1
|
Yang Y, Chen C, Grossart HP, Liu Y. Community assembly characteristics of abundant and rare bacterial taxa in water, sediment and riparian soil of Wujiang river, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118262. [PMID: 40319705 DOI: 10.1016/j.ecoenv.2025.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Bacterial communities are composed of a few abundant taxa (AT) and numerous rare taxa (RT). Rivers serve as connectors between water, sediment, and riparian soil, leading to differences in bacterial communities across these habitats. In this study, we sampled 26 sites along the Wujiang River, a major tributary of the Yangtze River in a karst region of China to systematically target the habitat-specific differences in bacterial communities. We hypothesized that (1) community composition and diversity differ among habitats; (2) AT and RT communities exhibit distinct biogeographic patterns; (3) the community assembly processes differ between AT and RT within and across habitat. Results showed significant differences in bacterial community composition between water and sediment, water and soil, but not between sediment and soil. Sediment and soil had higher species richness and diversity than water, with RT mainly contributing to diversity differences. β-diversity was primarily driven by species turnover. A distance-decay relationship appeared only in water communities, indicating stronger spatial structuring, while sediment and soil communities were mainly shaped by environmental factors. Assembly of AT in sediment and soil was governed by undominated processes (ecological drift), whereas dispersal limitation dominated in water. for RT, homogeneous dispersal prevailed in water, while homogeneous selection was predominant in sediment and soil. these findings advance our understanding of abundant and rare bacterial community assembly across riverine habitats and provide new insights into microbial biogeography in plateau karst aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Yang
- School of life sciences, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang 550025, China
| | - Chen Chen
- School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
| | - Yingliang Liu
- School of life sciences, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang 550025, China.
| |
Collapse
|
2
|
Wu G, Zhang H, Huang T, Song Y, Liu X, Liu X, Wang X, Pei T, Xu G, Wang Z. Hydraulic and thermal performance trigger the deterministic assembly of water microbiomes: From biogeographical homogenization to machine learning model. WATER RESEARCH 2025; 282:123626. [PMID: 40262432 DOI: 10.1016/j.watres.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Water quality at the point of consumption has long been a health issue because of the potential for microbial ecology. However, research on water hydraulic performance remains in its infancy, and in particular, little is known about the effects of thermal performance during winter. This study explored the effects of stagnation and municipal heating on microbial communities in tap water, focusing on spatial and temporal variations in microbial community composition. The results revealed that stagnation significantly alters the microbial community, especially in heating areas, where the temperature exacerbates microbial growth. Furthermore, hydraulic and thermal performance drive deterministic assembly processes in microbial communities, as evidenced by the reductions in β-diversity, normalized stochasticity ratio (NST), and neutral community model (NCM) fit. Machine learning models revealed that stagnation time greater than 8 h results in increased community abundance because of longer exposure to organic matter and nutrients. The study finding illustrate the importance of environmental influences on microbial community dynamics, and provide valuable insights into the water microbial community, particularly in areas with prolonged stagnation.
Collapse
Affiliation(s)
- Guilin Wu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yutong Song
- School of Future Technology, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaolong Wang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tingting Pei
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Guojia Xu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhihan Wang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
3
|
Chen N, Wang L, Zhao Z, Zhu M, Li Y. Impacts of aquaculture on nitrogen cycling and microbial community dynamics in coastal tidal flats. ENVIRONMENTAL RESEARCH 2025; 270:120973. [PMID: 39880110 DOI: 10.1016/j.envres.2025.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
The expansion of aquaculture areas has encroached upon vast areas of coastal wetlands and introduced excessive nitrogen inputs, disrupting microbial communities and contributing to various environmental issues. However, investigations on how aquaculture affects microbial communities and nitrogen metabolism mechanisms in coastal tidal flats remain scarce. Hence, we explored the composition, diversity, and assembly processes of nitrogen-cycling (N-cycling) microbial communities in tidal flats in Jiangsu using metagenomic assembly methods. Our study further delved into the seasonal variations of these microbial characteristics to better explore the effects of seasonal changes in aquaculture areas on microbial community. Nitrogen metabolism-related processes and functional genes were identified through the KEGG and NCyc databases. The results revealed significant seasonal variation in the relative abundance and composition of microbial communities. Higher diversity was observed in winter, while the co-occurrence network of microbial communities was more complex in summer. Pseudomonadota emerged as the most abundant phylum in the N-cycling community. Furthermore, pH and NO3-N were identified as the primary factors influencing bacterial community composition, whereas NO2-N was more strongly associated with the N-cycling community. Regarding the nitrogen metabolism processes, nitrogen mineralization and nitrification were predominant in the tidal flat regions. NO2-N and NO3-N exhibited significant effects on several N-cycling functional genes (e.g., nirB, hao, and narG). Finally, neutral and null modeling analyses indicated that bacterial communities were predominantly shaped by stochastic processes, whereas N-cycling communities were largely driven by deterministic processes. These findings highlighted the significant role that aquaculture pollution plays in shaping the N-cycling communities in tidal flats. This underscored the importance of understanding microbial community dynamics and nitrogen metabolism in tidal flats to improve environmental management in coastal aquaculture areas.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Linqiong Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Nanjing, 210024, China
| | - Yi Li
- College of Environment, Hohai University, Nanjing, 210024, China
| |
Collapse
|
4
|
Wang G, Gu L, Bohu T, He B, Zhang H, Lv X, Hao Z, Liu M, Zhou S, Wang L. Deciphering microbial assembly and coexistence in rivers subjected to long-term reclaimed water replenishment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125299. [PMID: 39537090 DOI: 10.1016/j.envpol.2024.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Reclaimed water recharge into rivers is an important supplementary approach to address water resource shortage in arid and semi-arid areas worldwide. However, the ecology impacts of reclaimed water recharge on the rivers are still unknown, especially for the microbial assemble and species coexistence in different seasons. Here, the evolution of microbiome and its response to different reasons in the Jialu River, which was subjected to long-term reclaimed water recharge, is investigated by using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that microbial communities exhibited significant temporal heterogeneity across different periods and were negatively correlated with river discharge. Their assembly was primarily influenced by stochastic processes such as dispersal limitation and drift. As the transition occurred from the dry season to the normal season, the role of drift diminished, while the deterministic effects of dispersal limitation and niche selection intensified. The relationships among planktonic bacterial species were primarily positive (cooperative), and the complexity and positive correlations within the ecological network showed a trend of first decreasing and then increasing with the change of seasons. Temperature, dissolved oxygen, and ammonia nitrogen were the main driving forces influencing the structure of microbial communities. In summary, these findings provided insights into the impact of seasonal variations on the microbial community patterns in reclaimed water-supplemented river ecosystems.
Collapse
Affiliation(s)
- Gelin Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding, 071000, China
| | - Likun Gu
- Henan Institute of Engineering, Zhengzhou, 450000, China
| | - Tsing Bohu
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding, 071000, China
| | - Bing He
- Zhengzhou Ecological Environment Monitoring Center, Zhengzhou, 450007, China
| | - Hui Zhang
- Yellow River Institute of Ecological Environment Science, Zhengzhou, 450000, China
| | - Xiaoyan Lv
- Zhengzhou University Multi-Functional Design and Research Academy Co. Ltd, Zhengzhou, 450000, China
| | - Ziyao Hao
- Zhengzhou University Multi-Functional Design and Research Academy Co. Ltd, Zhengzhou, 450000, China
| | - Mengshuo Liu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shilei Zhou
- Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Li Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Meng L, Li Y, Chen L, Sui M, Zhang G, Liu Q, Chen D, Wu Y, Yang Z, Chen S, Yang R, Zang L. Variations in species diversity patterns and community assembly rules among vegetation types in the karst landscape. FRONTIERS IN PLANT SCIENCE 2024; 15:1338596. [PMID: 38455729 PMCID: PMC10917898 DOI: 10.3389/fpls.2024.1338596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
The various vegetation types in the karst landscape have been considered the results of heterogeneous habitats. However, the lack of a comprehensive understanding of regional biodiversity patterns and the underlying ecological processes limits further research on ecological management. This study established forest dynamic plots (FDPs) of the dominant vegetation types (shrubland, SL; mixed tree and shrub forest, MTSF; coniferous forest, CF; coniferous broadleaf mixed forest, CBMF; and broadleaf forest, BF) in the karst landscape and quantified the species diversity patterns and potential ecological processes. The results showed that in terms of diversity patterns, the evenness and species richness of the CF community were significantly lower than other vegetation types, while the BF community had the highest species richness. The other three vegetation types showed no significant variation in species richness and evenness. However, when controlling the number of individuals of FDPs, the rarefied species richness showed significant differences and ranked as BF > SL > MTSF > CBMF > CF, highlighting the importance of considering the impacts of abundance. Additionally, the community assembly of climax communities (CF or BF) was dominated by stochastic processes such as species dispersal or species formation, whereas deterministic processes (habitat filtering) dominated the secondary forests (SL, MTSF, and CBMF). These findings proved that community assembly differs mainly between the climax community and other communities. Hence, it is crucial to consider the biodiversity and of the potential underlying ecological processes together when studying regional ecology and management, particularly in heterogeneous ecosystems.
Collapse
Affiliation(s)
- Longchenxi Meng
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Yong Li
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Luyao Chen
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Mingzhen Sui
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, China
| | - Guangqi Zhang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, China
| | - Qingfu Liu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, China
| | - Danmei Chen
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, China
| | - Yuhang Wu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Zeyu Yang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Shiren Chen
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Rui Yang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
| | - Lipeng Zang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang, China
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, China
| |
Collapse
|
6
|
Deng N, Liu C, Tian Y, Song Q, Niu Y, Ma F. Assembly processes of rhizosphere and phyllosphere bacterial communities in constructed wetlands created via transformation of rice paddies. Front Microbiol 2024; 15:1337435. [PMID: 38444812 PMCID: PMC10913029 DOI: 10.3389/fmicb.2024.1337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Constructed wetlands are an efficient and cost-effective method of restoring degraded wetlands, in which the microorganisms present make a significant contribution to the ecosystem. In this study, we comprehensively investigated the patterns of diversity and assembly processes of 7 types of constructed wetlands at the rhizosphere and phyllosphere levels. The results showed that the rhizosphere communities of the constructed wetlands exhibited a more balanced structure than that of paddy fields, and 5 types of constructed wetland demonstrated higher potential diversity than that of paddy fields. However, the opposite trend was observed for the phyllosphere communities. Analysis of mean nearest taxon difference indicated that both deterministic and stochastic processes affected the establishment of the rhizosphere and phyllosphere communities, and stochastic processes may have had a larger effect. An iCAMP model showed that dispersal limitation was the most important factor (67% relative contribution) in the rhizosphere community, while drift was the most important (47% relative contribution) in the phyllosphere community. Mantel tests suggested that sucrase, average height, top height, total biomass, belowground biomass, maximum water-holding capacity, and capillary porosity were significantly correlated with processes in the rhizosphere community, whereas factors such as the deterministic process, average height, top height, and SOC were significantly correlated with deterministic processes in the phyllosphere community. Our results can assist in the evaluation of artificial restorations, and can provide understanding of the ecological processes of microbial communities, as well as new insights into the manipulation of microorganisms in polluted wetland ecosystems.
Collapse
Affiliation(s)
- Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
- Dongting Lake National Positioning Observation and Research Station of Wetland Ecosystem of Hunan Province, Yueyang, China
- International Technological Cooperation Base for Ecosystem Management and Sustainable Utilization of Water Resources in Dongting Lake Basin, Changsha, China
| | - Qingan Song
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Yandong Niu
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
- Dongting Lake National Positioning Observation and Research Station of Wetland Ecosystem of Hunan Province, Yueyang, China
- International Technological Cooperation Base for Ecosystem Management and Sustainable Utilization of Water Resources in Dongting Lake Basin, Changsha, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| |
Collapse
|
7
|
Tang X, Zhang L, Ren S, Zhao Y, Liu K, Zhang Y. Stochastic Processes Derive Gut Fungi Community Assembly of Plateau Pikas ( Ochotona curzoniae) along Altitudinal Gradients across Warm and Cold Seasons. J Fungi (Basel) 2023; 9:1032. [PMID: 37888290 PMCID: PMC10607853 DOI: 10.3390/jof9101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Although fungi occupy only a small proportion of the microbial community in the intestinal tract of mammals, they play important roles in host fat accumulation, nutrition metabolism, metabolic health, and immune development. Here, we investigated the dynamics and assembly of gut fungal communities in plateau pikas inhabiting six altitudinal gradients across warm and cold seasons. We found that the relative abundances of Podospora and Sporormiella significantly decreased with altitudinal gradients in the warm season, whereas the relative abundance of Sarocladium significantly increased. Alpha diversity significantly decreased with increasing altitudinal gradient in the warm and cold seasons. Distance-decay analysis showed that fungal community similarities were significantly and negatively correlated with elevation. The co-occurrence network complexity significantly decreased along the altitudinal gradients as the total number of nodes, number of edges, and degree of nodes significantly decreased. Both the null and neutral model analyses showed that stochastic or neutral processes dominated the gut fungal community assembly in both seasons and that ecological drift was the main ecological process explaining the variation in the gut fungal community across different plateau pikas. Homogeneous selection played a weak role in structuring gut fungal community assembly during the warm season. Collectively, these results expand our understanding of the distribution patterns of gut fungal communities and elucidate the mechanisms that maintain fungal diversity in the gut ecosystems of small mammals.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
8
|
Smets W, Chock MK, Walsh CM, Vanderburgh CQ, Kau E, Lindow SE, Fierer N, Koskella B. Leaf side determines the relative importance of dispersal versus host filtering in the phyllosphere microbiome. mBio 2023; 14:e0111123. [PMID: 37436063 PMCID: PMC10470611 DOI: 10.1128/mbio.01111-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023] Open
Abstract
Leaves harbor distinct microbial communities that can have an important impact on plant health and microbial ecosystems worldwide. Nevertheless, the ecological processes that shape the composition of leaf microbial communities remain unclear, with previous studies reporting contradictory results regarding the importance of bacterial dispersal versus host selection. This discrepancy could be driven in part because leaf microbiome studies typically consider the upper and lower leaf surfaces as a single entity despite these habitats possessing considerable anatomical differences. We characterized the composition of bacterial phyllosphere communities from the upper and lower leaf surfaces across 24 plant species. Leaf surface pH and stomatal density were found to shape phyllosphere community composition, and the underside of leaves had lower richness and higher abundances of core community members than upper leaf surfaces. We found fewer endemic bacteria on the upper leaf surfaces, suggesting that dispersal is more important in shaping these communities, with host selection being a more important force in microbiome assembly on lower leaf surfaces. Our study illustrates how changing the scale in which we observe microbial communities can impact our ability to resolve and predict microbial community assembly patterns on leaf surfaces. IMPORTANCE Leaves can harbor hundreds of different bacterial species that form unique communities for every plant species. Bacterial communities on leaves are really important because they can, for example, protect their host against plant diseases. Usually, bacteria from the whole leaf are considered when trying to understand these communities; however, this study shows that the upper and lower sides of a leaf have a very different impact on how these communities are shaped. It seems that the bacteria on the lower leaf side are more closely associated with the plant host, and communities on the upper leaf side are more impacted by immigrating bacteria. This can be really important when we want to treat, for example, crops in the field with beneficial bacteria or when trying to understand host-microbe interactions on the leaves.
Collapse
Affiliation(s)
- Wenke Smets
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Mason K. Chock
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Corinne M. Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Caihong Qiu Vanderburgh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Ethan Kau
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
9
|
Trubovitz S, Renaudie J, Lazarus D, Noble PJ. Abundance does not predict extinction risk in the fossil record of marine plankton. Commun Biol 2023; 6:554. [PMID: 37217772 PMCID: PMC10203123 DOI: 10.1038/s42003-023-04871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
A major premise of ecological neutral theory is that population size is inversely related to extinction risk. This idea is central to modern biodiversity conservation efforts, which often rely on abundance metrics to partially determine species extinction risk. However, limited empirical studies have tested whether extinction is indeed more probable for species with low abundances. Here we use the fossil record of Neogene radiolaria to test the relationship between relative abundance and longevity (time from first to last occurrence). Our dataset includes abundance histories for 189 polycystine radiolarian species from the Southern Ocean, and 101 species from the tropical Pacific. Using linear regression analyses, we show that neither maximum nor average relative abundance are significant predictors of longevity in either oceanographic region. This suggests that neutral theory fails to explain the plankton ecological-evolutionary dynamics we observe. Extrinsic factors are likely more important than neutral dynamics in controlling radiolarian extinction.
Collapse
Affiliation(s)
- Sarah Trubovitz
- Department of Geological Sciences & Engineering, University of Nevada - Reno, Reno, NV, USA.
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Johan Renaudie
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany.
| | - David Lazarus
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany
| | - Paula J Noble
- Department of Geological Sciences & Engineering, University of Nevada - Reno, Reno, NV, USA
| |
Collapse
|
10
|
Jewell MD, Bell G. A basic community dynamics experiment: Disentangling deterministic and stochastic processes in structuring ecological communities. Ecol Evol 2022; 12:e9568. [PMID: 36479026 PMCID: PMC9720002 DOI: 10.1002/ece3.9568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Community dynamics are governed by two opposed processes: species sorting, which produces deterministic dynamics leading to an equilibrium state, and ecological drift, which produces stochastic dynamics. Despite a great deal of theoretical and empirical work aiming to demonstrate the predominance of one or the other of these processes, the importance of drift in structuring communities and maintaining species diversity remains contested. Here, we present the results of a basic community dynamics experiment using floating aquatic plants, designed to measure the relative contributions of species sorting and ecological drift to community change over about a dozen generations. We found that species sorting became overwhelmingly dominant as the experiment progressed, and directed communities toward a stable equilibrium state maintained by negative frequency-dependent selection. The dynamics of any particular species depended on how far its initial frequency was from its equilibrium frequency, however, and consequently the balance of sorting and drift varied among species.
Collapse
Affiliation(s)
| | - Graham Bell
- Department of BiologyMcGill UniversityMontrealQuebecCanada
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
11
|
Chen H(D, Ma Z(S. Further Quantifying the Niche-Neutral Continuum of Human Digestive Tract Microbiomes with Near Neutral Model and Stochasticity Analysis. Evol Bioinform Online 2022; 18:11769343221128540. [PMID: 36458150 PMCID: PMC9706044 DOI: 10.1177/11769343221128540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/28/2022] [Indexed: 09/10/2024] Open
Abstract
It is postulated that the human digestive tract (DT) from mouth to intestine is differentiated into diverse niches. For example, Segata et al. discovered that the microbiomes of diverse habitats along the DT could be distinguished as 4 types (niches) including (i) stool; (ii) sub-gingival plaques (SubP) and supra-gingival plaques (SupP); (iii) tongue dorsum (TD), throat (TH), palatine tonsils (PT), and saliva (Sal); and (iv) hard palate (HP) and buccal mucosa (BM), and keratinized gingiva (KG). These niches are different not only in composition, but also in metabolic potentials. In a previous study, we applied Harris et al's multi-site neutral and Tang and Zhou's niche-neutral hybrid models to characterize the DT niches discovered by Segata et al. Here, we complement the previous study by applying Sloan's near-neural model and Ning et al's stochasticity analysis framework to quantify the niche-neutral continuum of the DT microbiome distribution to shed light on the possible ecological/evolutionary mechanism that shapes the continuum. Overall but excluding the stool site, the proportion of neutral OTUs (46%) is slightly higher than that of the positive selection (38%), but significantly higher than negative selection (15%). The gut (stool) exhibited 3 to 12 times lower neutrality than other DT sites. The analysis also cross-verified our previous hypothesis that the KG (keratinized gingiva) is of distinct assembly dynamics in the DT microbiome, should be treated as a fifth niche. Our findings offer new insight on the long-standing debate concerning whether a minimum of 2-mm of KG width is necessary for marginal periodontal health.
Collapse
Affiliation(s)
- Hongju (Daisy) Chen
- Department of Mathematics and
Statistics, Honghe University, Yunnan, China
- Computational Biology and Medical
Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of
Zoology, Chinese Academy of Science, Kunming, Yunnan, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical
Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of
Zoology, Chinese Academy of Science, Kunming, Yunnan, China
- Center for Excellence in Animal
Evolution and Genetics, Chinese Academy of Sciences, China
| |
Collapse
|
12
|
Chen H(D, Ma Z(S. Niche-Neutral Continuum Seems to Explain the Global Niche Differentiation and Local Drift of the Human Digestive Tract Microbiome. Front Microbiol 2022; 13:912240. [PMID: 36033847 PMCID: PMC9400020 DOI: 10.3389/fmicb.2022.912240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
The human digestive tract (DT) is differentiated into diverse niches and harbors the greatest microbiome diversity of our bodies. Segata et al. (2012) found that the microbiome of diverse habitats along the DT may be classified as four categories or niches with different microbial compositions and metabolic potentials. Nonetheless, few studies have offered theoretical interpretations of the observed patterns, not to mention quantitative mechanistic parameters. Such parameters should capture the essence of the fundamental processes that shape the microbiome distribution, beyond simple ecological metrics such as diversity or composition descriptors, which only capture the manifestations of the mechanisms. Here, we aim to get educated guesses for such parameters by adopting an integrated approach with multisite neutral (MSN) and niche-neutral hybrid (NNH) modeling, via reanalyzing Segata’s 16s-rRNA samples covering 10 DT-sites from over 200 healthy individuals. We evaluate the relative importance of the four essential processes (drift, dispersal, speciation, and selection) in shaping the microbiome distribution and dynamics along DT, which are assumed to form a niche-neutral continuum. Furthermore, the continuum seems to be hierarchical: the selection or niche differentiations seem to play a predominant role (> 90% based on NNH) at the global (the DT metacommunity) level, but the neutral drifts seem to be prevalent (> 90% based on MSN/NNH) at the local sites except for the gut site. An additional finding is that the DT appears to have a fifth niche for the DT microbiome, namely, Keratinized gingival (KG), while in Segata’s original study, only four niches were identified. Specifically, in Segata’s study, KG was classified into the same niche type including buccal mucosa (BM), hard palate (HP), and KG. However, it should be emphasized that the proposal of the fifth niche of KG requires additional verification in the future studies.
Collapse
Affiliation(s)
- Hongju (Daisy) Chen
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Mathematics, Honghe University, Yunnan, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Zhanshan (Sam) Ma,
| |
Collapse
|
13
|
Yang J, Su P, Zhou Z, Shi R, Ding X. Environmental filtering rather than dispersal limitation dominated plant community assembly in the Zoige Plateau. Ecol Evol 2022; 12:e9117. [PMID: 35845377 PMCID: PMC9272205 DOI: 10.1002/ece3.9117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali-hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +-N), and ammonia nitrogen (NH4 +-N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.
Collapse
Affiliation(s)
- Jianping Yang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peixi Su
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Zijuan Zhou
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Rui Shi
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
| | - Xinjing Ding
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid RegionsNorthwest Institute of Eco‐Environment and Resources, CASLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Rahman IU, Hart RE, Ijaz F, Afzal A, Iqbal Z, Calixto ES, Abd_Allah EF, Alqarawi AA, Hashem A, Al-Arjani ABF, Kausar R, Haq SM. Environmental variables drive plant species composition and distribution in the moist temperate forests of Northwestern Himalaya, Pakistan. PLoS One 2022; 17:e0260687. [PMID: 35202409 PMCID: PMC8870539 DOI: 10.1371/journal.pone.0260687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
By assessing plant species composition and distribution in biodiversity hotspots influenced by environmental gradients, we greatly advance our understanding of the local plant community and how environmental factors are affecting these communities. This is a proxy for determining how climate change influences plant communities in mountainous regions ("space-for-time" substitution). We evaluated plant species composition and distribution, and how and which environmental variables drive the plant communities in moist temperate zone of Manoor valley of Northwestern Himalaya, Pakistan. During four consecutive years (2015-2018), we sampled 30 sampling sites, measuring 21 environmental variables, and recording all plant species present in an altitudinal variable range of 1932-3168 m.a.s.l. We used different multivariate analyses to identify potential plant communities, and to evaluate the relative importance of each environmental variable in the species composition and distribution. Finally, we also evaluated diversity patterns, by comparing diversity indices and beta diversity processes. We found that (i) the moist temperate zone in this region can be divided in four different major plant communities; (ii) each plant community has a specific set of environmental drivers; (iii) there is a significant variation in plant species composition between communities, in which six species contributed most to the plant composition dissimilarity; (iv) there is a significant difference of the four diversity indices between communities; and (v) community structure is twice more influenced by the spatial turnover of species than by the species loss. Overall, we showed that altitudinal gradients offer an important range of different environmental variables, highlighting the existence of micro-climates that drive the structure and composition of plant species in each micro-region. Each plant community along the altitudinal gradient is influenced by a set of environmental variables, which lead to the presence of indicator species in each micro-region.
Collapse
Affiliation(s)
- Inayat Ur Rahman
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
- William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, United States of America
- * E-mail: (IUR); (REH)
| | - Robbie E. Hart
- William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, United States of America
- * E-mail: (IUR); (REH)
| | - Farhana Ijaz
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Iqbal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Eduardo S. Calixto
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Department of Biology, University of Missouri St. Louis (UMSL), Saint Louis, MO, United States of America
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Rukhsana Kausar
- Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan
| | - Shiekh Marifatul Haq
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
15
|
Species Abundance Distributions Patterns between Tiankeng Forests and Nearby Non-Tiankeng Forests in Southwest China. DIVERSITY 2022. [DOI: 10.3390/d14020064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying the species abundance distributions (SADs) in Tiankeng forests is crucial for restoring and managing degraded karst ecosystem, whereas previous studies rarely explored the differences and response of vegetation dynamics to environmental variations. The species composition and SADs of the inner and outer fringe areas of Tiankeng forest and nearby non-Tiankeng forest were compared in Southwest China. Six models were adopted to compare SADs of three habitats. Kolmogrov–Smirnov (K–S) test was selected to compare the discrepancy between the simulated and observed SAD patterns. The Akaike Information Criterion (AIC) test was adopted to compare the models, and the best model was indicated by the lowest AIC value. The results showed that (1) the species dispersal from the inside of Tiankeng forests to the nearby non-Tiankeng forests is limited, while species have unlimited dispersal from nearby non-Tiankeng forests to the inside of Tiankeng forests via the fringe of Tiankeng forests. (2) Species abundance, species rarity, richness, and species accumulation rate in the Tiankeng forests were significant in non-Tiankeng forests (p < 0.05), and most species in inner Tiankeng forests originated from nearby non-Tiankeng forests. (3) Based on the criterion of K-S values, all models have passed the K–S test (p > 0.05), which indicated that niche processes and neutral process worked together in the maintenance of community species diversity, the community in study area is a niche-neutral continuum. (4) Considered the lowest AIC value, the neutral (△mean AIC = 1.3) models performed better than the niche (△mean AIC = 22.7) models and statistical (△mean AIC = 2.7) in the Tiankeng forest, while the statistical models performed better than the niche and neutral models in the non-Tiankeng forests. The results suggested that the main driving force of Tiankeng forests is the neutral process. The negative terrain in Tiankeng restricted the species dispersal due to topographic constraints. However, the species dispersal from the nearby non-Tiankeng forests could promote the species succession in the inner Tiankeng. Therefore, we propose that nearby non-Tiankeng forests should be emphasized for protecting the biodiversity of Tiankeng forests.
Collapse
|
16
|
Direct and indirect effects of geographic and environmental factors on ant beta diversity across Amazon basin. Oecologia 2021; 198:193-203. [PMID: 34853902 DOI: 10.1007/s00442-021-05083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Understanding the direct and indirect effects of niche and neutral processes in structuring species diversity is particularly challenging because environmental factors are often geographically structured. Here, we used Structural Equation Modeling to quantify direct and indirect effects of geographic distance, the Amazon River's opposite margins, and environmental differences in temperature, precipitation, and vegetation density (Normalized Difference Vegetation Index-NDVI) on ant beta diversity (Jaccard's dissimilarity) across Amazon basin. We used a comprehensive survey of ground-dwelling ant species from 126 plots distributed across eight sampling sites along a broad environmental gradient. We found that geographic distance and NDVI differences were the major direct predictors of ant composition dissimilarity. The major indirect effect was that of temperature through NDVI, whereas precipitation neither had direct or indirect detectable effects on beta diversity. Thus, ant compositional dissimilarity seems to be mainly driven by a combination of isolation by distance (through dispersal limitation) and selection imposed by vegetation density, and indirectly, by temperature. Our results suggest that neutral and niche processes have been similarly crucial in driving the current beta diversity patterns of Amazonian ground-dwelling ants.
Collapse
|
17
|
Ma ZS. Evaluating the Assembly Dynamics in the Human Vaginal Microbiomes With Niche-Neutral Hybrid Modeling. Front Microbiol 2021; 12:699939. [PMID: 34489890 PMCID: PMC8417885 DOI: 10.3389/fmicb.2021.699939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Using 2,733 longitudinal vaginal microbiome samples (representing local microbial communities) from 79 individuals (representing meta-communities) in the states of healthy, BV (bacterial vaginosis) and pregnancy, we assess and interpret the relative importance of stochastic forces (e.g., stochastic drifts in bacteria demography, and stochastic dispersal) vs. deterministic selection (e.g., host genome, and host physiology) in shaping the dynamics of human vaginal microbiome (HVM) diversity by an integrated analysis with multi-site neutral (MSN) and niche-neutral hybrid (NNH) modeling. It was found that, when the traditional “default” P-value = 0.05 was specified, the neutral drifts were predominant (≥50% metacommunities indistinguishable from the MSN prediction), while the niche differentiations were moderate (<20% from the NNH prediction). The study also analyzed two challenging uncertainties in testing the neutral and/or niche-neutral hybrid models, i.e., lack of full model specificity – non-unique fittings of same datasets to multiple models with potentially different mechanistic assumptions – and lack of definite rules for setting the P-value thresholds (also noted as Pt-value when referring to the threshold of P-value in this article) in testing null hypothesis (model). Indeed, the two uncertainties can be interdependent, which further complicates the statistical inferences. To deal with the uncertainties, the MSN/NNH test results under a series of P-values ranged from 0.05 to 0.95 were presented. Furthermore, the influence of P-value threshold-setting on the model specificity, and the effects of woman’s health status on the neutrality level of HVM were examined. It was found that with the increase of P-value threshold from 0.05 to 0.95, the overlap (non-unique) fitting of MSN and NNH decreased from 29.1 to 1.3%, whereas the specificity (uniquely fitted to data) of MSN model was kept between 55.7 and 82.3%. Also with the rising P-value threshold, the difference between healthy and BV groups become significant. These findings suggested that traditional single P-value threshold (such as the de facto standard P-value = 0.05) might be insufficient for testing the neutral and/or niche neutral hybrid models.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Gibert C, Shenbrot GI, Stanko M, Khokhlova IS, Krasnov BR. Dispersal-based versus niche-based processes as drivers of flea species composition on small mammalian hosts: inferences from species occurrences at large and small scales. Oecologia 2021; 197:471-484. [PMID: 34477961 DOI: 10.1007/s00442-021-05027-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Biological communities may be assembled by both niche-based and dispersal-based (= historic) processes with the relative importance of these processes in community assembly being scale- and context-dependent. To infer whether (a) niche-based or dispersal-based processes play the main role in the assembly of flea communities parasitic on small mammals and whether (b) the main processes of flea community assembly are scale-dependent, we applied a novel permutation-based algorithm (PER-SIMPER) and the dispersal-niche continuum index (DNCI), to data on the species incidence of fleas and their hosts at two spatial scales. At the larger (continental) scale, we analysed flea communities in four biogeographic realms across adjacent continental sections. At the smaller (local) scale, we considered flea communities across two main regions (lowlands and mountains) and seven habitat types within Slovakia. Our analyses demonstrated that species composition of fleas and their small mammalian hosts depended predominantly on historical processes (dispersal) at both scale. This was true for the majority of biogeographic realms at continental scale (except the Nearctic) and both regions at local scale. Nevertheless, strong niche-based assembly mechanism was found in the Nearctic assemblages. At local scale, the intensity of dispersal processes was weaker and niche-driven processes were stronger between habitats within a region than between mountain and lowland regions. We provide historical and ecological explanations for these patterns. We conclude that the assembly of compound flea communities is governed, to a great extent, by the dispersal processes acting on their hosts and, to a lesser extent, by the niche-based processes.
Collapse
Affiliation(s)
- Corentin Gibert
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM, UMR 7262 CNRS INEE), Université de Poitiers, Poitiers, France. .,Laboratoire de la Préhistoire à L'actuel: Culture, Environnement et Anthropologie (PACEA, UMR 5199 CNRS INEE), University of Bordeaux, Bordeaux, France.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Michal Stanko
- Institute of Parasitology and Institute of Zoology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
19
|
Li L, Pujari L, Wu C, Huang D, Wei Y, Guo C, Zhang G, Xu W, Liu H, Wang X, Wang M, Sun J. Assembly Processes and Co-occurrence Patterns of Abundant and Rare Bacterial Community in the Eastern Indian Ocean. Front Microbiol 2021; 12:616956. [PMID: 34456881 PMCID: PMC8385211 DOI: 10.3389/fmicb.2021.616956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial communities are composed of many rare species and a few abundant species. Considering the disproportionate importance of rare species for ecosystem functioning, it is important to understand the mechanisms structuring the rare and abundant components of a diverse community in response to environmental changes. Here, we used a 16S ribosomal RNA gene sequencing approach to investigate the bacterial community diversity in the Eastern Indian Ocean (EIO) during the monsoon and intermonsoon. We employed a phylogenetic null model and network analysis to evaluate the assembly processes and co-occurrence pattern of the microbial community. We found that higher bacterial diversity was detected in the intermonsoon with high temperature and low Chlorophyll a concentrations and N/P ratios. The balance between ecological deterministic processes and stochastic processes varied with seasons in the EIO. Meanwhile, conditionally rare taxa (CRT) were more likely modulated by variable selection processes than always rare taxa (ART) and abundant taxa (AT) (CRT > ART > AT). By linking assembly process and species co-occurrence, we demonstrated that the microbial co-occurrence associations tended to be higher when deterministic processes (mainly variable selection) were weaker. This negative trend was observed in rare species rather than abundant species. The linkage could enhance our understanding of the underlying mechanisms underpinning the generation and maintenance of microbial community diversity.
Collapse
Affiliation(s)
- Liuyang Li
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Laxman Pujari
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Wu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Danyue Huang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiu Wei
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Congcong Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Wenzhe Xu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Xingzhou Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
20
|
Tsafack N, Borges PAV, Xie Y, Wang X, Fattorini S. Emergent Rarity Properties in Carabid Communities From Chinese Steppes With Different Climatic Conditions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.603436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Species abundance distributions (SADs) are increasingly used to investigate how species community structure changes in response to environmental variations. SAD models depict the relative abundance of species recorded in a community and express fundamental aspects of the community structure, namely patterns of commonness and rarity. However, the influence of differences in environmental conditions on SAD characteristics is still poorly understood. In this study we used SAD models of carabid beetles (Coleoptera: Carabidae) in three grassland ecosystems (desert, typical, and meadow steppes) in China. These ecosystems are characterized by different aridity conditions, thus offering an opportunity to investigate how SADs are influenced by differences in environmental conditions (mainly aridity and vegetation cover, and hence productivity). We used various SAD models, including the meta-community zero sum multinomial (mZSM), the lognormal (PLN) and Fisher’s logseries (LS), and uni- and multimodal gambin models. Analyses were done at the level of steppe type (coarse scale) and for different sectors within the same steppe (fine scale). We found that the mZSM model provided, in general, the best fit at both analysis scales. Model parameters were influenced by the scale of analysis. Moreover, the LS was the best fit in desert steppe SAD. If abundances are rarefied to the smallest sample, results are similar to those without rarefaction, but differences in models estimates become more evident. Gambin unimodal provided the best fit with the lowest α-value observed in desert steppe and higher values in typical and meadow steppes, with results which were strongly affected by the scale of analysis and the use of rarefaction. Our results indicate that all investigated communities are adequately modeled by two similar distributions, the mZSM and the LS, at both scales of analyses. This indicates (1) that all communities are characterized by a relatively small number of species, most of which are rare, and (2) that the meta-communities at the large scale maintain the basic SAD shape of the local communities. The gambin multimodal models produced exaggerated α-values, which indicates that they overfit simple communities. Overall, Fisher’s α, mZSM θ, and gambin α-values were substantially lower in the desert steppe and higher in the typical and meadow steppes, which implies a decreasing influence of environmental harshness (aridity) from the desert steppe to the typical and meadow steppes.
Collapse
|
21
|
Wang L, Han M, Li X, Yu B, Wang H, Ginawi A, Ning K, Yan Y. Mechanisms of niche-neutrality balancing can drive the assembling of microbial community. Mol Ecol 2021; 30:1492-1504. [PMID: 33522045 DOI: 10.1111/mec.15825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
One hotspot of present community ecology is to uncover the mechanisms of community succession. In this study, two popular concepts, niche-neutrality dynamic balancing and co-occurrence network analysis, were integrated to investigate the dispersal dynamics of microbial communities in a freshwater river continuum in subtropical China. Results showed that when habitat conditions were mild and appropriate, such as in the clean upstream river, free of heavy pollution or long-lasting extreme disturbances, stochastic processes could increase species diversities, and organize communities into relatively loosely linked and stable networks with higher modularity and more modules. However, when conditions became degraded under heavy pollution, the influence of neutrality diminished, and niche-based selection imposed more constraints on communities and guided the assembling processes in certain directions: depleting species richness, strengthening interspecies connections and breaking boundaries of modules. Consequently, communities became more sensitive to fluctuations so as to deal with the harsh conditions efficiently. Another interesting finding was that, both as keystone taxa of communities, module hubs were mostly neutrally distributed generalists with high abundances, and were beneficial to many related operational taxonomic units. In contrast, connectors were less abundant and their distributions were more subjected to the environments. Therefore, connectors were probably responsible for the information transmission between microbial communities and environments, as well as between different modules, and thus could restrict the dispersal of microbes and guide the direction of community assembly.
Collapse
Affiliation(s)
- Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huading Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Amjed Ginawi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Ma Z(S. Niche-neutral theoretic approach to mechanisms underlying the biodiversity and biogeography of human microbiomes. Evol Appl 2021; 14:322-334. [PMID: 33664779 PMCID: PMC7896709 DOI: 10.1111/eva.13116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiome consists of five major regional biomes distributed in or on our five body sites including skin, oral, lung, gut, and reproductive tract. Its biogeography (the spatial and temporal distribution of its biodiversity) has far-reaching implications to our health and diseases. Nevertheless, we currently have very limited understanding on the mechanisms shaping the biogeography, since it is often rather difficult to determine the relative importance of drift, dispersal, speciation, and selection, the four processes (mechanisms) determining the patterns of microbial biogeography and community dynamics according to a recent synthesis in community ecology and biogeography. To disentangle these mechanisms, I utilize multisite neutral (MSN) model and niche-neutral hybrid (NNH) model to analyze large number of truly multisite microbiome samples covering all five major human microbiome habitats, including 699 metacommunities and 5,420 local communities. Approximately 89% of metacommunities and 92% local communities exhibit patterns indistinguishable from neutral, and 20% indistinguishable from niche-neutral hybrid model, indicating the relative significance of stochastic neutral forces versus deterministic niche selection in shaping the biogeography of human microbiome. These findings cast supporting evidence to van der Gast's revision to classic Bass-Becking doctrine of microbial biogeography: "Some things are everywhere and some things are not. Sometimes the environment selects and sometimes it doesn't," offering the first educated guess for "some" and "sometimes" in the revised doctrine. Furthermore, the logistic/Cox regression models describing the relationships among community neutrality, niche differentiation, and key community/species characteristics (including community diversity, community/species dominance, speciation, and migration rates) were constructed to quantitatively describe the niche-neutral continuum and the influences of community/species properties on the continuum.
Collapse
Affiliation(s)
- Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology LabState Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
23
|
Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus. FORESTS 2020. [DOI: 10.3390/f11070722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although woody plant encroachment of tropical forest ecosystems has been related to altered disturbance regimes, its impacts on the nearest neighborhood structures and community phylogenetics are still poorly understood. Streblus macrophyllus is a light-demanding species during its early life stages and is shade-tolerant as a mature tree. S. macrophyllus can be found in tropical karst evergreen forests in northern Vietnam. It often regenerates at high densities in anthropogenic disturbed forest stands. To understand the structural patterns of disturbed forests encroached by S. macrophyllus at different abundance levels, three fully mapped 1-ha plots were established in Cuc Phuong National Park. Methods considering the phylogenetic community and nearest neighbor statistics were applied to identify how community structure changes during S. macrophyllus encroachment. Results showed that phylogenetic distance, phylogenetic diversity, and mean phylogenetic distance increased when species diversity increased and the abundance of S. macrophyllus decreased in forest communities. Net related index values were positive, which indicates a clustered phylogenetic structure among all sampled forest communities. S. macrophyllus trees were mixed well with heterospecifics and had regular to aggregated distributions, whereas the species showed evidence of being a strong competitor with its neighbors. Competition could be a major ecological process regulating forest communities encroached by S. macrophyllus. According to the forest disturbance effects, phylogenetic community properties showed the loss of phylogenetic relatedness when S. macrophyllus increased in abundance. To our knowledge, S. macrophyllus encroaches tropical rain forest communities as a disturbance-adapted species.
Collapse
|
24
|
Wang L, Han M, Li X, Ginawi A, Ning K, Yan Y. Niche and Neutrality Work Differently in Microbial Communities in Fluidic and Non-fluidic Ecosystems. MICROBIAL ECOLOGY 2020; 79:527-538. [PMID: 31511911 DOI: 10.1007/s00248-019-01439-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
This data-intensive study investigated the delicate balance of niche and neutrality underlying microbial communities in freshwater ecosystems through comprehensive application of high-throughput sequencing, species abundance distribution (SAD), and the neutral community model (NCM), combined with species diversity and phylogenetic measures, which unite the traditional and microbial ecology. On the genus level, 45.10% and 41.18% of the water samples could be explained by the log-normal and Volkov model respectively, among which 31.37% could fit both models. Meanwhile, 55.56% of the sediment samples could be depicted by the log-normal model, and Volkov-fitted samples comprised only 13.33%. Besides, operational taxonomic units (OTUs) from water samples fit Sloan's neutral model significantly better than those in sediment. Therefore, it was concluded that deterministic processes played a great role in both water and sediment ecosystems, whereas neutrality was much more involved in water assemblages than in non-fluidic sediment ecosystems. Secondly, log-normal fitted samples had lower phylogenetic species variability (PSV) than Volkov-fitted ones, indicating that niche-based communities were more phylogenetically clustered than neutrally assembled counterparts. Additionally, further testing showed that the relative richness of rare species was vital to SAD modeling, either niche-based or neutral, and communities containing fewer rare species were more easily captured by theoretical SAD models.
Collapse
Affiliation(s)
- Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Amjed Ginawi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biotechnology and Ecology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
25
|
Thakur MP, Phillips HRP, Brose U, De Vries FT, Lavelle P, Loreau M, Mathieu J, Mulder C, Van der Putten WH, Rillig MC, Wardle DA, Bach EM, Bartz MLC, Bennett JM, Briones MJI, Brown G, Decaëns T, Eisenhauer N, Ferlian O, Guerra CA, König‐Ries B, Orgiazzi A, Ramirez KS, Russell DJ, Rutgers M, Wall DH, Cameron EK. Towards an integrative understanding of soil biodiversity. Biol Rev Camb Philos Soc 2020; 95:350-364. [PMID: 31729831 PMCID: PMC7078968 DOI: 10.1111/brv.12567] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Abstract
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species-energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent nature of soil biodiversity.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Helen R. P. Phillips
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biodiversity, Friedrich Schiller University JenaJenaThuringia, Germany
| | - Franciska T. De Vries
- School of Earth and Environmental Sciences, The University of ManchesterManchesterNorth West England, UK
| | | | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier UniversityMoulisOccitanie, France
| | - Jerome Mathieu
- Sorbonne Université, CNRS, UPECParisÎle-de-France, France
| | - Christian Mulder
- Department BiologicalGeological and Environmental Sciences, University of CataniaCataniaSicily, Italy
| | - Wim H. Van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
- Laboratory of NematologyWageningen UniversityWageningenGelderland, The Netherlands
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of BiologyBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - David A. Wardle
- Asian School for the Environment, Nanyang Technological UniversitySingaporeSingapore
| | - Elizabeth M. Bach
- Department of Biology and School of Global Environmental SustainabilityColorado State UniversityFort CollinsCOUSA
| | - Marie L. C. Bartz
- Center of Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraCentro, Portugal
- Universidade Positivo, Rua Professor Pedro Viriato Parigot de SouzaCuritiba Paraná, Brazil
| | - Joanne M. Bennett
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Martin Luther University Halle‐WittenbergHalle (Saale)Saxony-Anhalt, Germany
| | - Maria J. I. Briones
- Departamento de Ecología y Biología AnimalUniversidad de VigoVigoGalicien, Spain
| | | | - Thibaud Decaëns
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul‐Valéry Montpellier–EPHE)MontpellierOccitanie, France
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Carlos António Guerra
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Martin Luther University Halle‐WittenbergHalle (Saale)Saxony-Anhalt, Germany
| | - Birgitta König‐Ries
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Computer Science, Friedrich Schiller University JenaJenaThuringia, Germany
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Sustainable Resources DirectorateIspraVareseItaly
| | - Kelly S. Ramirez
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
| | - David J. Russell
- Senckenberg Museum of Natural History GörlitzGoerlitzSaxony, Germany
| | - Michiel Rutgers
- National Institute for Public Health and the EnvironmentBilthovenUtrecht, The Netherlands
| | - Diana H. Wall
- Department of Biology and School of Global Environmental SustainabilityColorado State UniversityFort CollinsCOUSA
| | - Erin K. Cameron
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, Uusimaa, Finland
- Department of Environmental ScienceSaint Mary's UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
26
|
Small phytoplankton dominate western North Atlantic biomass. ISME JOURNAL 2020; 14:1663-1674. [PMID: 32231247 PMCID: PMC7305139 DOI: 10.1038/s41396-020-0636-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 02/02/2023]
Abstract
The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-µm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms.
Collapse
|
27
|
Abstract
Background: The abundance of different species in a community often follows the log series distribution. Other ecological patterns also have simple forms. Why does the complexity and variability of ecological systems reduce to such simplicity? Common answers include maximum entropy, neutrality, and convergent outcome from different underlying biological processes. Methods: This article proposes a more general answer based on the concept of invariance, the property by which a pattern remains the same after transformation. Invariance has a long tradition in physics. For example, general relativity emphasizes the need for the equations describing the laws of physics to have the same form in all frames of reference. Results: By bringing this unifying invariance approach into ecology, we show that the log series pattern dominates when the consequences of processes acting on abundance are invariant to the addition or multiplication of abundance by a constant. The lognormal pattern dominates when the processes acting on net species growth rate obey rotational invariance (symmetry) with respect to the summing up of the individual component processes. Conclusions: Recognizing how these invariances connect pattern to process leads to a synthesis of previous approaches. First, invariance provides a simpler and more fundamental maximum entropy derivation of the log series distribution. Second, invariance provides a simple derivation of the key result from neutral theory: the log series at the metacommunity scale and a clearer form of the skewed lognormal at the local community scale. The invariance expressions are easy to understand because they uniquely describe the basic underlying components that shape pattern.
Collapse
Affiliation(s)
- Steven A. Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, 92697-2525, USA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
28
|
Wu X, Wang Y, Zhu Y, Tian H, Qin X, Cui C, Zhao L, Simonet P, Zhang X. Variability in the Response of Bacterial Community Assembly to Environmental Selection and Biotic Factors Depends on the Immigrated Bacteria, as Revealed by a Soil Microcosm Experiment. mSystems 2019; 4:e00496-19. [PMID: 31796565 PMCID: PMC6890929 DOI: 10.1128/msystems.00496-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 11/28/2022] Open
Abstract
Exploring the assembly mechanism of microbiota is critical for understanding soil ecosystem functions. However, the relative importance of different biotic and abiotic factors in determining the bacterial community has not been properly clarified. In this study, the effects of inocula and recipients on the assembly of the soil community were investigated to evaluate their importance by inoculation experiments with sterile soil. Two distinct soils, conventional nitrogen-fertilized soil and aromatic-compound-contaminated soil, were sterilized, cross inoculated, and incubated for 2 months under different inoculation doses and oxygen conditions. The results showed that the greatest variation in community structure emerged in the samples inoculated with distinct inocula rather than in the samples of different soil recipients. The phylogenies in the two inocula were diverse and dissimilar, although there were many ecologically equivalent bacteria. When the inocula with dissimilar ecologically equivalent species were used, the assembled communities were primarily determined by the inocula as indicated by the beta diversity and variation partitioning analyses. In contrast, environmental selection dominated the process when ecologically equivalent species in the inocula were similar, as when only one type of inoculum was used, where the soil habitat selected the most adaptive bacteria from the defined inoculum pool. These results indicate that inoculated bacteria are dominant over environmental selection if they are sufficiently dissimilar, although the effect of environmental selection is more obvious when similar bacteria are inoculated in the soil for community assembly. Our findings suggest that the immigration of exotic bacteria could be a primary factor impacting community assembly.IMPORTANCE The soil microbiota conducts important biological ecosystem functions, but the mechanism underlying community-environment interactions for soil microbiota remains unclear. By using two distinct soils for cross inoculation, we successfully simulated the assembly of the bacterial community in sterile soil. Thus, the reasons why inoculum and recipient have dominated community assembly in previous investigations are investigated in this study. We found that inoculated bacteria presided over environmental selection for community assembly due to the varied difference of ecological equivalent bacteria, either divergent or convergent. The significance of neutrality for the ecologically equivalent bacterial species that immigrated into the recipients should be emphasized in exploring the mechanisms of community assembly. Our finding is helpful for understanding the community-environment interaction, a basic question in ecology, and it would shed light on this issue that has perplexed scientists for many years.
Collapse
Affiliation(s)
- Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianchao Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Changzheng Cui
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Laboratoire AMPERE, CNRS, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Vasl A, Schindler BY, Kadas GJ, Blaustein L. Fine-scale substrate heterogeneity in green roof plant communities: The constraint of size. Ecol Evol 2019; 9:11557-11568. [PMID: 31695868 PMCID: PMC6822028 DOI: 10.1002/ece3.5517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/10/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity-diversity relationship (HDR) is commonly shown to be positive in accordance with classic niche processes. However, recent soil-based studies have often found neutral and even negative HDRs. Some of the suggested reasons for this discrepancy include the lack of resemblance between manipulated substrate and natural settings, the treated areas not being large enough to contain species' root span, and finally limited-sized plots may not sustain focal species' populations over time. Vegetated green roofs are a growing phenomenon in many cities that could be an ideal testing ground for this problem. Recent studies have focused on the ability of these roofs to sustain stable and diverse plant communities and substrate heterogeneity that would increase niches on the roof has been proposed as a method to attain this goal. We constructed an experimental design using green roof experimental modules (4 m2) where we manipulated mineral and organic substrate component heterogeneity in different subplots (0.25 m2) within the experimental module while maintaining the total sum of mineral and organic components. A local annual plant community was seeded in the modules and monitored over three growing seasons. We found that plant diversity and biomass were not affected by experimentally created substrate heterogeneity. In addition, we found that different treatments, as well as specific subplot substrates, had an effect on plant community assemblages during the first year but not during the second and third years. Substrate heterogeneity levels were mostly unchanged over time. The inability to retain plant community composition over the years despite the maintenance of substrate differences supports the hypothesis that maintenance of diversity is constrained at these spatial scales by unfavorable dispersal and increased stochastic events as opposed to predictions of classic niche processes.
Collapse
Affiliation(s)
- Amiel Vasl
- Kadas Green Roofs Ecology Research CenterInstitute of Evolution and Department of Evolutionary and Environmental BiologyFaculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Bracha Y. Schindler
- Kadas Green Roofs Ecology Research CenterInstitute of Evolution and Department of Evolutionary and Environmental BiologyFaculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Gyongyver J. Kadas
- Kadas Green Roofs Ecology Research CenterInstitute of Evolution and Department of Evolutionary and Environmental BiologyFaculty of Natural SciencesUniversity of HaifaHaifaIsrael
- Environmental Research GroupSustainability Research InstituteUniversity of East LondonLondonUK
| | - Leon Blaustein
- Kadas Green Roofs Ecology Research CenterInstitute of Evolution and Department of Evolutionary and Environmental BiologyFaculty of Natural SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
30
|
Loudermilk EL, Dyer L, Pokswinski S, Hudak AT, Hornsby B, Richards L, Dell J, Goodrick SL, Hiers JK, O’Brien JJ. Simulating Groundcover Community Assembly in a Frequently Burned Ecosystem Using a Simple Neutral Model. FRONTIERS IN PLANT SCIENCE 2019; 10:1107. [PMID: 31572417 PMCID: PMC6753978 DOI: 10.3389/fpls.2019.01107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Fire is a keystone process that drives patterns of biodiversity globally. In frequently burned fire-dependent ecosystems, surface fire regimes allow for the coexistence of high plant diversity at fine scales even where soils are uniform. The mechanisms on how fire impacts groundcover community dynamics are, however, poorly understood. Because fire can act as a stochastic agent of mortality, we hypothesized that a neutral mechanism might be responsible for maintaining plant diversity. We used the demographic parameters of the unified neutral theory of biodiversity (UNTB) as a foundation to model groundcover species richness, using a southeastern US pine woodland as an example. We followed the fate of over 7,000 individuals of 123 plant species for 4 years and two prescribed burns in frequently burned Pinus palustris sites in northwest FL, USA. Using these empirical data and UNTB-based assumptions, we developed two parsimonious autonomous agent models, which were distinct by spatially explicit and implicit local recruitment processes. Using a parameter sensitivity test, we examined how empirical estimates, input species frequency distributions, and community size affected output species richness. We found that dispersal limitation was the most influential parameter, followed by mortality and birth, and that these parameters varied based on scale of the frequency distributions. Overall, these nominal parameters were useful for simulating fine-scale groundcover communities, although further empirical analysis of richness patterns, particularly related to fine-scale burn severity, is needed. This modeling framework can be utilized to examine our premise that localized groundcover assemblages are neutral communities at high fire frequencies, as well as to examine the extent to which niche-based dynamics determine community dynamics when fire frequency is altered.
Collapse
Affiliation(s)
- E. Louise Loudermilk
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - Lee Dyer
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Scott Pokswinski
- Tall Timbers Research Station and Conservancy, Tallahassee, FL, United States
| | - Andrew T. Hudak
- USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, Moscow, ID, United States
| | - Benjamin Hornsby
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - Lora Richards
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Jane Dell
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Scott L. Goodrick
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - J. Kevin Hiers
- Tall Timbers Research Station and Conservancy, Tallahassee, FL, United States
| | - Joseph J. O’Brien
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| |
Collapse
|
31
|
Community Assembly Mechanisms Underlying the Core and Random Bacterioplankton and Microeukaryotes in a River–Reservoir System. WATER 2019. [DOI: 10.3390/w11061127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Whether bacterioplankton are assembled in the same way as microeukaryotes is a key question that has been answered only partially in microbial ecology. In particular, relating distribution patterns to the underlying ecological processes for plankton communities in highly dynamic ecosystems, such as river–reservoirs subjected to anthropogenic impacts, remains largely unstudied. Here, we analyzed taxonomic distribution patterns, and unraveled community assembly processes underlying the core and random bacterioplankton and microeukaryotes from a subtropical river–reservoir system. These plankton domains were modelled using the spatial abundance distributions (SpADs) of the operational taxonomic units (OTUs) as a proxy for abundant and rare taxa delineation. Both bacterioplankton and microeukaryote plankton communities exhibited significant distance–decay relationships, and samples were grouped depending on reservoir or river habitats. The neutral community model showed that 35–45% of the plankton community variation could be explained by neutral processes. The phylogenetic null model revealed that dispersal limitation accounted for the largest percentage of pairwise comparisons (42–68%), followed by environmental selection (18–25%). We concluded that similar prevalence of ecological processes acting on particular subsets of the bacterioplankton and microeukaryotes might have resulted from similar responses to environmental change, potentially induced by human activities in the watershed.
Collapse
|
32
|
Albright MBN, Chase AB, Martiny JBH. Experimental Evidence that Stochasticity Contributes to Bacterial Composition and Functioning in a Decomposer Community. mBio 2019; 10:e00568-19. [PMID: 30992354 PMCID: PMC6469972 DOI: 10.1128/mbio.00568-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Stochasticity emerging from random differences in replication, death, mutation, and dispersal is thought to alter the composition of ecological communities. However, the importance of stochastic effects remains somewhat speculative because stochasticity is not directly measured but is instead inferred from unexplained variations in beta-diversity. Here, we performed a field experiment to more directly disentangle the role of stochastic processes, environmental selection, and dispersal in the composition and functioning of a natural bacterial decomposer community in the field. To increase our ability to detect these effects, we reduced initial biological and environmental heterogeneity using replicate nylon litterbags in the field. We then applied two treatments: ambient/added precipitation and bacterial and fungal dispersal using "open" litterbags (made from 18.0-μm-pore-size mesh) ("open bacterial dispersal") versus bacterial and fungal dispersal using "closed" litterbags (made from 22.0-μm-pore-size mesh) ("closed bacterial dispersal"). After 5 months, we assayed composition and functioning by the use of three subsamples from each litterbag to disentangle stochastic effects from residual variation. Our results indicate that stochasticity via ecological drift can contribute to beta-diversity in bacterial communities. However, residual variation, which had previously been included in stochasticity estimates, accounted for more than four times as much variability. At the same time, stochastic effects on beta-diversity were not attenuated at the functional level, as measured by genetic functional potential and extracellular enzyme activity. Finally, dispersal was found to interact with precipitation availability to influence the degree to which stochasticity contributed to functional variation. Together, our results demonstrate that the ability to quantify stochastic processes is key to understanding microbial diversity and its role in ecosystem functioning.IMPORTANCE Randomness can alter the diversity and composition of ecological communities. Such stochasticity may therefore obscure the relationship between the environment and community composition and hinder our ability to predict the relationship between biodiversity and ecosystem functioning. This study investigated the role of stochastic processes, environmental selection, and dispersal in microbial composition and its functioning on an intact field community. To do this, we used a controlled and replicated experiment that was similar to that used to study population genetics in the laboratory. Our study showed that, while the stochastic effects on taxonomic composition are smaller than expected, the degree to which stochasticity contributes to variability in ecosystem processes may be much higher than previously assumed.
Collapse
Affiliation(s)
- Michaeline B N Albright
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Alexander B Chase
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Jennifer B H Martiny
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
33
|
Liu Z, Cichocki N, Hübschmann T, Süring C, Ofiţeru ID, Sloan WT, Grimm V, Müller S. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ Microbiol 2018; 21:164-181. [PMID: 30289191 PMCID: PMC7379589 DOI: 10.1111/1462-2920.14437] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/03/2018] [Accepted: 09/30/2018] [Indexed: 12/22/2022]
Abstract
In completely insular microbial communities, evolution of community structure cannot be shaped by the immigration of new members. In addition, when those communities are run in steady state, the influence of environmental factors on their assembly is reduced. Therefore, one would expect similar community structures under steady‐state conditions. Yet, in parallel setups, variability does occur. To reveal ecological mechanisms behind this phenomenon, five parallel reactors were studied at the single‐cell level for about 100 generations and community structure variations were quantified by ecological measures. Whether community variability can be controlled was tested by implementing soft temperature stressors as potential synchronizers. The low slope of the lognormal rank‐order abundance curves indicated a predominance of neutral mechanisms, i.e., where species identity plays no role. Variations in abundance ranks of subcommunities and increase in inter‐community pairwise β‐diversity over time support this. Niche differentiation was also observed, as indicated by steeper geometric‐like rank‐order abundance curves and increased numbers of correlations between abiotic and biotic parameters during initial adaptation and after disturbances. Still, neutral forces dominated community assembly. Our findings suggest that complex microbial communities in insular steady‐state environments can be difficult to synchronize and maintained in their original or desired structure, as they are non‐equilibrium systems.
Collapse
Affiliation(s)
- Zishu Liu
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Christine Süring
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Irina Dana Ofiţeru
- School of Engineering, Environmental Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - William T Sloan
- Department of Civil Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Volker Grimm
- Helmholtz Centre for Environmental Research-UFZ, Department of Ecological Modeling, Permoserstraße 15, 04318, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
34
|
Alroy J. Limits to species richness in terrestrial communities. Ecol Lett 2018; 21:1781-1789. [PMID: 30276942 DOI: 10.1111/ele.13152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 11/30/2022]
Abstract
Are communities limited by biotic interactions, or are they random draws from regional species pools? One way to tell is to compare total species counts in geographic regions to average counts in ecological samples falling within those regions. If species richness is limited regionally, then the relationship should be curvilinear even in a log-log space. Global sets of samples including trees and 10 groups of animals are analysed to test this hypothesis. Most relationships are indeed curvilinear. To explain these patterns, a simple model is proposed that invokes biotic interaction-limited speciation or immigration rates combined with extinction or extirpation rates that fall as the number of occupied patches increases. Local and regional richness come into balance as the rates trade off, causing global richness to also be limited. Surprisingly, however, the data for trees break the pattern, suggesting that the great adaptive radiation of seed plants may still be unfolding.
Collapse
Affiliation(s)
- John Alroy
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| |
Collapse
|
35
|
Marques N, Nomura F. Environmental and spatial factors affect the composition and morphology of tadpole assemblages. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding how community compositions are affected by environmental and spatial factors are essential to provide knowledge about the distributions of species. Furthermore, these factors can play a role in species morphological variation. Tadpoles can be found in different types of aquatic microhabitats, showing a considerable amount of morphological diversity. We hypothesized that tadpole morphological diversity is controlled by ecological and spatial factors other than assemblage attributes, and that tadpole assemblage composition is affected by spatial factors. To test these hypotheses, we recorded the abundance of tadpoles from different ponds, identified eight environmental variables that represented local and landscape descriptors of the ponds, recorded the spatial coordinates of the ponds, and measured the morphological variation of assemblages. Spatial factors significantly affected the composition of tadpole assemblages, while both spatial and environmental factors affected morphological variation. The ability of tadpoles to alter their morphology in response to environmental factors might be a result of poor oviposition site choice, and this probably interacts with spatial factors to control the assemblage composition of tadpoles. Morphological variation is advantageous for tadpoles because it allows them to adjust their morphology to environmental conditions. This study has demonstrated how factors that control the assemblage composition of tadpoles also drive their morphological diversity.
Collapse
Affiliation(s)
- N.C.S. Marques
- Pós Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiâia, Goiás 74001-970, Brazil
| | - F. Nomura
- Departamento de Ecologia, Universidade Federal de Goiás, Rodovia Nerópolis-Goiânia Km5 Campus II, Samambaia CP 131, Goiânia, Goiás, 74001-970, Brazil
| |
Collapse
|
36
|
Entropy, or Information, Unifies Ecology and Evolution and Beyond. ENTROPY 2018; 20:e20100727. [PMID: 33265816 PMCID: PMC7512290 DOI: 10.3390/e20100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
This article discusses how entropy/information methods are well-suited to analyzing and forecasting the four processes of innovation, transmission, movement, and adaptation, which are the common basis to ecology and evolution. Macroecologists study assemblages of differing species, whereas micro-evolutionary biologists study variants of heritable information within species, such as DNA and epigenetic modifications. These two different modes of variation are both driven by the same four basic processes, but approaches to these processes sometimes differ considerably. For example, macroecology often documents patterns without modeling underlying processes, with some notable exceptions. On the other hand, evolutionary biologists have a long history of deriving and testing mathematical genetic forecasts, previously focusing on entropies such as heterozygosity. Macroecology calls this Gini-Simpson, and has borrowed the genetic predictions, but sometimes this measure has shortcomings. Therefore it is important to note that predictive equations have now been derived for molecular diversity based on Shannon entropy and mutual information. As a result, we can now forecast all major types of entropy/information, creating a general predictive approach for the four basic processes in ecology and evolution. Additionally, the use of these methods will allow seamless integration with other studies such as the physical environment, and may even extend to assisting with evolutionary algorithms.
Collapse
|
37
|
Laan A, de Polavieja GG. Species diversity rises exponentially with the number of available resources in a multi-trait competition model. Proc Biol Sci 2018; 285:20181273. [PMID: 30158308 PMCID: PMC6125918 DOI: 10.1098/rspb.2018.1273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/06/2018] [Indexed: 11/12/2022] Open
Abstract
Theoretical studies of ecosystem models have generally concluded that large numbers of species will not stably coexist if the species are all competing for the same limited set of resources. Here, we describe a simple multi-trait model of competition where the presence of N resources will lead to the stable coexistence of up to 2 N species. Our model also predicts that the long-term dynamics of the population will lie on a neutral attractor hyperplane. When the population shifts within the hyperplane, its dynamics will behave neutrally, while shifts which occur perpendicular to the hyperplane will be subject to restoring forces. This provides a potential explanation of why complex ecosystems might exhibit both niche-like and neutral responses to perturbations. Like the neutral theory of biodiversity, our model generates good fits to species abundance distributions in several datasets but does so without needing to evoke inter-generational stochastic effects, continuous species creation or immigration dynamics. Additionally, our model is able to explain species abundance correlations between independent but similar ecosystems separated by more than 1400 km inside the Amazonian forests.
Collapse
Affiliation(s)
- Andres Laan
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
38
|
Saravia LA, Momo FR. Biodiversity collapse and early warning indicators in a spatial phase transition between neutral and niche communities. OIKOS 2018. [DOI: 10.1111/oik.04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leonardo A. Saravia
- Inst. de Ciencias, Univ. Nacional de General Sarmiento, J. M. Gutierrez 1159 (1613), Los Polvorines Buenos Aires Argentina
| | - Fernando R. Momo
- Inst. de Ciencias, Univ. Nacional de General Sarmiento, J. M. Gutierrez 1159 (1613), Los Polvorines Buenos Aires Argentina
- INEDES, Univ. Nacional de Luj n Luj n Argentina
| |
Collapse
|
39
|
Abstract
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.
Collapse
Affiliation(s)
- Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Consolidated Core Laboratory, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
40
|
Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol Mol Biol Rev 2017. [PMID: 29021219 DOI: 10.1128/mmbr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.
Collapse
Affiliation(s)
- Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Consolidated Core Laboratory, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
41
|
Tovo A, Suweis S, Formentin M, Favretti M, Volkov I, Banavar JR, Azaele S, Maritan A. Upscaling species richness and abundances in tropical forests. SCIENCE ADVANCES 2017; 3:e1701438. [PMID: 29057324 PMCID: PMC5647133 DOI: 10.1126/sciadv.1701438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico-generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.
Collapse
Affiliation(s)
- Anna Tovo
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Samir Suweis
- Dipartimento di Fisica e Astronomia, “Galileo Galilei,” Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Marco Formentin
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Marco Favretti
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Igor Volkov
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Jayanth R. Banavar
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - Sandro Azaele
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Amos Maritan
- Dipartimento di Fisica e Astronomia, “Galileo Galilei,” Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
42
|
Latombe G, Hui C, McGeoch MA. Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly. Proc Biol Sci 2017; 282:20152417. [PMID: 26702047 DOI: 10.1098/rspb.2015.2417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.
Collapse
Affiliation(s)
- Guillaume Latombe
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa African Institute for Mathematical Sciences, Cape Town 7945, South Africa
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
43
|
Dahlin KM. Spectral diversity area relationships for assessing biodiversity in a wildland-agriculture matrix. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2756-2766. [PMID: 27907259 DOI: 10.1002/eap.1390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Species-area relationships have long been used to assess patterns of species diversity across scales. Here, this concept is extended to spectral diversity using hyperspectral data collected by NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over western Michigan. This mixture of mesic forest and agricultural lands offers two end-points on the local-scale diversity continuum; one set of well-mixed forest patches and one set of highly homogeneous agricultural patches. Using the sum of the first three principal component values and the principal components' convex hull volume, spectral diversity was compared within and among these plots and to null expectations for perfectly random and perfectly patchy landscapes. Overall, the spectral diversity-area relationship confirms the patterns that would be expected for this landscape, but this application suggests that this approach could be extended to less well-understood landscapes and could reveal key insights about the relative importance of different drivers of community assembly, even in the absence of additional data about plant functional traits or species' identities.
Collapse
Affiliation(s)
- Kyla Marie Dahlin
- Department of Geography, Environment, and Spatial Sciences and Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, Geography Building, 673 Auditorium Road, East Lansing, Michigan, 48824, USA
| |
Collapse
|
44
|
Del Chierico F, Vernocchi P, Petrucca A, Paci P, Fuentes S, Praticò G, Capuani G, Masotti A, Reddel S, Russo A, Vallone C, Salvatori G, Buffone E, Signore F, Rigon G, Dotta A, Miccheli A, de Vos WM, Dallapiccola B, Putignani L. Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS One 2015; 10:e0137347. [PMID: 26332837 PMCID: PMC4557834 DOI: 10.1371/journal.pone.0137347] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022] Open
Abstract
The colonization and development of gut microbiota immediately after birth is highly variable and depends on several factors, such as delivery mode and modality of feeding during the first months of life. A cohort of 31 mother and neonate pairs, including 25 at-term caesarean (CS) and 6 vaginally (V) delivered neonates (DNs), were included in this study and 121 meconium/faecal samples were collected at days 1 through 30 following birth. Operational taxonomic units (OTUs) were assessed in 69 stool samples by phylogenetic microarray HITChip and inter- and intra-individual distributions were established by inter-OTUs correlation matrices and OTUs co-occurrence or co-exclusion networks. 1H-NMR metabolites were determined in 70 stool samples, PCA analysis was performed on 55 CS DNs samples, and metabolome/OTUs co-correlations were assessed in 45 CS samples, providing an integrated map of the early microbiota OTUs-metabolome. A microbiota "core" of OTUs was identified that was independent of delivery mode and lactation stage, suggesting highly specialized communities that act as seminal colonizers of microbial networks. Correlations among OTUs, metabolites, and OTUs-metabolites revealed metabolic profiles associated with early microbial ecological dynamics, maturation of milk components, and host physiology.
Collapse
Affiliation(s)
| | - Pamela Vernocchi
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Petrucca
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Diagnostic Science, Sant’Andrea Hospital, Rome, Italy
| | - Paola Paci
- CNR, Institute of Systems Analysis and Informatics Antonio Ruberti, Rome, Italy
| | - Susana Fuentes
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Giulia Praticò
- Department of Chemistry, Sapienza University, Rome, Italy
| | | | | | - Sofia Reddel
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Alessandra Russo
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Vallone
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Guglielmo Salvatori
- Department of Neonatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elsa Buffone
- Department of Neonatology, San Camillo Hospital, Rome, Italy
| | - Fabrizio Signore
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Giuliano Rigon
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Andrea Dotta
- Department of Neonatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Departments of Veterinary Biosciences and Bacteriology & Immunology, Helsinki University, Helsinki, Finland
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Unit of Parasitology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
45
|
Development of Spatial Distribution Patterns by Biofilm Cells. Appl Environ Microbiol 2015; 81:6120-8. [PMID: 26116674 DOI: 10.1128/aem.01614-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.
Collapse
|