1
|
Chou MY, Appan D, Chang KW, Chou CH, Lin CY, Gau SSF, Huang HS. Mouse hybrid genome mediates diverse brain phenotypes with the specificity of reciprocal crosses. FASEB J 2022; 36:e22232. [PMID: 35199866 DOI: 10.1096/fj.202101624r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Hybrid species have more genetic diversity than their parents. However, the impact of the hybrid genome of reciprocal crosses on brain function remains largely unknown. We performed behavioral, molecular, and neuronal analyses on C57BL/6J mice (B6), CAST/EiJ mice (CAST), and hybrid mice resulting from reciprocal crosses of the two strains, B6/CAST F1i and B6/CAST F1r, respectively. Hybrid mice displayed greater motor strength and coordination, food grinding, social dominance, and less sociability compared to their parental strains. Parental origin influenced body weight, locomotor speed, and heat nociception of hybrid mice. Parental origin, cell type, and the interaction of both affected expression patterns of hybrid genomes including imprinted genes. There was a correlation between affected genes and corresponding behavioral phenotypes. Hybrid genomes mediated neuronal activity in the locus coeruleus, a brain region implicated in arousal, adaptive behaviors, and sleep-wake cycle due to its norepinephrine projections throughout the central nervous system. The comprehensive brain phenotypes in these hybrid mice reveal important functional readouts associated with interactions of hybrid genomes and impacts of parental genomes.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dhivya Appan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wei Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsuan Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Ben Yamin B, Ahmed-Seghir S, Tomida J, Despras E, Pouvelle C, Yurchenko A, Goulas J, Corre R, Delacour Q, Droin N, Dessen P, Goidin D, Lange SS, Bhetawal S, Mitjavila-Garcia MT, Baldacci G, Nikolaev S, Cadoret JC, Wood RD, Kannouche PL. DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO J 2021; 40:e104543. [PMID: 34533226 PMCID: PMC8561639 DOI: 10.15252/embj.2020104543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult‐to‐replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l‐deficient cells are compromised in the repair of heterochromatin‐associated double‐stranded breaks, eliciting deletions in late‐replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair‐associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.
Collapse
Affiliation(s)
- Barbara Ben Yamin
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Sana Ahmed-Seghir
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Emmanuelle Despras
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Caroline Pouvelle
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Andrey Yurchenko
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jordane Goulas
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Raphael Corre
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Quentin Delacour
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | | | - Philippe Dessen
- Bioinformatics Core Facility, Gustave Roussy, Villejuif, France
| | - Didier Goidin
- Life Sciences and Diagnostics Group, Agilent Technologies France, Les Ulis, France
| | - Sabine S Lange
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University of Paris, Paris, France
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricia L Kannouche
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| |
Collapse
|
3
|
Wells JCK. Commentary: Paternal and maternal influences on offspring phenotype: the same, only different. Int J Epidemiol 2014; 43:772-4. [PMID: 24651398 PMCID: PMC4052140 DOI: 10.1093/ije/dyu055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. E-mail:
| |
Collapse
|
4
|
Abstract
The finding of a mixture of 46,XX and 46,XY cells in an individual has been rarely reported in literature. It usually results in individuals with ambiguous genitalia. Approximately 10% of true human hermaphrodites show this type of karyotype. However, the underlying mechanisms are poorly understood. It may be the result of mosaicism or chimerism. By definition, a chimera is produced by the fusion of two different zygotes in a single embryo, while a mosaic contains genetically different cells issued from a single zygote. Several mechanisms are involved in the production of chimera. Stricto sensu, chimerism occurs from the post-zygotic fusion of two distinct embryos leading to a tetragametic chimera. In addition, there are other entities, which are also referred to as chimera: parthenogenetic chimera and chimera resulting from fertilization of the second polar body. Furthermore, a particular type of chimera called 'androgenetic chimera' recently described in fetuses with placental mesenchymal dysplasia and in rare patients with Beckwith-Wiedemann syndrome is discussed. Strategies to study mechanisms leading to the production of chimera and mosaics are also proposed.
Collapse
Affiliation(s)
- V Malan
- Service de Cytogénétique, Hôpital Necker - Enfants Malades, APHP, Paris, René Descartes-Paris 5 University, Paris, France.
| | | | | |
Collapse
|
5
|
Esposito G, Godindagger I, Klein U, Yaspo ML, Cumano A, Rajewsky K. Disruption of the Rev3l-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality. Curr Biol 2000; 10:1221-4. [PMID: 11050393 DOI: 10.1016/s0960-9822(00)00726-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polymerase zeta (Pol zeta) is an error-prone DNA polymerase [1], which in yeast is involved in trans-lesion synthesis (TLS) and is responsible for most of the ultraviolet (UV) radiation-induced and spontaneous mutagenesis [2-4]. Pol zeta consists of three subunits: REV1, a deoxycytidyl-transferase [5]; REV7, of unclear function [6]; and REV3, the catalytic subunit. REV3 alone is sufficient to carry out TLS, but association with REV1 and REV7 enhances its activity [5, 7]. Experiments using human cells treated with UV radiation indicate also that mammalian Pol zeta is involved in TLS [7]. The peculiar mutagenic activity of Pol zeta [4,7,8] suggests a possible role in somatic hypermutation of immunoglobulin (Ig) genes [9]. Here, we report that, unlike in yeast where the REV3 gene is not essential for life [4], disruption of the mouse homologue (Rev3l) resulted in early embryonic lethality. In Rev3l(-/-) embryos, no haematopoietic cells other than erythrocytes could be identified in the yolk sac. Rev3l(-/-) haematopoietic precursors were unable to expand in vitro and no haematopoietic cells could be derived from the intraembryonic haematogenic compartment (splanchnopleura). Fibroblasts could not be derived from the Rev3l(-/-) embryos, and Rev3l(-/-) embryonic stem (ES) cells could not be obtained. This is the first evidence that an enzyme involved in TLS is critical for mammalian development.
Collapse
Affiliation(s)
- G Esposito
- Institute for Genetics, University of Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
We have used two different experimental approaches to demonstrate topological separation of parental genomes in preimplantation mouse embryos: mouse eggs fertilized with 5-bromodeoxyuridine (BrdU)-labeled sperm followed by detection of BrdU in early diploid embryos, and differential heterochromatin staining in mouse interspecific hybrid embryos. Separation of chromatin according to parental origin was preserved up to the four-cell embryo stage and then gradually disappeared. In F1 hybrid animals, genome separation was also observed in a proportion of somatic cells. Separate nuclear compartments during preimplantation development, when extreme chromatin remodelling occurs, and possibly in some differentiated cell types, may be associated with epigenetic reprogramming.
Collapse
Affiliation(s)
- Wolfgang Mayer
- Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Avril Smith
- Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Reinald Fundele
- Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| | - Thomas Haaf
- Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
| |
Collapse
|
7
|
Mayer W, Hemberger M, Frank HG, Grümmer R, Winterhager E, Kaufmann P, Fundele R. Expression of the imprinted genes MEST/Mest in human and murine placenta suggests a role in angiogenesis. Dev Dyn 2000; 217:1-10. [PMID: 10679925 DOI: 10.1002/(sici)1097-0177(200001)217:1<1::aid-dvdy1>3.0.co;2-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the mouse fetus, Mest is widely expressed in mesoderm derived tissues. In separate studies in mice and in humans, it has been shown to be maternally imprinted, that is, only the paternally inherited allele is active. Here, we show that starting with implantation, Mest is also expressed in maternal decidua of the mouse and in placenta of both humans and mice. Expression in murine decidua was restricted to endothelial cells. After Day 7, expression in the decidua gradually decreased. Mest-specific RT-PCR and restriction fragment length variant (RFLV) analysis of decidualized endometrium isolated from (M. musculus x M. spretus)F1 females showed that only the paternally derived Mest allele was activated in the decidual endothelium. In the mouse extraembryonic tissues, Mest transcripts were detected in derivatives of extraembryonic mesoderm only. Here, hemangioblast precursor cells and endothelial cells were positive. At all developmental stages of the mouse, trophoblast-derived cells were clearly devoid of Mest transcripts. In the human placenta MEST transcripts were also detected in hemangioblast precursor cells, however, MEST was also expressed in villous and invasive cytotrophoblast. In a human choriocarcinoma/trophoblastic tumour grown in a nude mouse, human MEST was expressed in the tumour cells, whereas murine Mest was expressed in endothelia of the murine capillaries. The expression pattern exhibited by both Mest and MEST in extraembryonic tissues during development and during formation of choriocarcinoma/trophoblast tumour suggests a functional role of the MEST proteins related to oncofetal angiogenesis. Dev Dyn 2000;217:1-10.
Collapse
Affiliation(s)
- W Mayer
- Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Storfer M. Myopia, intelligence, and the expanding human neocortex: behavioral influences and evolutionary implications. Int J Neurosci 1999; 98:153-276. [PMID: 10995133 DOI: 10.3109/00207459908997465] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first two parts of this monograph document that areas of the human neocortex heavily used to cope with a complex, language-driven society have been expanding rapidly and suggest strongly that this is linked with the huge upsurge that's occurred in myopia, and with the large gradual 20th-century increase in measured intelligence. Part III proposes mechanisms capable of supporting such rapid changes, without violating the basic precepts of Darwin's thinking. Part IV discusses the social and evolutionary ramifications of our apparent proclivity for rapid, progressive, adaptive neocortical change, and suggests areas for productive research.
Collapse
Affiliation(s)
- M Storfer
- The Foundation for Brain (Life) Research, Delray Beach, FL, USA
| |
Collapse
|
9
|
Affiliation(s)
- R Trivers
- Rutgers, New Brunswick, New Jersey 08903-0270, USA
| | | |
Collapse
|
10
|
Kato Y, Rideout WM, Hilton K, Barton SC, Tsunoda Y, Surani MA. Developmental potential of mouse primordial germ cells. Development 1999; 126:1823-32. [PMID: 10101117 DOI: 10.1242/dev.126.9.1823] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are distinctive and characteristic genomic modifications in primordial germ cells that distinguish the germ cell lineage from somatic cells. These modifications include, genome-wide demethylation, erasure of allele-specific methylation associated with imprinted genes, and the re-activation of the X chromosome. The allele-specific differential methylation is involved in regulating the monoallelic expression, and thus the gene dosage, of imprinted genes, which underlies functional differences between parental genomes. However, when the imprints are erased in the germ line, the parental genomes acquire an equivalent epigenetic and functional state. Therefore, one of the reasons why primordial germ cells are unique is because this is the only time in mammals when the distinction between parental genomes ceases to exist. To test how the potentially imprint-free primordial germ cell nuclei affect embryonic development, we transplanted them into enucleated oocytes. Here we show that the reconstituted oocyte developed to day 9.5 of gestation, consistently as a small embryo and a characteristic abnormal placenta. The embryo proper also did not progress much further even when the inner cell mass was ‘rescued’ from the abnormal placenta by transfer into a tetraploid host blastocyst. We found that development of the experimental conceptus was affected, at least in part, by a lack of gametic imprints, as judged by DNA methylation and expression analysis of several imprinted genes. The evidence suggests that gametic imprints are essential for normal development, and that they can neither be initiated nor erased in mature oocytes; these properties are unique to the developing germ line.
Collapse
Affiliation(s)
- Y Kato
- Wellcome CRC Institute of Cancer and Developmental Biology and Physiological Laboratory, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | | | | | | |
Collapse
|
11
|
Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprinting: implications for human disease. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:635-47. [PMID: 10079240 PMCID: PMC1866410 DOI: 10.1016/s0002-9440(10)65309-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/1999] [Indexed: 01/14/2023]
Abstract
Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression. This parent-of-origin dependent phenomenon is a notable exception to the laws of Mendelian genetics. Imprinted genes are intricately involved in fetal and behavioral development. Consequently, abnormal expression of these genes results in numerous human genetic disorders including carcinogenesis. This paper reviews genomic imprinting and its role in human disease. Additional information about imprinted genes can be found on the Genomic Imprinting Website at http://www.geneimprint.com.
Collapse
Affiliation(s)
- J G Falls
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina27710, USA
| | | | | | | |
Collapse
|
12
|
Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20:163-9. [PMID: 9771709 DOI: 10.1038/2464] [Citation(s) in RCA: 416] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mest (also known as Peg1), an imprinted gene expressed only from the paternal allele during development, was disrupted by gene targeting in embryonic stem (ES) cells. The targeted mutation is imprinted and reversibly silenced by passage through the female germ line. Paternal transmission activates the targeted allele and causes embryonic growth retardation associated with reduced postnatal survival rates in mutant progeny. More significantly, Mest-deficient females show abnormal maternal behaviour and impaired placentophagia, a distinctive mammalian behaviour. Our results provide evidence for the involvement of an imprinted gene in the control of adult behaviour.
Collapse
Affiliation(s)
- L Lefebvre
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
In some mammalian genes, paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Several-explanations have been proposed for the observed patterns of genomic imprinting, but the most successful explanation is the genetic conflict hypothesis--natural selection operating on the gene expression produces the parental origin-dependent gene expression--because the paternally derived allele tends to be less related to the siblings of the same mother than the maternal allele and hence the paternal allele should evolve to be more aggressive in obtaining maternal resources. The successes and failures of this argument have been examined in explaining the observed patterns of genomic imprinting in mammals. After a brief summary of the observations with some examples, a quantitative genetic model describing the evolution of the cis-regulating element of a gene affecting the maternal resource acquisition was presented. The model supports the verbal argument that the growth enhancer should evolve to show imprinting with the paternal allele expressed and the maternal allele inactive, whereas a growth suppressor gene tends to have an inactive paternal allele and an active maternal allele. There are four major problems of the genetic conflict hypothesis. (1) Some genes affect embryonic growth but are not imprinted (e.g., Igf1), which can be explained by considering recessive, deleterious mutations on the coding regions, (2) A gene exists that shows the pattern that is a perfect reversal (Mash2), which is needed for placental growth, and yet has an active maternal allele and an inactive paternal allele. This can be explained if the overproduction of this gene causes dose-sensitive abortion to occur in early gestation. (3) Paternal disomies are sometimes smaller than normal embryos. This is a likely outcome of evolution if imprinted genes control the allocation between placenta and embryo by modifying the cell developmental fate. (4) Genes on X chromosomes do not follow the predictions of the genetic conflict hypothesis. For genes on X chromosomes, two additional forces of natural selection (sex differentiation and dosage compensation) cause genomic imprinting, possibly in the opposite direction. Available evidence suggests that these processes are stronger than the natural selection caused by female multiple mating. Finally, the same formalism of evolution can handle an alternative nonconflict hypothesis: genomic imprinting might have evolved because it reduces the risk of the spontaneous development of parthenogenetic embryo, causing a serious threat to the life of the mother (ovarian time bomb hypothesis). This hypothesis can also explain major patterns of genomic imprinting. In conclusion, the genetic conflict hypothesis is very successful in explaining the observed patterns of imprinting for autosomal genes and probably is the most likely evolutionary explanation for them. However, for genes on X chromosomes, other processes of natural selection are more important. Considering that a nonconflict hypothesis can also explain the patterns in principle, we need a quantitative estimate of various parameters, such as the rate of dose-dependent abortion, the degree of female promiscuity, and the rate of spontaneous development of the parthenogenetic embryo, in order to make judgments on the relative importance of different forces of natural selection to form genomic imprinting.
Collapse
Affiliation(s)
- Y Iwasa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Abstract
Genomic imprinting in mammals results in the unequal expression of the two parental alleles of specific genes. The existence of imprinting in the mouse emerged from nuclear transplantation studies and from the abnormal phenotypes associated with uniparental inheritance of particular chromosome segments. Over the past 5 years, 20 or so imprinted genes have been identified. This has emphasized the important roles played by some imprinted genes in development, permitted a description of the epigenetic properties associated with imprinting, and provided the first insights into the regulation of imprinting. In this article, we discuss the generation of experimental material in which imprinting effects can be analyzed, review the properties of imprinted genes, and discuss how to examine them using state-of-the-art techniques. Finally, we consider the means by which new imprinted genes can be identified.
Collapse
Affiliation(s)
- G Kelsey
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Oudejans C, Westerman B, van Elk E, Könst A, Mulders M, Alders M, van Vugt J, van Wijk I, Mannens M. Growth regulation of extraembryonic tissues. The effect of genomic imprinting on development of the placenta. Eur J Obstet Gynecol Reprod Biol 1997; 75:29-32. [PMID: 9447343 DOI: 10.1016/s0301-2115(97)00195-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Oudejans
- Department of Clinical Chemistry, University Hospital Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Narasimha M, Barton SC, Surani MA. The role of the paternal genome in the development of the mouse germ line. Curr Biol 1997; 7:881-4. [PMID: 9382800 DOI: 10.1016/s0960-9822(06)00377-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mouse germ line originates at 6.5 days post coitum (dpc) in the proximal epiblast, apparently in response to signals from the primitive endoderm or the extraembryonic mesoderm [1,2]. Some studies have implied a significant role for imprinted genes in germ-line development [3,4]. These genes, whose expression is determined by their parental origin [5], serve complementary functions during mammalian development [6-9] and exert striking reciprocal phenotypic effects on androgenetic (AG: two paternal genomes) and parthenogenetic (GG/PG: two maternal genomes) cells [3,4,10]. This may include a fundamental effect on germ-cell development because PG but not AG cells can differentiate into viable gametes [3,4,11], suggesting that the maternal genome is obligatory for development of the mammalian germ line. Here we show unequivocally that AG cells can differentiate into germ cells, and that in chimeras with normal cells they produce functional sperm. These studies establish that the paternal and maternal genomes can individually provide both the signal and the response required for the specification of germ cells in mammals.
Collapse
Affiliation(s)
- M Narasimha
- Wellcome/CRC Institute for Cancer and Developmental Biology, Cambridge, UK
| | | | | |
Collapse
|
17
|
Kikyo N, Williamson CM, John RM, Barton SC, Beechey CV, Ball ST, Cattanach BM, Surani MA, Peters J. Genetic and functional analysis of neuronatin in mice with maternal or paternal duplication of distal Chr 2. Dev Biol 1997; 190:66-77. [PMID: 9331332 DOI: 10.1006/dbio.1997.8681] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functional differences between parental genomes are due to differential expression of parental alleles of imprinted genes. Neuronatin (Nnat) is a recently identified paternally expressed imprinted gene that is initially expressed in the rhombomeres and pituitary gland and later more widely in the central and peripheral nervous system mainly in postmitotic and differentiating neuroepithelial cells. Nnat maps to distal chromosome (Chr) 2, which contains an imprinting region that causes morphological abnormalities and early neonatal lethality. More detailed mapping analysis of Nnat showed that it is located between the T26H and T2Wa translocation breakpoints which is, surprisingly, proximal to the reported imprinting region between the T2Wa and T28H translocation breakpoints, suggesting that there may be two distinct imprinting regions on distal chromosome 2. To investigate the potential role of Nnat, we compared normal embryos with those which were PatDp.dist2.T26H (paternal duplication/maternal deficiency of chromosome 2 distal to the translocation breakpoint T26H) and MatDp.dist2.T26H. Expression of Nnat was detected in the PatDp.dist2.T26H embryos, where both copies of Nnat are paternally inherited, and normal embryos but no expression was detected in the MatDp.dist2.T26H embryos with the two maternally inherited copies. The differential expression of Nnat was supported by DNA methylation analysis with the paternally inherited alleles being unmethylated and the maternal alleles fully methylated. Although experimental embryos appeared grossly similar phenotypically in the structures where expression of Nnat was detected, differences in folding of the cerebellum were observed in neonates, and other more subtle developmental or behavioral effects due to gain or loss of Nnat cannot be ruled out.
Collapse
Affiliation(s)
- N Kikyo
- University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
DNA methylation is crucial for mammalian development because embryos that cannot maintain normal methylation levels die after gastrulation. I propose that DNA methylation is only important for the somatic lineages, but has no role in embryonic lineages including the germ line. Among vertebrates, genomic imprinting is found only in mammals, and numerous hypotheses have ascribed an essential function to imprinting because of the uniquely mammalian developmental and physiological requirements. However, our understanding of molecular details of the imprinting process, as well as evolutionary considerations, is rather consistent with imprinting having no intrinsic role in mammalian development.
Collapse
Affiliation(s)
- R Jaenisch
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
19
|
Kobayashi S, Kohda T, Miyoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, Kaneko-Ishino T, Ishino F. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Mol Genet 1997; 6:781-6. [PMID: 9158153 DOI: 10.1093/hmg/6.5.781] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mouse Peg1/Mest gene is an imprinted gene that is expressed particularly in mesodermal tissues in early embryonic stages. It was the most abundant imprinted gene among eight paternally expressed genes (Peg 1-8) isolated by a subtraction-hybridization method from a mouse embryonal cDNA library. It has been mapped to proximal mouse chromosome 6, maternal duplication of which causes early embryonic lethality. The human chromosomal region that shares syntenic homology with this is 7q21-qter, and human maternal uniparental disomy 7 (UPD 7) causes apparent growth deficiency and slight morphological abnormalities. Therefore, at least one paternally expressed imprinted gene seems to be present in this region. In this report, we demonstrate that human PEG1/MEST is an imprinted gene expressed from a paternal allele and located on chromosome 7q31-34, near D7S649. It is the first imprinted gene mapped to human chromosome 7 and a candidate for a gene responsible for primordial growth retardation including Silver-Russell syndrome (SRS).
Collapse
Affiliation(s)
- S Kobayashi
- Gene Research Center, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- L H Looijenga
- Dr. Daniel den Hoed Cancer Center, University Hospital Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
21
|
Uranga JA, Aréchaga J. Cell proliferation is reduced in parthenogenetic mouse embryos at the blastocyst stage: a quantitative study. Anat Rec (Hoboken) 1997; 247:243-7. [PMID: 9026003 DOI: 10.1002/(sici)1097-0185(199702)247:2<243::aid-ar10>3.0.co;2-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Parthenogenetic and androgenetic embryos fail to develop to term, possibly because of genomic imprinting, an epigenetic alteration of certain genes, depending on the parent of origin. The effect of this phenomenon has been studied mainly in mid-gestation embryos, without morphological abnormalities detected during the preim-plantation period. Nevertheless, parthenogenetic mouse embryos never develop to the blastocyst stage in the same numbers as do fertilized ones, and up to 50% fail to implant, suggesting that genomic imprinting may be responsible for this lack of viability. METHODS We have made a quantitative and morphometric analysis of the cell proliferation capacity at the end of the preimplantation period in parthenogenetic mice to study if such parameter is affected by the monoparental constitution of the embryos. RESULTS AND CONCLUSIONS We have found that, apart from the different morphology and cell number induced by culture conditions, parthenogenetic mouse blastocysts have a significantly smaller cell number than do fertilized control embryos. Our interpretation of these results is that the monoparental constitution of these embryos may be responsible for the lack of some factor required to sustain cell proliferation after the morula stage.
Collapse
Affiliation(s)
- J A Uranga
- Department of Cell Biology, University of the Basque Country Medical School, Leioa (Vizcaya), Spain
| | | |
Collapse
|
22
|
Abstract
The past few years have seen a wider acceptance of a role for DNA methylation in cancer. This can be attributed to three developments. First, the documentation of the over-representation of mutations at CpG dinucleotides has convincingly implicated DNA methylation in the generation of oncogenic point mutations. The second important advance has been the demonstration of epigenetic silencing of tumor suppressor genes by DNA methylation. The third development has been the utilization of experimental methods to manipulate DNA methylation levels. These studies demonstrate that DNA methylation changes in cancer cells are not mere by-products of malignant transformation, but can play an instrumental role in the cancer process. It seems clear that DNA methylation plays a variety of roles in different cancer types and probably at different stages of oncogenesis. DNA methylation is intricately involved in a wide diversity of cellular processes. Likewise, it appears to exert its influence on the cancer process through a diverse array of mechanisms. It is our task not only to identify these mechanisms, but to determine their relative importance for each stage and type of cancer. Our hope then will be to translate that knowledge into clinical applications.
Collapse
Affiliation(s)
- P W Laird
- Department of Surgery, University of Southern California, School of Medicine/Norris Comprehensive Cancer Center, Los Angeles 90033, USA.
| | | |
Collapse
|
23
|
Keverne EB, Martel FL, Nevison CM. Primate brain evolution: genetic and functional considerations. Proc Biol Sci 1996; 263:689-96. [PMID: 8763791 DOI: 10.1098/rspb.1996.0103] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Functionally distinct regions of the brain to which maternal and paternal genomes contribute differentially (through genomic imprinting) have developed differentially over phylogenetic time. While certain regions of the primate forebrain (neocortex, striatum) have expanded relative to the rest of the brain, other forebrain regions have contracted in size (hypothalamus, septum). Areas of relative expansion are those to which the maternal genome makes a substantial developmental contribution. This may be significant with respect to the importance of primate forebrain expansion in the development of complex behavioural strategies and the way in which these are deployed, especially by the matriline. In many primate societies the maintenance of social cohesion and group continuity over successive generations is dependent on the matriline, with high ranking females producing high ranking daughters that stay within the group. Regions of relative contraction are those to which the paternal genome makes a differential contribution and these are target areas for gonadal hormones, which is congruent with the diminished role for gonadal hormones in the emancipation of primate reproductive behaviour.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, U.K
| | | | | |
Collapse
|
24
|
Tucker KL, Beard C, Dausmann J, Jackson-Grusby L, Laird PW, Lei H, Li E, Jaenisch R. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev 1996; 10:1008-20. [PMID: 8608936 DOI: 10.1101/gad.10.8.1008] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Embryonic stem (ES) cells homozygous for a disruption of the DNA (cytosine-5)-methyltransferase gene (Dnmt) proliferate normally with their DNA highly demethylated but die upon differentiation. Expression of the wild-type Dnmt cDNA in mutant male ES cells caused an increase in methylation of bulk DNA and of the Xist and Igf2 genes to normal levels, but did not restore the methylation of the imprinted genes H19 and Igf2r. These cells differentiated normally in vitro and contributed substantially to adult chimeras. While the Xist gene was not expressed in the remethylated male ES cells, no restoration of the normal expression profile was seen for H19, Igf2r, or Igf2. This indicates that ES cells can faithfully reestablish normal methylation and expression patterns of nonimprinted genes but lack the ability to restore those of imprinted genes. Full restoration of monoallelic methylation and expression was imposed on H19, Igf2, and Igf2r upon germ-line transmission. These results are consistent with the presence of distinct de novo DNA methyltransferase activities during oogenesis and spermatogenesis, which specifically recognize imprinted genes but are absent in the postimplantation embryo and in ES cells.
Collapse
Affiliation(s)
- K L Tucker
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA. Genomic imprinting and the differential roles of parental genomes in brain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:91-100. [PMID: 8861727 DOI: 10.1016/0165-3806(95)00209-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Certain genes are expressed either from the maternal or the paternal genome as a result of genomic imprinting, a process that confers functional differences on parental genomes during mammalian development. In this study we focus on the cumulative effects of imprinted genes on brain development by examining the fate of androgenetic (Ag: duplicated paternal genome) and parthenogenetic/gynogenetic (Pg/Gg: duplicated maternal genome) cells in chimeric embryos. Striking cell autonomous differences in the phenotypic properties of the uniparental cells were observed. Ag cells contributed substantially to the hypothalamic structures and not the cortex. By contrast, Pg/Gg cells contributed substantially to the cortex, striatum and hippocampus but not to the hypothalamic structures. Furthermore growth of the brain was enhanced by Pg/Gg and retarded by Ag cells. We propose that genomic imprinting may be responsible for a change in strategy controlling brain development in mammals. In particular, genomic imprinting may have facilitated a rapid non-linear expansion of the brain, especially the cortex, during development over evolutionary time.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, UK
| | | | | | | | | |
Collapse
|
26
|
Allen ND, Logan K, Lally G, Drage DJ, Norris ML, Keverne EB. Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci U S A 1995; 92:10782-6. [PMID: 7479883 PMCID: PMC40696 DOI: 10.1073/pnas.92.23.10782] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A systematic analysis of parthenogenetic (PG) cell fate within the central nervous system (CNS) was made throughout fetal development and neonatal and adult life. Chimeras were made between PG embryos carrying a ubiquitously expressed lacZ transgene and normal fertilized embryos. After detailed histological analysis, we find that the developmental potential of PG cells is spatially restricted to certain parts of the brain. PG cells are prevalent in telencephalic structures and are largely excluded from diencephalic structures, especially the hypothalamus. These spatial restrictions are established early in development. Behavioral studies with chimeras identified an increase in male aggression when the proportion of PG cells in the brain was high. These studies demonstrate that imprinted genes play key roles in development of the CNS and may be involved in behavior.
Collapse
Affiliation(s)
- N D Allen
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, Viville S, Barton SC, Ishino F, Surani MA. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 1995; 11:52-9. [PMID: 7550314 DOI: 10.1038/ng0995-52] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.
Collapse
Affiliation(s)
- T Kaneko-Ishino
- Gene Research Center, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Distribution of androgenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:484-493. [DOI: 10.1007/bf00360856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1995] [Accepted: 04/26/1995] [Indexed: 10/26/2022]
|
30
|
Fundele R, Herzfeld A, Li LL, Barton SC, Surani MA. Proliferation and differentiation of androgenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:494-501. [DOI: 10.1007/bf00360857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1995] [Accepted: 05/11/1995] [Indexed: 10/26/2022]
|
31
|
Tissue specific loss of proliferative capacity of parthenogenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:436-443. [PMID: 28305863 DOI: 10.1007/bf00360851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1994] [Accepted: 01/05/1995] [Indexed: 10/26/2022]
Abstract
Parthenogenetic cells are lost from fetal chimeras. This may be due to decreased proliferative potential. To address this question, we have made use of combined cell lineage and cell proliferation analysis. Thus, the incorporation of bromodeoxyuridine in S-phase was determined for both parthenogenetic and normal cells in several tissues of fetal day 13 and 17 chimeras. A pronounced reduction of bromodesoxyuridine incorporation by parthenogenetic cells at both developmental stages was only observed in cartilage. In brain, skeletal muscle, heart and intestinal epithelium, this reduction was either less pronounced or observed only at one of the developmental stages analysed. No difference between parthenogenetic and normal cells was observed in epidermis and ganglia. Our results show that a loss of proliferative potential of parthenogenetic cells during fetal development contributes to their rapid elimination in some tissues. The analysis of the fate of parthenogenetic cells in skeletal muscle and cartilage development demonstrated different selection mechanisms in these tissues. In skeletal muscle, parthenogenetic cells were largely excluded from the myogenic lineage proper by early post-midgestation. In primary hyaline cartilage, parthenogenetic cells persisted into adulthood but were lost from cartilages that undergo ossification during late fetal development.
Collapse
|
32
|
Monk M. Epigenetic programming of differential gene expression in development and evolution. DEVELOPMENTAL GENETICS 1995; 17:188-97. [PMID: 8565325 DOI: 10.1002/dvg.1020170303] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review covers data on changing patterns of DNA methylation and the regulation of gene expression in mouse embryonic development. Global demethylation occurs from the eight-cell stage to the blastocyst stage in preimplantation embryos, and global de novo methylation begins at implantation. We have used X-chromosome inactivation in female embryos as a model system to study specific CpG sites in the X-linked Pgk-1 and G6pd housekeeping genes and in the imprinted regulatory Xist gene to elucidate the role of methylation in the initiation and maintenance of differential gene activity. Methylation of the X-linked housekeeping genes occurs very close in time to their inactivation, thus raising the question as to whether methylation could be causal to inactivation, as well as being involved in its maintenance. A methylation difference between sperm and eggs in the promoter region of the Xist gene, located at the X-chromosome inactivation centre, is correlated with imprinted preferential inactivation of the paternal X chromosome in extra-embryonic tissues. Based on our data, a picture of the inheritance of methylation imprints and speculation on the significance of the Xist imprint in development is presented. On a more general level, an hypothesis of evolution by "adaptive epigenetic/genetic inheritance" is considered. This proposes modification of germ line DNA in response to a change in environment and mutation at the site of modification (e.g., of methylated cytosine to thymine). Epigenetic inheritance could function to shift patterns of gene expression to buffer the evolving system against changes in environment. If the altered patterns of gene activity and inactivity persist, the modifications may become "fixed" as mutations; alternatively, previously silenced gene networks might be recruited into function, thus appearing as if they are "acquired characteristics." An extension of this hypothesis is "foreign gene acquisition and sorting" (selection or silencing of gene function according to use). "Kidnapping" and sorting of foreign genes in this way could explain the observation that increased complexity in evolution is associated with more "junk" DNA. Adaptive epigenetic/genetic inheritance challenges the "central dogma" that information is unidirectional from the DNA to protein and the idea that Darwinian random mutation and selection are the sole mechanisms of evolution.
Collapse
Affiliation(s)
- M Monk
- Molecular Embryology Unit, Institute of Child Health, London, United Kingdom
| |
Collapse
|
33
|
Affiliation(s)
- R Holliday
- CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, Australia
| |
Collapse
|
34
|
Bestor TH, Chandler VL, Feinberg AP. Epigenetic effects in eukaryotic gene expression. DEVELOPMENTAL GENETICS 1994; 15:458-62. [PMID: 7834904 DOI: 10.1002/dvg.1020150603] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the broadest terms, epigenetic phenomena in eukaryotes depend on the interaction of alleles or repeated sequences or on the mitotic inheritance of chromatin states or methylation patterns. One of the most exciting aspects of the study of epigenetic phenomena is the insight that can be gained into the structure and assembly of higher-order chromatin structures, an important subject that has proved refractory to current biochemical methodologies. Rapid progress in the study of gene inactivation in fungi, plants, and invertebrates will provide new hypotheses to be tested in mammals.
Collapse
Affiliation(s)
- T H Bestor
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|