to severity of hypospadias. Pediatr Surg Int 2018; 34:991-1008. [PMID: 30078147 DOI: 10.1007/s00383-018-4330-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND The genetic association of hypospadias-risk studies has been conducted in Caucasians, Chinese-Han populations and few in Indian populations. However, no comprehensive approach has been followed to assess genetic involvement in the severity of the disorder. METHODS The study evaluated to establish the correlation between genotyped single nucleotide and copy number variants (SNPs/CNVs) and severity of hypospadias by an association in a total 30 SNPs in genes related to sex hormone-biosynthesis and metabolism; embryonic-development and phospholipase-D-signalling pathways on 138 surgery-confirmed hypospadias-cases from North India (84 penile and 28 cases of penoscrotal-hypospadias as compared with 31 cases of glanular + coronal), and analyzed and identified CNVs in four familial cases (18 members) and three paired-sporadic cases (6 members) using array-based comparative-genomic-hybridization and validated in 32 hypospadias samples by TaqMan assay. RESULTS Based on odds ratio at 95% CI, Z Statistic and Significance Levels, STS gene-rs17268974 was associated with Penile-Hypospadias and 9-SNPs [seven-SNPs (rs5934740; rs5934842; rs5934913; rs6639811; rs3923341; rs17268974; rs5934937)] of STS gene; rs7562326-SRD5A2 and rs1877031-STARD3 were associated with penoscrotal-hypospadias. On aggregate analysis with p < 0.001, we identified homozygous-loss of Ch7:q34 (PRSS3P2, PRSS2). On validation in previously CNV-characterized and new (32 hypospadias cases), we identified PRSS3P2-loss in most of the grade 3 and 4 hypospadias. Hence, Grade 1 and 2 (coronal and granular) show no-PRSS3P2-loss and no-association with SNPs in STS; SRD5A2; STARD3-gene but Grade 3 and 4 (Penile and Penoscrotal) show PRSS3P2-loss accompanied with the association of SNPs in STS; SRD5A2; STARD3. CONCLUSIONS Hence, homozygous-loss of PRSS3P2 accompanied with the association of STS; SRD5A2; STARD3 may link to the severity of the disease.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India.
| | - Devendra Kumar Gupta
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dinesh Kumar Sahu
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Archana Mishra
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Devendra Kumar Yadav
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jiledar Rawat
- Department of Pediatric Surgery, King George's Medical University, Lucknow, 226 003, India
| | - Arun Kumar Singh
- Department of Plastic Surgery, King George's Medical University, Lucknow, 226 003, India
| |
Collapse
|
22
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Miyado M, Miyado K, Nakamura A, Fukami M, Yamada G, Oda SI. Expression patterns of Fgf8 and Shh in the developing external genitalia of Suncus murinus. Reproduction 2017; 153:187-195. [DOI: 10.1530/rep-16-0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/23/2023]
Abstract
Reciprocal epithelial–mesenchymal interactions and several signalling pathways regulate the development of the genital tubercle (GT), an embryonic primordium of external genitalia. The morphology of the adult male external genitalia of the Asian house musk shrew Suncus murinus (hereafter, laboratory name: suncus) belonging to the order Eulipotyphla (the former order Insectivora or Soricomorpha) differs from those of mice and humans. However, the developmental process of the suncus GT and its regulatory genes are unknown. In the present study, we explored the morphological changes and gene expression patterns during the development of the suncus GT. Morphological observations suggested the presence of common (during the initial outgrowth) and species-specific (during the sexual differentiation of GT) developmental processes of the suncus GT. In gene expression analysis, fibroblast growth factor 8 (Fgf8) and sonic hedgehog (Shh), an indicator and regulator of GT development in mice respectively, were found to be expressed in the cloacal epithelium and the developing urethral epithelium of the suncus GT. This pattern of expression specifically in GT epithelium is similar to that observed in the developing mouse GT. Our results indicate that the mechanism of GT formation regulated by the FGF and SHH signalling pathways is widely conserved in mammals.
Collapse
|
24
|
de Graaf P, van der Linde EM, Rosier PFWM, Izeta A, Sievert KD, Bosch JLHR, de Kort LMO. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:257-267. [PMID: 27809709 DOI: 10.1089/ten.teb.2016.0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. PURPOSE To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. METHODS A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. RESULTS Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. CONCLUSION This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.
Collapse
Affiliation(s)
- Petra de Graaf
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands .,2 Regenerative Medicine Center Utrecht , Utrecht, The Netherlands
| | | | - Peter F W M Rosier
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Ander Izeta
- 3 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastián, Spain .,4 Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra , San Sebastián, Spain
| | | | - J L H Ruud Bosch
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Laetitia M O de Kort
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
25
|
Suzuki K, Matsumaru D, Matsushita S, Murashima A, Ludwig M, Reutter H, Yamada G. Epispadias and the associated embryopathies: genetic and developmental basis. Clin Genet 2016; 91:247-253. [PMID: 27649475 DOI: 10.1111/cge.12871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
The abnormalities in the urogenital organs are frequently observed as human developmental diseases. Among such diseases, the defects in the upper part of external genitalia are rather rare named epispadias. The cleft in the dorsal part of external genitalia often reaches to the urethra. In general, the urogenital abnormalities accompany defects in the adjacent tissues and organs. The ventral body wall and bladder can also be affected in the patients with dorsal defects of the external genitalia. Therefore, such multiple malformations are often classified as bladder exstrophy and epispadias complex (BEEC). Because of the lower frequency of such birth defects and their early embryonic development, animal models are required to analyze the pathogenic mechanisms and the functions of responsible genes. Mutant mouse analyses on various signal cascades for external genitalia and body wall development are increasingly performed. The genetic interactions between growth factors such as bone morphogenetic proteins (Bmp) and transcription factors such as Msx1/2 and Isl1 have been suggested to play roles for such organogenesis. The significance of epithelial-mesenchymal interaction (EMI) is suggested during development. In this review, we describe on such local interactions and developmental regulators. We also introduce some mutant mouse models displaying external genitalia-body wall abnormalities.
Collapse
Affiliation(s)
- K Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - D Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - S Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - A Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan.,Division of Human Embryology, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - M Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - H Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - G Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
26
|
Computational modeling and simulation of genital tubercle development. Reprod Toxicol 2016; 64:151-61. [PMID: 27180093 DOI: 10.1016/j.reprotox.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/22/2022]
Abstract
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.
Collapse
|
27
|
Armfield BA, Seifert AW, Zheng Z, Merton EM, Rock JR, Lopez MC, Baker HV, Cohn MJ. Molecular Characterization of the Genital Organizer: Gene Expression Profile of the Mouse Urethral Plate Epithelium. J Urol 2016; 196:1295-302. [PMID: 27173853 DOI: 10.1016/j.juro.2016.04.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Lower urinary tract malformations are among the most common congenital anomalies in humans. Molecular genetic studies of mouse external genital development have begun to identify mechanisms that pattern the genital tubercle and orchestrate urethral tubulogenesis. The urethral plate epithelium is an endodermal signaling region that has an essential role in external genital development. However, little is known about the molecular identity of this cell population or the genes that regulate its activity. MATERIALS AND METHODS We used microarray analysis to characterize differences in gene expression between urethral plate epithelium and surrounding tissue in mouse genital tubercles. In situ hybridizations were performed to map gene expression patterns and ToppCluster (https://toppcluster.cchmc.org/) was used to analyze gene associations. RESULTS A total of 84 genes were enriched at least 20-fold in urethral plate epithelium relative to surrounding tissue. The majority of these genes were expressed throughout the urethral plate in males and females at embryonic day 12.5 when the urethral plate is known to signal. Functional analysis using ToppCluster revealed genetic pathways with known functions in other organ systems but unknown roles in external genital development. Additionally, a 3-dimensional molecular atlas of genes enriched in urethral plate epithelium was generated and deposited at the GUDMAP (GenitoUrinary Development Molecular Anatomy Project) website (http://gudmap.org/). CONCLUSIONS We identified dozens of genes previously unknown to be expressed in urethral plate epithelium at a crucial developmental period. It provides a novel panel of genes for analysis in animal models and in humans with external genital anomalies.
Collapse
Affiliation(s)
- Brooke A Armfield
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Ashley W Seifert
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Zhengui Zheng
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Emily M Merton
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Jason R Rock
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida; Department of Biology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida; Howard Hughes Medical Institute, University of Florida Genetics Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
28
|
Investigation of sexual dimorphisms through mouse models and hormone/hormone-disruptor treatments. Differentiation 2016; 91:78-89. [DOI: 10.1016/j.diff.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 01/23/2023]
|