1
|
Walton A, Herman JJ, Rueppell O. Social life results in social stress protection: a novel concept to explain individual life-history patterns in social insects. Biol Rev Camb Philos Soc 2024; 99:1444-1457. [PMID: 38468146 DOI: 10.1111/brv.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Resistance to and avoidance of stress slow aging and confer increased longevity in numerous organisms. Honey bees and other superorganismal social insects have two main advantages over solitary species to avoid or resist stress: individuals can directly help each other by resource or information transfer, and they can cooperatively control their environment. These benefits have been recognised in the context of pathogen and parasite stress as the concept of social immunity, which has been extensively studied. However, we argue that social immunity is only a special case of a general concept that we define here as social stress protection to include group-level defences against all biotic and abiotic stressors. We reason that social stress protection may have allowed the evolution of reduced individual-level defences and individual life-history optimization, including the exceptional aging plasticity of many social insects. We describe major categories of stress and how a colonial lifestyle may protect social insects, particularly against temporary peaks of extreme stress. We use the honey bee (Apis mellifera L.) to illustrate how patterns of life expectancy may be explained by social stress protection and how modern beekeeping practices can disrupt social stress protection. We conclude that the broad concept of social stress protection requires rigorous empirical testing because it may have implications for our general understanding of social evolution and specifically for improving honey bee health.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Jacob J Herman
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Murthy MN, Shyamala BV. Ashwagandha- Withania somnifera (L.) Dunal as a multipotent neuroprotective remedy for genetically induced motor dysfunction and cellular toxicity in human neurodegenerative disease models of Drosophila. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116897. [PMID: 37442493 DOI: 10.1016/j.jep.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha-Withania somnifera (L.) Dunal, well known for its multipotent therapeutic properties has been used in Ayurveda for 3000 years. The plant with more than 50 active phytoconstituents is recognised for its anti-cancerous, anti-diabetic, anti-inflammatory, anti-microbial, and neurotherapeutic properties demonstrated in in vitro studies and chemically induced rodent models. Genetically targeted Parkinson's, Alzheimer's and other neurodegenerative disease models have been created in Drosophila and have been used to get mechanistic insight into the in vivo cellular events, and genetic pathways that underlie respective neurodegenerative condition. But hitherto, there aren't enough attempts made to capitalize the genetic potential of these disease models to validate the therapeutic efficacy of different reagents used in traditional medicine, in the context of specific disease-causing genetic mutations. AIM OF THE STUDY Drugs discovered using in vitro platforms might fail in several instances of clinical trials because of the genetic heterogeneity and variability in the physiological context found among the patients. Drosophila by virtue of its genetically regulated experimental potential forms an ideal in vivo model to validate the candidate reagents discovered in in vitro screens for their efficacy under specific genetic situations. Here we have used genetically induced α-synucleinopathy and tauopathy transgenic fly models to study the efficacy of Ashwagandha treatment, assessing cellular and behavioural parameters. METHODS We have expressed the disease-causing human gene mutations in specific cell types of Drosophila using GAL4/UAS targeted expression system to create disease models. Human α-synuclein mutant (A30P) was expressed in dopaminergic neurons using Ddc-GAL4 driver strain to induce dopaminergic neurodegeneration and assayed for motor dysfunction. Human TauE14, mutant protein was expressed in photoreceptor neurons using GMR-GAL4 driver to induce photoreceptor degeneration. Microtubular destability and mitotic arrest in the dividing photoreceptor precursor cells were studied using αPH3 antibody. Lysosomal dysregulation caused necrotic black spots were induced by TauE14 with GMR-GAL4 driver, in a white mutant background. These flies mimicking neurodegenerative conditions were supplemented with different concentrations of Ashwagandha aqueous root extract mixed with regular fly food. The treated flies were analysed for cellular and behaviour parameters. RESULTS Lifespan assay shows that, Ashwagandha-root extract imparts an extended lifespan in male Drosophila flies which are intrinsically less stress resistant. Motor dysfunction caused due to human α-synuclein mutant protein expressed in dopaminergic neurons is greatly brought down. Further, Ashwagandha extract treatment significantly reduces TauE14 induced microtubular destability, mitotic arrest and neuronal death in photoreceptor neurons. Our experiment with tauopathy model in white mutant background exemplify that, Ashwagandha-root extract treatment can bring down lysosomal dysregulation induced necrosis of photoreceptor neurons. CONCLUSION We have carried out a multifaceted study which elucidates that Ashwagandha can serve as a comprehensive, phytotherapeutic formulation to combat neurodegeneration, targeting multiple causative genetically defective conditions.
Collapse
Affiliation(s)
- Mamatha Nagamadhu Murthy
- Developmental Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Mysuru, 570006, India.
| | | |
Collapse
|
3
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
4
|
Soo SK, Traa A, Rudich ZD, Moldakozhayev A, Mistry M, Van Raamsdonk JM. Genetic basis of enhanced stress resistance in long-lived mutants highlights key role of innate immunity in determining longevity. Aging Cell 2022; 22:e13740. [PMID: 36514863 PMCID: PMC9924947 DOI: 10.1111/acel.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.
Collapse
Affiliation(s)
- Sonja K. Soo
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Annika Traa
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Zenith D. Rudich
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alibek Moldakozhayev
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public HealthHarvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada,Division of Experimental Medicine, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
5
|
Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. eLife 2022; 11:80169. [PMID: 35980024 PMCID: PMC9427105 DOI: 10.7554/elife.80169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are mobile sequences of DNA that can become transcriptionally active as an animal ages. Whether TE activity is simply a by-product of heterochromatin breakdown or can contribute toward the aging process is not known. Here, we place the TE gypsy under the control of the UAS GAL4 system to model TE activation during aging. We find that increased TE activity shortens the life span of male Drosophila melanogaster. The effect is only apparent in middle-aged animals. The increase in mortality is not seen in young animals. An intact reverse transcriptase is necessary for the decrease in life span, implicating a DNA-mediated process in the effect. The decline in life span in the active gypsy flies is accompanied by the acceleration of a subset of aging phenotypes. TE activity increases sensitivity to oxidative stress and promotes a decline in circadian rhythmicity. The overexpression of the Forkhead-box O family (FOXO) stress response transcription factor can partially rescue the detrimental effects of increased TE activity on life span. Our results provide evidence that active TEs can behave as effectors in the aging process and suggest a potential novel role for dFOXO in its promotion of longevity in D. melanogaster.
Collapse
Affiliation(s)
- Joyce Rigal
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Elena Bitman
- Department of Biology, Brandeis University, Waltham, United States
| | - Emma Rivellese
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
6
|
Exogenous oxidative stressors elicit differing age and sex effects in Tigriopus californicus. Exp Gerontol 2022; 166:111871. [PMID: 35750273 DOI: 10.1016/j.exger.2022.111871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
As organisms age, cellular function declines in a time-dependent manner. Oxidative stress induced by reactive oxygen species damages cellular machinery and contributes to senescence which narrows the homeostatic window needed to maintain function and survive stress. Sex differences in longevity are apparent in many species and may be related to sex-specific homeostatic responses. Here we use the emerging aging model system Tigriopus californicus, the splashpool copepod, to estimate sex- and age-specific tolerances to two chemical oxidants, hydrogen peroxide and paraquat. Sex-specific tolerance was estimated for both oxidants simultaneously for 15 age-classes. As animals aged, hydrogen peroxide tolerance decreased but paraquat tolerance increased. Also, we observed no sex difference for hydrogen peroxide tolerance, while females were more tolerant of paraquat. Our results demonstrate that oxidative stressors can have dramatically different sex and age effects in Tigriopus californicus. These findings underscore the challenges ahead in understanding relationships among oxidative stressors, sex, and aging.
Collapse
|
7
|
Zhang P, Azad P, Engelhart DC, Haddad GG, Nigam SK. SLC22 Transporters in the Fly Renal System Regulate Response to Oxidative Stress In Vivo. Int J Mol Sci 2021; 22:13407. [PMID: 34948211 PMCID: PMC8706193 DOI: 10.3390/ijms222413407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) subgroups. In mammals, it has been difficult to show a clear in vivo role for these transporters during oxidative stress. Ubiquitous knockdowns of related Drosophila SLC22s-including transporters homologous to those previously identified by us in mammals such as the "Fly-Like Putative Transporters" FLIPT1 (SLC22A15) and FLIPT2 (SLC22A16)-have shown modest protection against oxidative stress. However, these fly transporters tend to be broadly expressed, and it is unclear if there is an organ in which their expression is critical. Using two tissue-selective knockdown strategies, we were able to demonstrate much greater and longer protection from oxidative stress compared to previous whole fly knockdowns as well as both parent and WT strains (CG6126: p < 0.001, CG4630: p < 0.01, CG16727: p < 0.0001 and CG6006: p < 0.01). Expression in the Malpighian tubule and likely other tissues as well (e.g., gut, fat body, nervous system) appear critical for managing oxidative stress. These four Drosophila SLC22 genes are similar to human SLC22 transporters (CG6126: SLC22A16, CG16727: SLC22A7, CG4630: SLC22A3, and CG6006: SLC22A1, SLC22A2, SLC22A3, SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12 (URAT1), SLC22A13, SLC22A14)-many of which are highly expressed in the kidney. Consistent with the Remote Sensing and Signaling Theory, this indicates an important in vivo role in the oxidative stress response for multiple SLC22 transporters within the fly renal system, perhaps through interaction with SLC22 counterparts in non-renal tissues. We also note that many of the human relatives are well-known drug transporters. Our work not only indicates the importance of SLC22 transporters in the fly renal system but also sets the stage for in vivo studies by examining their role in mammalian oxidative stress and organ crosstalk.
Collapse
Affiliation(s)
- Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA; (P.Z.); (D.C.E.)
| | - Priti Azad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
| | - Darcy C. Engelhart
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA; (P.Z.); (D.C.E.)
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Negroni MA, Stoldt M, Oster M, Rupp AS, Feldmeyer B, Foitzik S. Social organization and the evolution of life-history traits in two queen morphs of the ant Temnothorax rugatulus. J Exp Biol 2021; 224:238088. [PMID: 33658241 DOI: 10.1242/jeb.232793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022]
Abstract
During the evolution of social insects, not only did life-history traits diverge, with queens becoming highly fecund and long lived compared with their sterile workers, but also individual traits lost their importance compared with colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here, we focused on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insight into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body, indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate for their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.
Collapse
Affiliation(s)
- Matteo A Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marie Oster
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ann-Sophie Rupp
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, 60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
9
|
Ueda A, Iyengar A, Wu CF. Differential effects on neuromuscular physiology between Sod1 loss-of-function mutation and paraquat-induced oxidative stress in Drosophila. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000385. [PMID: 34027314 PMCID: PMC8133701 DOI: 10.17912/micropub.biology.000385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/25/2023]
Abstract
Oxidative stress is thought to be a major contributor to aging processes. Here, we report differential effects on neurotransmission caused by loss-of-function mutations of Superoxide dismutase 1 (Sod1) and by paraquat (PQ) feeding in Drosophila. We demonstrated alterations in Sod1 mutants; the larval neuromuscular junction displayed supernumerary discharges and the adult giant-fiber escape pathway showed increased latency and poor response to repetitive high-frequency stimulation. Even though the concentrations used led to motor coordination defects and lethality, PQ feeding failed to reproduce such performance deficits in these larval and adult preparations, indicating mechanistic distinctions between these genetic and pharmacological manipulations of oxidative stress.
Collapse
Affiliation(s)
| | - Atulya Iyengar
- Dept. Biology, University of Iowa
- Iowa Neuroscience Institute, University of Iowa
| | - Chun-Fang Wu
- Dept. Biology, University of Iowa
- Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
10
|
Deepashree S, Niveditha S, Shivanandappa T, Ramesh SR. Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster. Biogerontology 2019; 20:497-513. [DOI: 10.1007/s10522-019-09812-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
|
11
|
Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, Calvi BR, Mollereau B. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy 2018; 15:771-784. [PMID: 30563404 DOI: 10.1080/15548627.2018.1558001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies. Moreover, autophagy and apoptosis were differentially regulated by the p53 (p53B) and ΔNp53 (p53A) isoforms: while the former induced autophagy in differentiated neurons, which protected against cell death, the latter inhibited autophagy by activating the caspases Dronc, Drice, and Dcp-1. Our results demonstrate that the differential use of p53 isoforms combined with the antagonism between apoptosis and autophagy ensures the generation of an appropriate p53 biological response to stress.
Collapse
Affiliation(s)
- Marion Robin
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Abdul Raouf Issa
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Cristiana C Santos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Francesco Napoletano
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Céline Petitgas
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Gilles Chatelain
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Mathilde Ruby
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Ludivine Walter
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Serge Birman
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Pedro M Domingos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Brian R Calvi
- d Department of Biology , Indiana University , Bloomington , IN , USA
| | - Bertrand Mollereau
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| |
Collapse
|
12
|
Mohite GM, Dwivedi S, Das S, Kumar R, Paluri S, Mehra S, Ruhela N, S A, Jha NN, Maji SK. Parkinson's Disease Associated α-Synuclein Familial Mutants Promote Dopaminergic Neuronal Death in Drosophila melanogaster. ACS Chem Neurosci 2018; 9:2628-2638. [PMID: 29906099 DOI: 10.1021/acschemneuro.8b00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (α-Syn) aggregation and amyloid formation are associated with loss of dopaminergic neurons in Parkinson's disease (PD). In addition, familial mutations in α-Syn are shown to be one of the definite causes of PD. Here we have extensively studied familial PD associated α-Syn G51D, H50Q, and E46K mutations using Drosophila model system. Our data showed that flies expressing α-Syn familial mutants have a shorter lifespan and exhibit more climbing defects compared to wild-type (WT) flies in an age-dependent manner. The immunofluorescence studies of the brain from the old flies showed more dopaminergic neuronal cell death in all mutants compared to WT. This adverse effect of α-Syn familial mutations is highly correlated with the sustained population of oligomer production and retention in mutant flies. Furthermore, this was supported by our in vitro studies, where significantly higher amount of oligomer was observed in mutants compared to WT. The data suggest that the sustained population of oligomer formation and retention could be a major cause of cell death in α-Syn familial mutants.
Collapse
Affiliation(s)
- Ganesh M. Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saumya Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sravya Paluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Ruhela
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arunima S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Narendra Nath Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
13
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
14
|
Pomatto LCD, Wong S, Tower J, Davies KJA. Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Arch Biochem Biophys 2017; 636:57-70. [PMID: 29100984 DOI: 10.1016/j.abb.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/24/2022]
Abstract
Sexual dimorphism includes the physical and reproductive differences between the sexes, including differences that are conserved across species, ranging from the common fruit fly, Drosophila melanogaster, to humans. Sex-dependent variations in adaptive homeostasis, and adaptive stress responses may offer insight into the underlying mechanisms for male and female survival differences and into differences in chronic disease incidence and severity in humans. Earlier work showed sex-specific differences in adaptive responses to oxidative stressors in hybrid laboratory strains of D. melanogaster. The present study explored whether this phenomenon is also observed in wild-type D. melanogaster strains Oregon-R (Or-R) and Canton-S (Ca-S), as well as the common mutant reference strain w[1118], in order to better understand whether such findings are descriptive of D. melanogaster in general. Flies of each strain were pretreated with non-damaging, adaptive concentrations of hydrogen peroxide (H2O2) or of different redox cycling agents (paraquat, DMNQ, or menadione). Adaptive homeostasis, and changes in the expression of the Proteasome and overall cellular proteasomal proteolytic capacity were assessed. Redox cycling agents exhibited a male-specific adaptive response, whereas H2O2 exposure provoked female-specific adaptation. These findings demonstrate that different oxidants can elicit sexually dimorphic adaptive homeostatic responses in multiple fly strains. These results (and those contained in a parallel study [1]) highlight the need to address sex as a biological variable in fundamental science, clinical research, and toxicology.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
15
|
Donovan MR, Marr MT. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila. J Biol Chem 2016; 291:19042-50. [PMID: 27435672 DOI: 10.1074/jbc.m116.723049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo.
Collapse
Affiliation(s)
- Marissa R Donovan
- From the Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453
| | - Michael T Marr
- From the Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
16
|
Barnes VL, Bhat A, Unnikrishnan A, Heydari AR, Arking R, Pile LA. SIN3 is critical for stress resistance and modulates adult lifespan. Aging (Albany NY) 2015; 6:645-60. [PMID: 25133314 PMCID: PMC4169859 DOI: 10.18632/aging.100684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coordinate control of gene activity is critical for fitness and longevity of an organism. The SIN3 histone deacetylase (HDAC) complex functions as a transcriptional repressor of many genes. SIN3-regulated genes include those that encode proteins affecting multiple aspects of mitochondrial function, such as energy production and stress responsiveness, important for health maintenance. Here we used Drosophila melanogaster as a model organism to examine the role of SIN3 in the regulation of fitness and longevity. Adult flies with RNA interference (RNAi) induced knockdown expression of Sin3A have reduced climbing ability; an activity that likely requires fully functional mitochondria. Additionally, compared to wild type, adult Sin3A knockdown flies were more sensitive to oxidative stress. Interestingly, media supplementation with the antioxidant glutathione largely restored fly tolerance to oxidative stress. Although Sin3A knockdown flies exhibited decreased longevity compared to wild type, no significant changes in expression of many well-categorized aging genes were observed. We found, however, that Sin3A knockdown corresponded to a significant reduction in expression of genes encoding proteins involved in the de novo synthesis of glutathione. Taken together, the data support a model whereby SIN3 regulates a gene expression program required for proper mitochondrial function and effective stress response during adulthood.
Collapse
Affiliation(s)
- Valerie L Barnes
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Abhineeth Bhat
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Archana Unnikrishnan
- Department of Nutrition and Food Science Wayne State University, Detroit, Michigan, 48202,USA
| | - Ahmad R Heydari
- Department of Nutrition and Food Science Wayne State University, Detroit, Michigan, 48202,USA
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
17
|
Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR. Neuroprotective effect of Decalepis hamiltonii in paraquat-induced neurotoxicity in Drosophila melanogaster: biochemical and behavioral evidences. Neurochem Res 2013; 38:2616-24. [PMID: 24173775 DOI: 10.1007/s11064-013-1179-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Abstract
In this paper, we have demonstrated for the first time, the antioxidant and neuroprotective effects of Decalepis hamiltonii (Dh) root extract against paraquat (PQ)-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Exposure of adult D. melanogaster (Oregon K) to PQ induced oxidative stress as evidenced by glutathione depletion, lipid peroxidation and enhanced activities of antioxidant enzymes such as catalase, superoxide dismutase as well as elevated levels of acetylcholine esterase. Pretreatment of flies by feeding with Dh extract (0.1, 0.5 %) for 14 days boosted the activities of antioxidant enzymes and prevented the PQ-induced oxidative stress. Dietary feeding of Dh extract prior to PQ exposure showed a lower incidence of mortality and enhanced motor activities of flies in a negative geotaxis assay; both suggesting the neuroprotective potential of Dh. Based on the results, we contemplate that the roots of Dh might prevent and ameliorate the human diseases caused by oxidative stress. The neuroprotective action of Dh can be attributed to the antioxidant constituents while the precise mechanism of its action needs further investigations.
Collapse
Affiliation(s)
- Samaneh Reiszadeh Jahromi
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | | | | | | |
Collapse
|
18
|
Lang M, Fan Q, Wang L, Zheng Y, Xiao G, Wang X, Wang W, Zhong Y, Zhou B. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms. Neurobiol Aging 2013; 34:2604-12. [PMID: 23827522 DOI: 10.1016/j.neurobiolaging.2013.05.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 01/06/2023]
Abstract
Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.
Collapse
Affiliation(s)
- Minglin Lang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lazarević J, Đorđević M, Stojković B, Tucić N. Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus). Biogerontology 2013; 14:141-52. [DOI: 10.1007/s10522-013-9417-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
|
20
|
Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V. Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Exp Gerontol 2013; 48:349-57. [DOI: 10.1016/j.exger.2013.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
21
|
Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S. Aging studies in Drosophila melanogaster. Methods Mol Biol 2013; 1048:77-93. [PMID: 23929099 DOI: 10.1007/978-1-62703-556-9_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake, and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity.
Collapse
Affiliation(s)
- Yaning Sun
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
23
|
Soh JW, Marowsky N, Nichols TJ, Rahman AM, Miah T, Sarao P, Khasawneh R, Unnikrishnan A, Heydari AR, Silver RB, Arking R. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp Gerontol 2012; 48:229-39. [PMID: 23063786 DOI: 10.1016/j.exger.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/27/2012] [Accepted: 09/27/2012] [Indexed: 01/07/2023]
Abstract
Larval feeding with curcumin induces an extended health span with significantly increased median and maximum longevities in the adult fly. This phenotype is diet insensitive and shows no additive effect on longevity when combined with an adult dietary restriction (DR) diet, suggesting that curcumin and DR operate via the same or overlapping pathways for this trait. This treatment significantly slows the aging rate so that it is comparable with that of genetically selected long lived animals. The larval treatment also enhances the adult animal's geotactic activity in an additive manner with DR, suggesting that curcumin and DR may use different pathways for different traits. Feeding the drug to adults during only the health span also results in a significantly extended health span with increased median and maximum life span. This extended longevity phenotype is induced only during these stage-specific periods. Feeding adults with the drug over their whole life results in a weakly negative effect on median longevity with no increase in maximum life span. There are no negative effects on reproduction, although larval curcumin feeding increases development time, and also apparently accelerates the normal late-life neuromuscular degeneration seen in the legs. Gene expression data from curcumin-fed larvae shows that the TOR pathway is inhibited in the larvae and the young to midlife adults, although several other genes involved in longevity extension are also affected. These data support the hypothesis that curcumin acts as if it is a DR mimetic nutraceutical. These data also suggest that the search for DR mimetics may be enhanced by the use of stage-specific screening of candidate molecules.
Collapse
Affiliation(s)
- Jung-Won Soh
- Department of Biological Sciences, Wayne State University, Detroit, 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iliadi KG, Knight D, Boulianne GL. Healthy aging - insights from Drosophila. Front Physiol 2012; 3:106. [PMID: 22529821 PMCID: PMC3328947 DOI: 10.3389/fphys.2012.00106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/03/2012] [Indexed: 11/13/2022] Open
Abstract
Human life expectancy has nearly doubled in the past century due, in part, to social and economic development, and a wide range of new medical technologies and treatments. As the number of elderly increase it becomes of vital importance to understand what factors contribute to healthy aging. Human longevity is a complex process that is affected by both environmental and genetic factors and interactions between them. Unfortunately, it is currently difficult to identify the role of genetic components in human longevity. In contrast, model organisms such as C. elegans, Drosophila, and rodents have facilitated the search for specific genes that affect lifespan. Experimental evidence obtained from studies in model organisms suggests that mutations in a single gene may increase longevity and delay the onset of age-related symptoms including motor impairments, sexual and reproductive and immune dysfunction, cardiovascular disease, and cognitive decline. Furthermore, the high degree of conservation between diverse species in the genes and pathways that regulate longevity suggests that work in model organisms can both expand our theoretical knowledge of aging and perhaps provide new therapeutic targets for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Konstantin G Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | | | | |
Collapse
|
25
|
Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One 2012; 7:e34745. [PMID: 22496853 PMCID: PMC3319608 DOI: 10.1371/journal.pone.0034745] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. METHODS AND FINDINGS We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. CONCLUSIONS We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.
Collapse
Affiliation(s)
- Allison L Weber
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | |
Collapse
|
26
|
Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, Liang CJ, Sang TK, Ciou SC, Yuh CH, Wang CY, Brummel TJ, Wang HD. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 2012; 11:93-103. [PMID: 22040003 DOI: 10.1111/j.1474-9726.2011.00762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes that are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH. The knockdown of rpi in neurons by double-stranded RNA interference recapitulated the lifespan extension and oxidative stress resistance in Drosophila. This manipulation was also found to ameliorate the effects of genetic manipulations aimed at creating a model for studying Huntington's disease by overexpression of polyglutamine in the eye, suggesting that modulating rpi levels could serve as a treatment for normal aging as well as for polyglutamine neurotoxicity.
Collapse
Affiliation(s)
- Ching-Tzu Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ranjini MS, Hosamani R, Muralidhara, Ramachandra NB. Differential susceptibility of a few members of thenasuta–albomicanscomplex ofDrosophilato paraquat-induced lethality and oxidative stress. Genome 2011; 54:829-35. [PMID: 21961920 DOI: 10.1139/g11-049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta–albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.
Collapse
Affiliation(s)
- Mysore S. Ranjini
- Unit on Evolution and Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Ravikumar Hosamani
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (CFTRI), Mysore 570020, India
| | - Muralidhara
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (CFTRI), Mysore 570020, India
| | - Nallur B. Ramachandra
- Unit on Evolution and Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
28
|
Abstract
Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits pro-oxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage.
Collapse
Affiliation(s)
- Dongping Liu
- Section of Molecular Biology, Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
29
|
The endogenous siRNA pathway in Drosophila impacts stress resistance and lifespan by regulating metabolic homeostasis. FEBS Lett 2011; 585:3079-85. [PMID: 21889502 DOI: 10.1016/j.febslet.2011.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/13/2011] [Accepted: 08/23/2011] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs regulate gene expression in a sequence-specific manner. In Drosophila, Dicer-2 (Dcr-2) functions in the biogenesis of endogenous small interfering RNAs (endo-siRNAs). We identified 21 distinct proteins that exhibited a ≥ 1.5-fold change as a consequence of loss of dcr-2 function. Most of these were metabolic genes implicated in stress resistance and aging. dcr-2 Mutants had reduced lifespan and were hypersensitive to oxidative, endoplasmic reticulum, starvation, and cold stresses. Furthermore, loss of dcr-2 function led to abnormal lipid and carbohydrate metabolism. Our results suggest roles for the endo-siRNA pathway in metabolic regulation and defense against stress and aging in Drosophila.
Collapse
|
30
|
Zeng C, Du Y, Alberico T, Seeberger J, Sun X, Zou S. Gender-specific prandial response to dietary restriction and oxidative stress in Drosophila melanogaster. Fly (Austin) 2011; 5:174-80. [PMID: 21471736 DOI: 10.4161/fly.5.3.15572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Drosophila melanogaster is ideal for studying lifespan modulated by dietary restriction (DR) and oxidative stress, and also for screening prolongevity compounds. It is critical to measure food intake in the aforementioned studies. Current methods, however, overlook the amount of the food excreted out of the flies as feces or deposited in eggs. Here we describe a feeding method using a radioactive tracer to measure gender-specific food intake, retention and excretion in response to DR and oxidative stress to account for all the ingested food. Flies were fed a full, restricted or paraquat-containing diet. The radioactivity values of the food in fly bodies, feces and eggs were measured separately after a 24-hr feeding. Food intake was calculated as the sum of these measurements. We found that most of the tracer in the ingested food was retained in the fly bodies and < 8% of the tracer was excreted out of the flies as feces and eggs in the case of females during a 24-hr feeding. Under a DR condition, flies increased food intake in volume to compensate for the reduction of calorie content in the diet and also slightly increased excretion. Under an oxidative stress condition, flies reduced both food intake and excretion. Under all the tested dietary conditions, males ingested and excreted 3-5 fold less food than females. This study describes an accurate method to measure food intake and provides a basis to further investigate prandial response to DR and prolongevity interventions in invertebrates.
Collapse
Affiliation(s)
- Chaoyang Zeng
- University of Wisconsin at Milwaukee, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
31
|
Schachter H, Boulianne G. Life is sweet! A novel role for N-glycans in Drosophila lifespan. Fly (Austin) 2011; 5:18-24. [PMID: 21057214 DOI: 10.4161/fly.5.1.13920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
N-glycans are post-translational modifications in which the sugar chain is covalently linked to protein by a GlcNAcβ1-N-asparagine linkage. Drosophila melanogaster and other invertebrates, but not vertebrates, synthesize large amounts of "paucimannose" N-glycans that contain only three or four mannose residues. The enzyme UDP-GlcNAc:α3-D-mannoside β1,2-N-acetylglucosaminyltransferase I (GnTI, encoded by the Mgat1 gene) controls the synthesis of paucimannose N-glycans. Either deletion or neuron-specific knockdown of Mgat1 in wild type flies results in pronounced defects in locomotion, structural defects in the adult central nervous system and a severely reduced lifespan. We have recently shown that neuronal expression of a wild-type Mgat1 transgene in Mgat1-null flies rescues the structural defects in the brain (fused β-lobes) and the shortened lifespan and, surprisingly, results in a dramatic 135% increase in mean lifespan relative to genetically identical controls that do not express the transgene. In this review, we discuss various approaches that can be used to determine the roles of paucimannose N-glycans in Drosophila longevity and in the adult CNS.
Collapse
Affiliation(s)
- Harry Schachter
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
32
|
|
33
|
Shchedrina VA, Vorbrüggen G, Lee BC, Kim HY, Kabil H, Harshman LG, Gladyshev VN. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging. Mech Ageing Dev 2009; 130:429-43. [PMID: 19409408 DOI: 10.1016/j.mad.2009.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 04/01/2009] [Accepted: 04/22/2009] [Indexed: 01/06/2023]
Abstract
Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on either corn meal or sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with similar function in antioxidant protein repair, have different effects on aging in fruit flies.
Collapse
Affiliation(s)
- Valentina A Shchedrina
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000361. [PMID: 19197346 PMCID: PMC2628729 DOI: 10.1371/journal.pgen.1000361] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/31/2008] [Indexed: 01/12/2023] Open
Abstract
The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants-including slow development, low brood size, and slow defecation-this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function.
Collapse
Affiliation(s)
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
35
|
The PP2C Alphabet is a negative regulator of stress-activated protein kinase signaling in Drosophila. Genetics 2008; 181:567-79. [PMID: 19064708 DOI: 10.1534/genetics.108.096461] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Jun N-terminal kinase and p38 pathways, also known as stress-activated protein kinase (SAPK) pathways, are signaling conduits reiteratively used throughout the development and adult life of metazoans where they play central roles in the control of apoptosis, immune function, and environmental stress responses. We recently identified a Drosophila Ser/Thr phosphatase of the PP2C family, named Alphabet (Alph), which acts as a negative regulator of the Ras/ERK pathway. Here we show that Alph also plays an inhibitory role with respect to Drosophila SAPK signaling during development as well as under stress conditions such as oxidative or genotoxic stresses. Epistasis experiments suggest that Alph acts at a step upstream of the MAPKKs Hep and Lic. Consistent with this interpretation, biochemical experiments identify the upstream MAPKKKs Slpr, Tak1, and Wnd as putative substrates. Together with previous findings, this work identifies Alph as a general attenuator of MAPK signaling in Drosophila.
Collapse
|
36
|
Abstract
One of the most dramatic changes associated with aging involves immunity. In aging mammals, immune function declines and chronic inflammation develops. The biological significance of this phenomenon and its relationship with aging is a priority for aging research. Drosophila is an invaluable tool in understanding the effects of aging on the immune response. Similar to the state of chronic inflammation in mammals, Drosophila exhibits a drastic up-regulation of immunity-related genes with age. However, it remains unclear whether immune function declines with age as seen in mammals. We evaluated the impact of aging on Drosophila immune function by examining across age the ability to eliminate and survive different doses of bacterial invaders. Our findings show that aging reduces the capacity to survive a bacterial infection. In contrast, we found no evidence that aging affects the ability to eliminate bacteria indicating that the mechanisms underlying immune senescence are not involved in eliminating bacteria or preventing their proliferation.
Collapse
Affiliation(s)
- Sean Ramsden
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | |
Collapse
|
37
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 703] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
38
|
Khazaeli AA, Nuzhdin SV, Curtsinger JW. Genetic variation for life span, resistance to paraquat, and spontaneous activity in unselected populations of Drosophila melanogaster: implications for transgenic rescue of life span. Mech Ageing Dev 2007; 128:486-93. [PMID: 17688911 DOI: 10.1016/j.mad.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/04/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Genetic variation in adult life span, resistance to paraquat, resistance to DDT, and spontaneous flying activity were measured in 138 recombinant inbred lines of Drosophila melanogaster. We find that the phenotypic correlation between life span and resistance to an exogenous oxidizing agent is positive, though weak, and that there is little correlation between the two traits at the level of quantitative trait loci (QTLs). The sign of the life span-resistance correlation is haplotype-specific, suggesting a high degree of statistical interaction and dependence on genetic background. Because of the genotype-specificity in the relationship between life span and resistance phenotypes, interventions to extend life span by overexpression of antioxidant enzymes are likely to produce strain-specific results. These observations are in general agreement with the "genetic rescue" hypothesis of Sohal et al. [Sohal, R.S., Mockett, R.J., Orr, W.C., 2002. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic. Biol. Med. 33, 575-586.], though we emphasize that such statistical interaction is a normal feature of standing genetic variation, and does not imply that some genotypes are pathological. Ad hoc observation of spontaneous flying activity 5 days after emergence proved to be a much better predictor of life span than resistance to an exogenous oxidant in these populations.
Collapse
Affiliation(s)
- Aziz A Khazaeli
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Buford Circle, St. Paul, MN 55108, United States
| | | | | |
Collapse
|
39
|
Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest 2006; 117:236-45. [PMID: 17173140 PMCID: PMC1697799 DOI: 10.1172/jci28769] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 10/31/2006] [Indexed: 12/17/2022] Open
Abstract
Markers of oxidative damage have been detected in brain tissue from patients with Alzheimer disease (AD) and other neurodegenerative disorders. These findings implicate oxidative injury in the neurodegenerative process, but whether oxidative stress is a cause or a consequence of neurotoxicity remains unclear. We used a Drosophila model of human tauopathies to investigate the role of oxidative stress in neurodegeneration. Genetic and pharmacological manipulation of antioxidant defense mechanisms significantly modified neurodegeneration in our model, suggesting that oxidative stress plays a causal role in neurotoxicity. We demonstrate that the JNK signaling pathway is activated in our model, which is in agreement with previous findings in AD tissue. Furthermore, we show that the extent of JNK activation correlates with the degree of tau-induced neurodegeneration. Finally, our findings suggest that oxidative stress acts not to promote tau phosphorylation, but to enhance tau-induced cell cycle activation. In summary, our study identifies oxidative stress as a causal factor in tau-induced neurodegeneration in Drosophila.
Collapse
Affiliation(s)
- Dora Dias-Santagata
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Biology Department, Howard University, Washington, DC, USA
| | - Tudor A. Fulga
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Biology Department, Howard University, Washington, DC, USA
| | - Atanu Duttaroy
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Biology Department, Howard University, Washington, DC, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Biology Department, Howard University, Washington, DC, USA
| |
Collapse
|
40
|
Bonilla E, Medina-Leendertz S, Villalobos V, Molero L, Bohórquez A. Paraquat-induced Oxidative Stress in Drosophila melanogaster: Effects of Melatonin, Glutathione, Serotonin, Minocycline, Lipoic Acid and Ascorbic Acid. Neurochem Res 2006; 31:1425-32. [PMID: 17086442 DOI: 10.1007/s11064-006-9194-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/05/2006] [Indexed: 02/07/2023]
Abstract
The efficacy of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid in counteracting the toxicity of paraquat in Drosophila melanogaster was examined. Male Oregon wild strain flies were fed for 5 days with control food or food containing the test substance. They were transferred in groups of five to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival was determined 24 and 48 h later. All the substances assayed increased the survival of D. melanogaster. At equimolar concentrations (0.43 mM) melatonin was more effective than serotonin, lipoic acid and ascorbic acid. However, lower concentrations of glutathione (0.22 mM) and minocycline (0.05 mM) were as efficient as melatonin. The highest survival rate (38.6%) after 48 h of paraquat treatment was found with 2.15 mM of lipoic acid. No synergistic effect of melatonin with glutathione, serotonin, minocycline, lipoic acid and ascorbic acid was detected.
Collapse
Affiliation(s)
- Ernesto Bonilla
- Neurochemistry Section, Instituto de Investigaciones Clínicas Dr Américo Negrette, Universidad del Zulia, Apartado 23, Maracaibo, Venezuela.
| | | | | | | | | |
Collapse
|
41
|
Vermeulen CJ, Van De Zande L, Bijlsma R. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology 2006; 6:387-95. [PMID: 16518700 DOI: 10.1007/s10522-005-4903-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 10/01/2005] [Indexed: 10/25/2022]
Abstract
There is increasing support for the notion that genetic variation for lifespan, both within and between species, is correlated with variation in the efficiency of the free radical scavenging system and the ability to withstand oxidative stress. In Drosophila, resistance to dietary paraquat, a free radical generator, is often used as a measure of resistance to oxidative stress and is reported to give firm positive correlations with longevity. Recently it has been suggested that an increase in antioxidative defences in Drosophila only has a beneficial effect in relatively short-lived stocks. This implies that mechanisms of lifespan determination can be different in lines with different genetic constitution. Here we test if variation in resistance to dietary paraquat co-segregates with variation in lifespan in two sets of Drosophila melanogaster lines that were selected for decreased and increased virgin lifespan respectively. Flies of the short-lived lines show decreased resistance to paraquat compared to the control lines, indicating low resistance against oxidative stress. On the other hand, both males and females of the long-lived lines show, despite increased feeding rates on paraquat-supplemented food, no decreased survival compared to control lines. This shows that flies of the long-lived lines have increased paraquat resistance, but that this is masked by increased feeding rate, resulting in increased exposure to paraquat. This suggests that resistance to paraquat is a correlated response to selection on virgin lifespan over the entire genetic range.
Collapse
Affiliation(s)
- C J Vermeulen
- Evolutionary Genetics, University of Groningen, NL-9751, NN, Haren, The Netherlands.
| | | | | |
Collapse
|
42
|
Vermeulen CJ, Cremers TIFH, Westerink BHC, Van De Zande L, Bijlsma R. Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev 2006; 127:610-7. [PMID: 16620916 DOI: 10.1016/j.mad.2006.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/23/2006] [Accepted: 02/23/2006] [Indexed: 12/11/2022]
Abstract
Among various other mechanisms, genetic differences in the production of reactive oxygen species are thought to underlie genetic variation for longevity. Here we report on possible changes in ROS production related processes in response to selection for divergent virgin lifespan in Drosophila. The selection lines were observed to differ significantly in dopamine levels and melanin pigmentation, which is associated with dopamine levels at eclosion. These findings confirm that variation in dopamine levels is associated with genetic variation for longevity. Dopamine has previously been implied in ROS production and in the occurrence of age-related neurodegenerative diseases. In addition, we propose a possible proximate mechanism by which dopamine levels affect longevity in Drosophila: We tested if increased dopamine levels were associated with a "rate-of-living" syndrome of increased activity and respiration levels, thus aggravating the level of oxidative stress. Findings on locomotor activity and oxygen consumption of short-lived flies were in line with expectations. However, the relation is not straightforward, as flies of the long-lived lines did not show any consistent differences in pigmentation or dopamine levels with respect to the control lines. Moreover, long-lived flies also had increased locomotor activity, but showed no consistent differences in respiration rate. This strongly suggests that the response for increased and decreased lifespan may be obtained by different mechanisms.
Collapse
Affiliation(s)
- C J Vermeulen
- Evolutionary Genetics, University of Groningen, NL-9751 NN, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005; 126:987-1002. [PMID: 15893363 DOI: 10.1016/j.mad.2005.03.019] [Citation(s) in RCA: 404] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/03/2005] [Accepted: 03/15/2005] [Indexed: 12/15/2022]
Abstract
The diet known as calorie restriction (CR) is the most reproducible way to extend the lifespan of mammals. Many of the early hypotheses to explain this effect were based on it being a passive alteration in metabolism. Yet, recent data from yeast, worms, flies, and mammals support the idea that CR is not simply a passive effect but an active, highly conserved stress response that evolved early in life's history to increase an organism's chance of surviving adversity. This perspective updates the evidence for and against the various hypotheses of CR, and concludes that many of them can be synthesized into a single, unifying hypothesis. This has important implications for how we might develop novel medicines that can harness these newly discovered innate mechanisms of disease resistance and survival.
Collapse
Affiliation(s)
- David A Sinclair
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Paster, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Scholz H, Franz M, Heberlein U. The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 2005; 436:845-7. [PMID: 16094367 PMCID: PMC1364536 DOI: 10.1038/nature03864] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 05/27/2005] [Indexed: 01/30/2023]
Abstract
Repeated alcohol consumption leads to the development of tolerance, simply defined as an acquired resistance to the physiological and behavioural effects of the drug. This tolerance allows increased alcohol consumption, which over time leads to physical dependence and possibly addiction. Previous studies have shown that Drosophila develop ethanol tolerance, with kinetics of acquisition and dissipation that mimic those seen in mammals. This tolerance requires the catecholamine octopamine, the functional analogue of mammalian noradrenaline. Here we describe a new gene, hangover, which is required for normal development of ethanol tolerance. hangover flies are also defective in responses to environmental stressors, such as heat and the free-radical-generating agent paraquat. Using genetic epistasis tests, we show that ethanol tolerance in Drosophila relies on two distinct molecular pathways: a cellular stress pathway defined by hangover, and a parallel pathway requiring octopamine. hangover encodes a large nuclear zinc-finger protein, suggesting a role in nucleic acid binding. There is growing recognition that stress, at both the cellular and systemic levels, contributes to drug- and addiction-related behaviours in mammals. Our studies suggest that this role may be conserved across evolution.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Anatomy, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
45
|
Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005; 126:913-22. [PMID: 15885745 DOI: 10.1016/j.mad.2005.03.012] [Citation(s) in RCA: 706] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/06/2004] [Accepted: 03/15/2005] [Indexed: 01/21/2023]
Abstract
It has been known for some 70 years that restricting the food intake of laboratory rats extends their mean and maximum life span. In addition, such life extension has been observed over the years in many other species, including mice, hamsters, dogs, fish, invertebrate animals, and yeast. Since this life-extending action appears to be due to a restricted intake of energy, this dietary manipulation is referred to as caloric restriction (CR). CR extends life by slowing and/or delaying the ageing processes. The underlying biological mechanism responsible for the life extension is still not known, although many hypotheses have been proposed. The Growth Retardation Hypothesis, the first proposed, has been tested and found wanting. Although there is strong evidence against the Reduction of Body Fat Hypothesis, efforts have recently been made to resurrect it. While the Reduction of Metabolic Rate Hypothesis is not supported by experimental findings, it nevertheless still has advocates. Currently, the most popular concept is the Oxidative Damage Attenuation Hypothesis; the results of several studies provide support for this hypothesis, while those of other studies do not. The Altered Glucose-Insulin System Hypothesis and the Alteration of the Growth Hormone-IGF-1 Axis Hypothesis have been gaining favor, and data have emerged that link these two hypotheses as one. Thus, it may now be more appropriate to refer to them as the Attenuation of Insulin-Like Signaling Hypothesis. Finally, the Hormesis Hypothesis may provide an overarching concept that embraces several of the other hypotheses as merely specific examples of hormetic processes. For example, the Oxidative Damage Attenuation Hypothesis probably addresses only one of likely many damaging processes that underlie aging. It is proposed that low-intensity stressors, such as CR, activate ancient hormetic defense mechanisms in organisms ranging from yeast to mammals, defending them against a variety of adversities and, when long-term, retarding senescent processes.
Collapse
Affiliation(s)
- Edward J Masoro
- Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
46
|
Poirier L, Seroude L. Genetic approaches to study aging in Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2005; 27:165-82. [PMID: 23598651 PMCID: PMC3458491 DOI: 10.1007/s11357-005-2919-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/03/2005] [Accepted: 05/15/2005] [Indexed: 06/02/2023]
Abstract
The process of aging can be described as a progressive decline in an organism's function that invariably results in death. This decline results from the activities of intrinsic genetic factors within an organism. The relative contributions of the biological and environmental components to senescence are hard to measure, however different strategies have been devised in Drosophila melanogaster to isolate and identify genetic influences on aging. These strategies include selective breeding, quantitative trait loci (QTL) mapping and single gene mutant analysis. Selective breeding effectively demonstrated a genetic, heritable component to aging while QTL mapping located regions within the Drosophila genome carrying loci that influence the aging process. Within the past decade, single gene mutant analysis has facilitated the identification of specific genes whose activities play a determinative role in Drosophila aging. This review will focus on the application of selective breeding, QTL mapping and single gene mutant analysis used in Drosophila to study aging as well as the results obtained through these strategies to date.
Collapse
Affiliation(s)
- Luc Poirier
- Department of Biology, BioSciences Complex, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Laurent Seroude
- Department of Biology, BioSciences Complex, Queen's University, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
47
|
Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Ageing Res Rev 2005; 4:372-97. [PMID: 16024299 DOI: 10.1016/j.arr.2005.04.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 01/08/2023]
Abstract
The fruit fly Drosophila melanogaster is one of the principal model organisms used for studying the biology of aging. Flies are well suited for such studies for a number of reasons. Flies develop to adulthood quickly, have a relatively short life span, and are inexpensive to house. Most of the fly genome has been sequenced, powerful genetic tools are available to manipulate it, and most fly genes have obvious homologues in mammals. While the majority of aging studies in flies have focused on regulation of life span, the fly is emerging as a powerful model system for investigating the biology that underlies age-related functional decline. Key to the use of flies in this way is the striking number of parallels between functional senescence in Drosophila and humans. Here, we review age-related functional declines in Drosophila, human correlates of these age-related declines, and common mechanisms that influence longevity and specific aspects of functional senescence in flies.
Collapse
Affiliation(s)
- Michael S Grotewiel
- Department of Human Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
48
|
Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 2005; 289:E23-9. [PMID: 15701676 DOI: 10.1152/ajpendo.00575.2004] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf mutant stock are resistant, in vitro, to the cytotoxic effects of H(2)O(2), cadmium, UV light, paraquat, and heat. We show here that similar resistance profiles are seen in fibroblast cells derived from a related mutant, the Ames dwarf mouse, and that cells from growth hormone receptor-null mice are resistant to H(2)O(2), paraquat, and UV but not to cadmium. Resistance to UV light, cadmium, and H(2)O(2) are similar in cells derived from 1-wk-old Snell dwarf or normal mice, and thus the resistance of cell lines derived from young adult donors reflects developmental processes, presumably hormone dependent, that take place in the first few months of life. The resistance of cells from Snell dwarf mice to these stresses does not reflect merely antioxidant defenses: dwarf-derived cells are also resistant to the DNA-alkylating agent methyl methanesulfonate. Furthermore, inhibitor studies show that fibroblast resistance to UV light is unaffected by the antioxidants ascorbic acid and N-acetyl-L-cysteine. These data suggest that postnatal exposure to altered levels of pituitary hormones leads to development of cellular resistance to oxidative and nonoxidative stressors, which are stable through many rounds of in vitro cell division and could contribute to the remarkable disease resistance of long-lived mutant mice.
Collapse
Affiliation(s)
- Adam B Salmon
- Cellular and Molecular Biology Graduate Program, University. of Michigan School of Medicine, 1500 E. Medical Center Dr., 5316 CCGC 0940, Ann Arbor, MI 48105-0940, USA
| | | | | | | | | | | |
Collapse
|
49
|
Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 2005; 126:365-79. [PMID: 15664623 DOI: 10.1016/j.mad.2004.08.012] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 02/02/2023]
Abstract
Superoxide is among the most abundant reactive oxygen species (ROS) produced by the mitochondria, and is involved in cellular signaling pathways. Superoxide and other ROS can damage cellular macromolecules and levels of oxidative damage products are positively correlated with aging. Superoxide dismutase (SOD) enzymes catalyze the breakdown of superoxide into hydrogen peroxide and water and are therefore central regulators of ROS levels. Genetic and transgenic manipulation of SOD activities in model systems such as S. cereviseae, mouse and Drosophila are consistent with a central role for SOD enzymes in regulating oxidative stress resistance. Over-expression of SOD in S. cereviseae and Drosophila can reduce oxidative damage and extend life span, but the mechanism(s) are not yet clear. A phylogenetic analysis of publicly available SOD protein sequences suggests several additional conserved gene families. For example, in addition to the well-characterized soluble Cu/Zn enzyme (Sod) and mitochondrial manganese-containing form (Sod2), Drosophila melanogaster is found to contain a putative copper chaperone (CCS), an extracellular Cu/Zn enzyme (Sod3), and an extracellular protein distantly related to the Cu/Zn forms (Sodq). C. elegans and blue crab are unusual in having two Mn-containing SODs, and A. gambiae contains an unusual internally repeated SOD. The most parsimonius conclusion from the analysis of the extracellular SODs is that they evolved independently multiple times by addition of a signal peptide to cytoplasmic SOD.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, SHS172, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | |
Collapse
|
50
|
Chen L, Rio DC, Haddad GG, Ma E. Regulatory role of dADAR in ROS metabolism in Drosophila CNS. ACTA ACUST UNITED AC 2005; 131:93-100. [PMID: 15530657 DOI: 10.1016/j.molbrainres.2004.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2004] [Indexed: 01/06/2023]
Abstract
Pre-mRNA adenosine deaminase (ADAR) is involved in many physiological processes by either directly converting adenosine to inosine in certain pre-mRNAs or indirectly regulating expression of certain genes. Mutations of Drosophila ADAR (dADAR) results in neuronal dysfunction and hypersensitivity to oxygen deprivation. Recently, we found that the mutant flies were very resistant to paraquat, a compound that generates free radicals. In order to further characterize the neuronal role of dADAR and understand the basis for the resistance to the oxidative stress, we investigated the effect of dADAR on the expression of genes encoding scavengers of cellular reactive oxygen species (ROS) in both dADAR mutant and overexpression flies. Our data show that the expression of the genes encoding known ROS scavengers [superoxide dismutase (SOD) and catalase] is not regulated by dADAR. However, the transcripts of genes encoding two potential ROS scavengers (dhd and Cyp4g1) were robustly increased in dADAR mutant flies, and conversely both were significantly decreased in dADAR overexpressing flies. Using dhd [encoding a Drosophila homolog of the mammalian protein thioredoxin (Trx)] transgenic flies, we confirmed that the resistance of dADAR mutant flies to paraquat resulted, at least partially, from the up-regulation of dhd gene in dADAR mutant flies. Our data not only confirm the importance of ADAR in maintenance of neuronal function but also reveal its regulatory role in the expression of genes encoding ROS scavengers.
Collapse
Affiliation(s)
- Li Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|