1
|
Nave LE, Gough CM, Clay C, Santos F, Atkins JW, Benjamins-Carey SE, Bohrer G, Castillo BT, Fahey RT, Hardiman BS, Hofmeister KL, Ivanov VY, Kalejs J, Matheny AM, Menna AC, Nadelhoffer KJ, Propson BE, Schubel AT, Tallant JM. Carbon cycling across ecosystem succession in a north temperate forest: Controls and management implications. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70001. [PMID: 39989402 DOI: 10.1002/eap.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025]
Abstract
Despite decades of progress, much remains unknown about successional trajectories of carbon (C) cycling in north temperate forests. Drivers and mechanisms of these changes, including the role of different types of disturbances, are particularly elusive. To address this gap, we synthesized decades of data from experimental chronosequences and long-term monitoring at a well-studied, regionally representative field site in northern Michigan, USA. Our study provides a comprehensive assessment of changes in above- and belowground ecosystem components over two centuries of succession, links temporal dynamics in C pools and fluxes with underlying drivers, and offers several conceptual insights to the field of forest ecology. Our first advance shows how temporal dynamics in some ecosystem components are consistent across severe disturbances that reset succession and partial disturbances that slightly modify it: both of these disturbance types increase soil N availability, alter fungal community composition, and alter growth and competitive interactions between short-lived pioneer and longer-lived tree taxa. These changes in turn affect soil C stocks, respiratory emissions, and other belowground processes. Second, we show that some other ecosystem components have effects on C cycling that are not consistent over the course of succession. For example, canopy structure does not influence C uptake early in succession but becomes important as stands develop, and the importance of individual structural properties changes over the course of two centuries of stand development. Third, we show that in recent decades, climate change is masking or overriding the influence of community composition on C uptake, while respiratory emissions are sensitive to both climatic and compositional change. In synthesis, we emphasize that time is not a driver of C cycling; it is a dimension within which ecosystem drivers such as canopy structure, tree and microbial community composition change. Changes in those drivers, not in forest age, are what control forest C trajectories, and those changes can happen quickly or slowly, through natural processes or deliberate intervention. Stemming from this view and a whole-ecosystem perspective on forest succession, we offer management applications from this work and assess its broader relevance to understanding long-term change in other north temperate forest ecosystems.
Collapse
Affiliation(s)
- Lucas E Nave
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Christopher M Gough
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Cameron Clay
- University of Michigan Biological Station, Pellston, Michigan, USA
| | | | - Jeff W Atkins
- USDA Forest Service, Southern Research Station, New Ellenton, South Carolina, USA
| | | | - Gil Bohrer
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA
| | - Buck T Castillo
- University of Michigan Biological Station, Pellston, Michigan, USA
| | - Robert T Fahey
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA
| | - Brady S Hardiman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Kathryn L Hofmeister
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Valeriy Y Ivanov
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ashley M Matheny
- Department of Earth and Planetary Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Angela C Menna
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Brooke E Propson
- Department of Soil and Environmental Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam T Schubel
- University of Michigan Biological Station, Pellston, Michigan, USA
| | - Jason M Tallant
- University of Michigan Biological Station, Pellston, Michigan, USA
| |
Collapse
|
2
|
Gough CM, Buma B, Jentsch A, Mathes KC, Fahey RT. Disturbance theory for ecosystem ecologists: A primer. Ecol Evol 2024; 14:e11403. [PMID: 38826158 PMCID: PMC11139967 DOI: 10.1002/ece3.11403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Understanding what regulates ecosystem functional responses to disturbance is essential in this era of global change. However, many pioneering and still influential disturbance-related theorie proposed by ecosystem ecologists were developed prior to rapid global change, and before tools and metrics were available to test them. In light of new knowledge and conceptual advances across biological disciplines, we present four disturbance ecology concepts that are particularly relevant to ecosystem ecologists new to the field: (a) the directionality of ecosystem functional response to disturbance; (b) functional thresholds; (c) disturbance-succession interactions; and (d) diversity-functional stability relationships. We discuss how knowledge, theory, and terminology developed by several biological disciplines, when integrated, can enhance how ecosystem ecologists analyze and interpret functional responses to disturbance. For example, when interpreting thresholds and disturbance-succession interactions, ecosystem ecologists should consider concurrent biotic regime change, non-linearity, and multiple response pathways, typically the theoretical and analytical domain of population and community ecologists. Similarly, the interpretation of ecosystem functional responses to disturbance requires analytical approaches that recognize disturbance can promote, inhibit, or fundamentally change ecosystem functions. We suggest that truly integrative approaches and knowledge are essential to advancing ecosystem functional responses to disturbance.
Collapse
Affiliation(s)
- Christopher M. Gough
- Department of Biology, College of Humanities & SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brian Buma
- Environmental Defense FundBoulderColoradoUSA
- Department of Integrative BiologyUniversity of Colorado DenverDenverColoradoUSA
| | - Anke Jentsch
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Kayla C. Mathes
- Department of Biology, College of Humanities & SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robert T. Fahey
- Department of Natural Resources and the Environment & Center for Environmental Sciences and EngineeringUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
3
|
Novick KA, Metzger S, Anderegg WRL, Barnes M, Cala DS, Guan K, Hemes KS, Hollinger DY, Kumar J, Litvak M, Lombardozzi D, Normile CP, Oikawa P, Runkle BRK, Torn M, Wiesner S. Informing Nature-based Climate Solutions for the United States with the best-available science. GLOBAL CHANGE BIOLOGY 2022; 28:3778-3794. [PMID: 35253952 DOI: 10.1111/gcb.16156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, for example, by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policymaking or implementation. As a result, there is a critical mismatch between the point- and tree-scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policymaking. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Stefan Metzger
- Battelle, National Ecological Observatory Network, Boulder, Colorado, USA
| | | | - Mallory Barnes
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Daniela S Cala
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle S Hemes
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
| | - David Y Hollinger
- USDA Forest Service, Northern Research Station, Durham, New Hampshire, USA
| | - Jitendra Kumar
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marcy Litvak
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | - Patty Oikawa
- Department of Earth & Environmental Science, California State University-East Bay, Hayward, California, USA
| | - Benjamin R K Runkle
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Margaret Torn
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susanne Wiesner
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|