1
|
Davis J, Maranto M, Kennedy J, Wang X, Azhar M, Jain A, Evans CE. Transforming Growth Factors in Venous Thrombus Formation and Resolution. Arterioscler Thromb Vasc Biol 2025; 45:643-653. [PMID: 40109257 PMCID: PMC12018122 DOI: 10.1161/atvbaha.124.322395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Deep vein thrombosis (DVT) and pulmonary embolism are vascular occlusive disorders categorized under the term venous thromboembolism. Venous thromboembolism affects ≈900 000 people per year in the United States alone. Understanding of the multifaceted process of DVT has improved in recent years, and current DVT treatments reduce thrombus propagation, but they also increase bleeding risk and fail to accelerate natural venous thrombus resolution. Multiple inflammatory cytokines regulate the development and subsequent resolution of DVT. One family of cytokines involved in DVT and venous thrombus resolution is the TGF-β (transforming growth factor-β) family. A comprehensive understanding of the control of venous thrombus formation and resolution by the TGF-β family could lead to the development of novel treatments for DVT that target ≥1 of the TGF-β isoforms. The aim of this review is to describe studies of the roles of the TGF-β isoforms in venous thrombus formation and resolution and to highlight opportunities for future research. TGF-β isoforms include TGF-β1, TGF-β2, and TGF-β3. TGF-β1 has a well-characterized role in the positive regulation of venous thrombus formation and the negative regulation of venous thrombus resolution. Further research is necessary, however, to understand the potential roles of TGF-β2 and TGF-β3 in venous thrombus formation and resolution. Given that TGF-β1 expression increases during venous thrombosis and that inhibition or knockdown of TGF-β1 reduces thrombus burden, TGF-β1 represents a potential diagnostic marker for DVT and a putative target for therapies that aim to prevent or treat DVT.
Collapse
Affiliation(s)
- Jonathan Davis
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Molly Maranto
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jonathan Kennedy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Colin E. Evans
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, USA
- Institute on Cardiovascular Disease Research, University of South Carolina, Columbia, USA
| |
Collapse
|
2
|
Sachan N, Phoon CKL, Zilberberg L, Kugler MC, Ene T, Mintz SB, Murtada SI, Weiss D, Fishman GI, Humphrey JD, Rifkin DB. TGFβ-2 haploinsufficiency causes early death in mice with Marfan syndrome. Matrix Biol 2023; 121:41-55. [PMID: 37217119 PMCID: PMC10527763 DOI: 10.1016/j.matbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
To assess the contribution of individual TGF-β isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-β1, 2, or 3 heterozygous null mutation. The loss of TGF-β2, and only TGF-β2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-β2 in the postnatal development of the heart, aorta and lungs.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| | - Colin K L Phoon
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Lior Zilberberg
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Matthias C Kugler
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Taylor Ene
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Shana B Mintz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Glenn I Fishman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Daniel B Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
3
|
Liu Z, Hu X, Liang Y, Yu J, Li H, Shokhirev MN, Zheng Y. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat Immunol 2022; 23:1086-1097. [PMID: 35739197 PMCID: PMC9283297 DOI: 10.1038/s41590-022-01244-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Maintenance of tissue homeostasis is dependent on the communication between stem cells and supporting cells in the same niche. Regulatory T cells (Treg cells) are emerging as a critical component of the stem-cell niche for supporting their differentiation. How Treg cells sense dynamic signals in this microenvironment and communicate with stem cells is mostly unknown. In the present study, by using hair follicles (HFs) to study Treg cell-stem cell crosstalk, we show an unrecognized function of the steroid hormone glucocorticoid in instructing skin-resident Treg cells to facilitate HF stem-cell (HFSC) activation and HF regeneration. Ablation of the glucocorticoid receptor (GR) in Treg cells blocks hair regeneration without affecting immune homeostasis. Mechanistically, GR and Foxp3 cooperate in Treg cells to induce transforming growth factor β3 (TGF-β3), which activates Smad2/3 in HFSCs and facilitates HFSC proliferation. The present study identifies crosstalk between Treg cells and HFSCs mediated by the GR-TGF-β3 axis, highlighting a possible means of manipulating Treg cells to support tissue regeneration.
Collapse
Affiliation(s)
- Zhi Liu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xianting Hu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huabin Li
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
4
|
Abdulhasan M, Ruden X, Marben T, Harris S, Ruden DM, Awonuga AO, Puscheck EE, Rappolee DA. Using Live Imaging and Fluorescence Ubiquitinated Cell Cycle Indicator Embryonic Stem Cells to Distinguish G1 Cell Cycle Delays for General Stressors like Perfluoro-Octanoic Acid and Hyperosmotic Sorbitol or G2 Cell Cycle Delay for Mutagenic Stressors like Benzo(a)pyrene. Stem Cells Dev 2022; 31:296-310. [PMID: 35678645 PMCID: PMC9232235 DOI: 10.1089/scd.2021.0330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase. Standard media change here is a mild stress that delays G1-phase and media change increases green 2.5- to 5-fold. Since stress is mild, media change rapidly increases green cell number, but higher stresses of environmental toxicants and positive control hyperosmotic stress suppress increased green after media change. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) previously suppressed progression of nongreen to green cell cycle progression. Here, bisphenol A (BPA), cortisol, and positive control hyperosmotic sorbitol also suppress green fluorescence, but benzo(a)pyrene (BaP) at high doses (10 μM) increases green fluorescence throughout the 74-h exposure. Since any stress can affect many cell cycle phases, messenger RNA (mRNA) markers are best interpreted in ratios as dose-dependent mutagens increase in G2/G1 and nonmutagens increase G1/G2. After 74-h exposure, RNAseq detects G1 and G2 markers and increasing BaP doses increase G2/G1 ratios but increasing hyperosmotic sorbitol and PFOA doses increase G1/G2 marker ratios. BaP causes rapid green increase in FOAEL at 2 h of stimulus, whereas retinoic acid caused significant green fluorescence increases only late in culture. Using a live imager to establish FOAEL and G2 delay with FUCCI ESC is a new method to allow commercial and basic developmental biologists to detect drugs and environmental stimuli that are mutagenic. Furthermore, it can be used to test compounds that prevent mutations. In longitudinal studies, uniquely provided by this viable reporter and live imager protocol, follow-up can be done to test whether the preventative compound itself causes harm.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
| | - Ximena Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Teya Marben
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan, USA
| | - Sean Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas M. Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Awoniyi O. Awonuga
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elizabeth E. Puscheck
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
| | - Daniel A. Rappolee
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, University of Windsor, Windsor, Canada
| |
Collapse
|
5
|
Ho SR, Lee YC, Ittmann MM, Lin FT, Chan KS, Lin WC. RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Lett 2021; 520:344-360. [PMID: 34400221 PMCID: PMC9420248 DOI: 10.1016/j.canlet.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
RNF144A is a DNA damage-induced E3 ubiquitin ligase that targets proteins involved in genome instability for degradation, e.g., DNA-PKcs and BMI1. RNF144A is frequently mutated or epigenetically silenced in cancer, providing the rationale to evaluate RNF144A loss of function in tumorigenesis. Here we report that RNF144A-deficient mice are more prone to the development of bladder tumors upon carcinogen exposure. In addition to DNA-PKcs and BMI1, we identify the immune checkpoint protein PD-L1 as a novel degradation target of RNF144A, since these proteins are expressed at higher levels in Rnf144a KO tumors. RNF144A interacts with PD-L1 in the plasma membrane and intracellular vesicles and promotes poly-ubiquitination and degradation of PD-L1. Therefore, Rnf144a KO stabilizes PD-L1 and leads to a reduction of tumor-infiltrating CD8+ T cell populations in the BBN-induced bladder tumors. The bladder tumors developed in WT and Rnf144a KO mice primarily express CK5 and CK14, markers of basal cancer subtype, as expected in BBN-induced bladder tumors. Intriguingly, the Rnf144a KO tumors also express GATA3, a marker for the luminal subtype, suggesting that RNF144A loss of function promotes features of cellular differentiation. Such differentiation features in Rnf144a KO tumors likely result from a decrease of EGFR expression, consistent with the reported role of RNF144A in maintaining EGFR expression. In summary, for the first time our study demonstrates the in vivo tumor suppressor activity of RNF144A upon carcinogenic insult. Loss of RNF144A promotes the expression of DNA-PKcs, BMI1 and PD-L1, likely contributing to the carcinogen-induced bladder tumorigenesis.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keith Syson Chan
- Department of Pathology and Laboratory Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Dumbrava MG, Lacanlale JL, Rowan CJ, Rosenblum ND. Transforming growth factor beta signaling functions during mammalian kidney development. Pediatr Nephrol 2021; 36:1663-1672. [PMID: 32880018 DOI: 10.1007/s00467-020-04739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Aberrant transforming growth factor beta (TGFβ) signaling during embryogenesis is implicated in severe congenital abnormalities, including kidney malformations. However, the molecular mechanisms that underlie congenital kidney malformations related to TGFβ signaling remain poorly understood. Here, we review current understanding of the lineage-specific roles of TGFβ signaling during kidney development and how dysregulation of TGFβ signaling contributes to the pathogenesis of kidney malformation.
Collapse
Affiliation(s)
- Mihai G Dumbrava
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Jon L Lacanlale
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Christopher J Rowan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
| |
Collapse
|
7
|
Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020019. [PMID: 32456345 PMCID: PMC7344558 DOI: 10.3390/jcdd7020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3-/- fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3-/- fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3-/- fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the 'paradoxically' increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways.
Collapse
|
8
|
Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MA, Prado VF, Rothstein J, Rubenstein JL, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM. Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron 2020; 106:37-65.e5. [PMID: 32027825 PMCID: PMC7377387 DOI: 10.1016/j.neuron.2020.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.
Collapse
Affiliation(s)
- Lin Luo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Emilie Dumontier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | - Naosuke Hoshina
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Hsiang Huang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Mary Anne Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Itoh-Maruoka
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Pereira
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Philips
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer L. Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jeff A. Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02139, USA
| | | | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joke Wortel
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wenjia You
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA,Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Constance L. Cepko
- Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cagla Eroglu
- Department of Cell Biology, Department of Neurobiology, and Duke Institute for Brain Sciences, Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy N. Kay
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marco A.M. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vania F. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jeffrey Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
9
|
Chleilat E, Mallmann R, Spanagel R, Klugbauer N, Krieglstein K, Roussa E. Spatiotemporal Role of Transforming Growth Factor Beta 2 in Developing and Mature Mouse Hindbrain Serotonergic Neurons. Front Cell Neurosci 2019; 13:427. [PMID: 31619968 PMCID: PMC6763588 DOI: 10.3389/fncel.2019.00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor betas are integral molecular components of the signalling cascades defining development and survival of several neuronal groups. Among TGF-β ligands, TGF-β2 has been considered as relatively more important during development. We have generated a conditional knockout mouse of the Tgf-β2 gene with knock-in of an EGFP reporter and subsequently a mouse line with cell-type specific deletion of TGF-β2 ligand from Krox20 expressing cells (i.e., in cells from rhombomeres r3 and r5). We performed a phenotypic analysis of the hindbrain serotonergic system during development and in adulthood, determined the neurochemical profile in hindbrain and forebrain, and assessed behavioural performance of wild type and mutant mice. Mutant mice revealed significantly decreased number of caudal 5-HT neurons at embryonic day (E) 14, and impaired development of caudal dorsal raphe, median raphe, raphe magnus, and raphe obscurus neurons at E18, a phenotype that was largely restored and even overshot in dorsal raphe of mutant adult mice. Serotonin levels were decreased in hindbrain but significantly increased in cortex of adult mutant mice, though without any behavioural consequences. These results highlight differential and temporal dependency of developing and adult neurons on TGF-β2. The results also indicate TGF-β2 being directly or indirectly potent to modulate neurotransmitter synthesis and metabolism. The novel floxed TGF-β2 mouse model is a suitable tool for analysing the in vivo functions of TGF-β2 during development and in adulthood in many organs.
Collapse
Affiliation(s)
- Enaam Chleilat
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Robert Mallmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health (ZI), Heidelberg University, Mannheim, Germany
| | - Norbert Klugbauer
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Takahashi H, Alves CRR, Stanford KI, Middelbeek RJW, Pasquale Nigro, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K, Mul JD, Lee MY, Balan E, Pan H, Dreyfuss JM, Hirshman MF, Azhar M, Hannukainen JC, Nuutila P, Kalliokoski KK, Nielsen S, Pedersen BK, Kahn CR, Tseng YH, Goodyear LJ. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab 2019; 1:291-303. [PMID: 31032475 PMCID: PMC6481955 DOI: 10.1038/s42255-018-0030-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-β2 (TGF-β2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-β2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-β2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2−/− mice, into sedentary mice improves glucose tolerance. TGF-β2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-β2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-β2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-β2-signaling cycle.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christiano R R Alves
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin I Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca E Ryan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruidan Xue
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Masaji Sakaguchi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawai So
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joram D Mul
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Min-Young Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Estelle Balan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohamad Azhar
- Department of Cell Biology & Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, Mehta SG, Hague J, Verhagen J, van de Laar I, Wessels M, Detisch Y, van Haelst M, Baas A, Lichtenbelt K, Braun K, van der Linde D, Roos-Hesselink J, McGillivray G, Meester J, Maystadt I, Coucke P, El-Khoury E, Parkash S, Diness B, Risom L, Scurr I, Hilhorst-Hofstee Y, Morisaki T, Richer J, Désir J, Kempers M, Rideout AL, Horne G, Bennett C, Rahikkala E, Vandeweyer G, Alaerts M, Verstraeten A, Dietz H, Van Laer L, Loeys B. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat 2018; 39:621-634. [PMID: 29392890 PMCID: PMC5947146 DOI: 10.1002/humu.23407] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Abstract
The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor‐β (TGF‐β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF‐β signaling. More recently, TGF‐β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF‐β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF‐β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.
Collapse
Affiliation(s)
- Dorien Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Giada Tortora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.,Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan.,Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lindsay
- Thoracic Aortic Center, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Liang
- Cardiovascular Medicine, Stanford University Medical Center, Stanford, California
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Judith Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yvonne Detisch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Annette Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klaske Lichtenbelt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees Braun
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Josephina Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Elie El-Khoury
- Department of Diagnostic Cardiology, Clinique St Luc, Bouge (Namur), Belgium
| | - Sandhya Parkash
- Department of Pediatrics, Maritime Medical Genetics Service, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Birgitte Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingrid Scurr
- Department of Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | | | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie Désir
- Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Gabrielle Horne
- Department of Medicine (Cardiology) and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Bennett
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elisa Rahikkala
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hal Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
13
|
Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, Gallo E, Kruithof BPT, Venselaar H, Myers LA, Laga S, Doyle AJ, Oswald G, van Cappellen GWA, Yamanaka I, van der Helm RM, Beverloo B, de Klein A, Pardo L, Lammens M, Evers C, Devriendt K, Dumoulein M, Timmermans J, Bruggenwirth HT, Verheijen F, Rodrigus I, Baynam G, Kempers M, Saenen J, Van Craenenbroeck EM, Minatoya K, Matsukawa R, Tsukube T, Kubo N, Hofstra R, Goumans MJ, Bekkers JA, Roos-Hesselink JW, van de Laar IMBH, Dietz HC, Van Laer L, Morisaki T, Wessels MW, Loeys BL. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 2015; 65:1324-1336. [PMID: 25835445 PMCID: PMC4380321 DOI: 10.1016/j.jacc.2015.01.040] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.
Collapse
Affiliation(s)
- Aida M Bertoli-Avella
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Elisabeth Gillis
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hiroko Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Beek
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elena Gallo
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanka Venselaar
- Nijmegen Center for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics (CMBI), Nijmegen, the Netherlands
| | - Loretha A Myers
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Laga
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Alexander J Doyle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gretchen Oswald
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland
| | - Gert W A van Cappellen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Itaru Yamanaka
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert M van der Helm
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Berna Beverloo
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Luba Pardo
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Christina Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | | | - Janneke Timmermans
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frans Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inez Rodrigus
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Gareth Baynam
- Genetic Services of Western Australia, Subiaco, Western Australia, Australia; School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | | | - Kenji Minatoya
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Ritsu Matsukawa
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Takuro Tsukube
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Urakawa Red Cross Hospital, Urakawa, Hokkaido, Japan
| | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marie Jose Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos A Bekkers
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Takayuki Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development. Cell Tissue Res 2015; 361:711-22. [DOI: 10.1007/s00441-015-2150-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
|
15
|
Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Dev Biol 2014; 398:231-41. [PMID: 25523394 DOI: 10.1016/j.ydbio.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
Transforming growth factor-beta3 (TGF-β3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-β3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-β activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-β signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-β signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-β signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Yingling Hu
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jieun Kim
- The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA.
| |
Collapse
|
16
|
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn 2014; 244:122-33. [PMID: 25382630 DOI: 10.1002/dvdy.24225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cleft palate occurs in up to 1:1,000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown. RESULTS The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3(-) (/) (-) embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3(-) (/) (-) embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3(-) (/) (-) palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3. CONCLUSIONS These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis.
Collapse
Affiliation(s)
- Cynthia R Hill
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
17
|
Lane J, Yumoto K, Pisano J, Azhar M, Thomas PS, Kaartinen V. Control elements targeting Tgfb3 expression to the palatal epithelium are located intergenically and in introns of the upstream Ift43 gene. Front Physiol 2014; 5:258. [PMID: 25071603 PMCID: PMC4083190 DOI: 10.3389/fphys.2014.00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022] Open
Abstract
Tgfb3 is strongly and specifically expressed in the epithelial tips of pre-fusion palatal shelves where it plays a critical non-redundant role in palatal fusion in both medial edge epithelial (MEE) cells and in a thin layer of flattened peridermal cells that covers the MEE. It is not known how Tgfb3 expression is regulated in these specific cell types. Using comparative genomics and transgenic reporter assays, we have identified cis-regulatory elements that could control Tgfb3 expression during palatogenesis. Our results show that a 61-kb genomic fragment encompassing the Tgfb3 gene drives remarkably specific reporter expression in the MEE and adjacent periderm. Within this fragment, we identified two small, non-coding, evolutionarily conserved regions in intron 2 of the neighboring Ift43 gene, and a larger region in the intervening sequence between the Ift43 and Tgfb3 genes, each of which could target reporter activity to the tips of pre-fusion/fusing palatal shelves. Identification of the cis-regulatory sequences controlling spatio-temporal Tgfb3 expression in palatal shelves is a key step toward understanding upstream regulation of Tgfb3 expression during palatogenesis and should enable the development of improved tools to investigate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Justin Pisano
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Penny S Thomas
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| |
Collapse
|
18
|
Ishtiaq Ahmed AS, Bose GC, Huang L, Azhar M. Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene. Genesis 2014; 52:817-26. [PMID: 24895296 DOI: 10.1002/dvg.22795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023]
Abstract
Transforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesis
Collapse
Affiliation(s)
- A S Ishtiaq Ahmed
- Department of Pediatrics, Program in Developmental Biology and Neonatal Medicine, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | |
Collapse
|
19
|
Vanderschuren KLA, Sieverink T, Wilders R. Arrhythmogenic right ventricular dysplasia/cardiomyopathy type 1: a light on molecular mechanisms. GENETICS RESEARCH INTERNATIONAL 2013; 2013:460805. [PMID: 24416594 PMCID: PMC3876595 DOI: 10.1155/2013/460805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/09/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022]
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy associated with cardiac arrhythmias originating in the right ventricle, heart failure, and sudden cardiac death. Development of ARVD/C type 1 has been attributed to differential expression of transforming growth factor beta 3 (TGF β 3). Several mechanisms underlying the molecular basis of ARVD/C type 1 have been proposed. Evaluating previously described mechanisms might elucidate how TGF β 3 contributes to disease progression in ARVD/C type 1. Here we review how TGF β 3 can induce fibrogenesis through Smad and/or β -catenin signaling. Moreover, the role of apoptosis is addressed. Finally the extent to which the immune system has been demonstrated to be a modulating and amplifying agent in the onset and progression of ARVD/C in general is discussed.
Collapse
Affiliation(s)
- Koen L. A. Vanderschuren
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Tom Sieverink
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Ronald Wilders
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
20
|
Hall BE, Wankhade UD, Konkel JE, Cherukuri K, Nagineni CN, Flanders KC, Arany PR, Chen W, Rane SG, Kulkarni AB. Transforming growth factor-β3 (TGF-β3) knock-in ameliorates inflammation due to TGF-β1 deficiency while promoting glucose tolerance. J Biol Chem 2013; 288:32074-92. [PMID: 24056369 DOI: 10.1074/jbc.m113.480764] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF-β1(Lβ3/Lβ3)). In the TGF-β1(Lβ3/Lβ3) mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF-β1(-/-) mice, the TGF-β1(Lβ3/Lβ3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF-β1(Lβ3/Lβ3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF-β1(Lβ3/Lβ3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.
Collapse
Affiliation(s)
- Bradford E Hall
- From the Functional Genomics Section, Laboratory of Cell and Developmental Biology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res 2012; 5:739-48. [PMID: 22878976 DOI: 10.1007/s12265-012-9394-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically overlooked in terms of functional contributions to development and physiology, cardiac fibroblasts are now front and center. They are currently recognized as key protagonists during both normal development and cardiomyopathy disease, and work together with cardiomyocytes through paracrine, structural, and potentially electrical interactions. However, the lack of specific biomarkers and fibroblast heterogeneous nature currently convolutes the study of this dynamic cell lineage; though, efforts to advance marker analysis and lineage mapping technologies are ongoing. These tools will help elucidate the functional significance of fibroblast-cardiomyocyte interactions in vivo and delineate the dynamic nature of normal and pathological cardiac fibroblasts. Since therapeutic promise lies in understanding the interface between developmental biology and the postnatal injury response, future studies to understand the divergent roles played by cardiac fibroblasts both in utero and following cardiac insult are essential.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Room R4 W402F, Indianapolis, IN 46202, USA
| | | |
Collapse
|
22
|
Tamargo J. TGFβ3 mutations cause arrhythmogenic right ventricular dysplasia type 1 and open the door to understanding the biological role of TGFβ3 (where there's a will, there's a way). Cardiovasc Res 2012; 96:188-90; discussion 191-4. [PMID: 22878021 DOI: 10.1093/cvr/cvs231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Rampazzo A. Regulatory mutations in transforming growth factor- 3 gene involved in arrhythmogenic right ventricular cardiomyopathy: AUTHOR'S RETROSPECTIVE. Cardiovasc Res 2012. [DOI: 10.1093/cvr/cvs221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|