1
|
He Y, Junker RR, Xiao J, Lasky JR, Cao M, Asefa M, Swenson NG, Xu G, Yang J, Sedio BE. Genetic and environmental drivers of intraspecific variation in foliar metabolites in a tropical tree community. THE NEW PHYTOLOGIST 2025; 246:2551-2564. [PMID: 40247823 DOI: 10.1111/nph.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Plant interactions with abiotic and biotic environments are mediated by diverse metabolites, which are crucial for stress response and defense. These metabolites can not only support diversity by shaping species niche differences but also display heritable and plastic intraspecific variation, which few studies have quantified in terms of their relative contributions. To address this shortcoming, we used untargeted metabolomics to annotate and quantify foliar metabolites and restriction-site associated DNA (RAD) sequencing to assess genetic distances among 300 individuals of 10 locally abundant species from a diverse tropical community in Southwest China. We quantified the relative contributions of relatedness and the abiotic and biotic environment to intraspecific metabolite variation, considering different biosynthetic pathways. Intraspecific variation contributed most to community-level metabolite diversity, followed by species-level variation. Biotic factors had the largest effect on total and secondary metabolites, while abiotic factors strongly influenced primary metabolites, particularly carbohydrates. The relative importance of these factors varied widely across different biosynthetic pathways and different species. Our findings highlight that intraspecific variation is an essential component of community-level metabolite diversity. Furthermore, species rely on distinct classes of metabolites to adapt to environmental pressures, with genetic, abiotic, and biotic factors playing pathway-specific roles in driving intraspecific variation.
Collapse
Affiliation(s)
- Yunyun He
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy Sciences, Beijing, 100049, China
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Jianhua Xiao
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, JiaYing University, Mei Zhou, Guangdong, 514015, China
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Min Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Mengesha Asefa
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Guorui Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jie Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan, 666303, China
| | - Brain E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843, Republic of Panama
| |
Collapse
|
2
|
Guerrero-Lagunes LA, Ruiz-Posadas LM, Cadena-Iñiguez J, Soto-Hernández RM, Avendaño-Arrazate CH, Aguirre-Medina JF, Soto-Mendoza C, Aguirre-Cadena JF. The Bioprospecting of Bixa orellana L. for the Selection of Characters with Biological Activity. Metabolites 2025; 15:115. [PMID: 39997740 PMCID: PMC11857669 DOI: 10.3390/metabo15020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
A meta-analysis of 28 sources of information was conducted, considering different variables in Bixa orellana, with the aim of identifying bioprospective variables. Variables were approached, such as the organ of extraction and extraction method, with 63 biochemical classes and 20 for biological activity, and their states were codified. The statistical analysis was developed through a cladistics analysis using the WinClada version1.00.08 84,85 software and the explicative accumulated variance was determined through a descriptive multivariate analysis and multiple correspondence analysis (MCA). The tree obtained showed the phenotype Africa1 as the one closest to the basal state. After Africa1, nine clades are derived and the phenotypes Colombia3 and Colombia5 were the most evolved. The analyses demonstrated that in B. orellana L., the phenotypes from India, Brazil, and Yucatán present anticancer activity against the cell lines U251, MCF-7, HeLa, NCI-H460, PC-3, A549 and HT-29, as well as biological activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, related primarily with biochemical compounds such as geranylgeraniol, ellagic acid, and carotenoids (bixin and norbixin), naringenin and alkaloids. The conditions of reproductive isolation of the phenotypes mentioned before providing the ideal agroclimatic conditions to produce compounds with biological activity.
Collapse
Affiliation(s)
- Luz A. Guerrero-Lagunes
- Colegio de Postgraduados, Campus Montecillo. Km. 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco 56264, Mexico; (L.A.G.-L.); (R.M.S.-H.); (C.S.-M.)
| | - Lucero M. Ruiz-Posadas
- Colegio de Postgraduados, Campus Montecillo. Km. 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco 56264, Mexico; (L.A.G.-L.); (R.M.S.-H.); (C.S.-M.)
| | - Jorge Cadena-Iñiguez
- Colegio de Postgraduados, Campus San Luis Potosí, Innovación en Manejo de Recursos Naturales, Iturbide 73, Salinas de Hidalgo, San Luis Potosí 78600, Mexico;
| | - Ramón Marcos Soto-Hernández
- Colegio de Postgraduados, Campus Montecillo. Km. 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco 56264, Mexico; (L.A.G.-L.); (R.M.S.-H.); (C.S.-M.)
| | - Carlos H. Avendaño-Arrazate
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Recursos Genéticos, Blvd. de la Biodiversidad #400 Rancho las Cruces Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Juan F. Aguirre-Medina
- Faculty of Agricultural Sciences—Campus IV, Autonomous University of Chiapas, Junction of the Coastal Highway and the Town of Huehuetán, Chiapas 30660, Mexico; (J.F.A.-M.); (J.F.A.-C.)
| | - Celeste Soto-Mendoza
- Colegio de Postgraduados, Campus Montecillo. Km. 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco 56264, Mexico; (L.A.G.-L.); (R.M.S.-H.); (C.S.-M.)
| | - Juan F. Aguirre-Cadena
- Faculty of Agricultural Sciences—Campus IV, Autonomous University of Chiapas, Junction of the Coastal Highway and the Town of Huehuetán, Chiapas 30660, Mexico; (J.F.A.-M.); (J.F.A.-C.)
| |
Collapse
|
3
|
Martínez-Lobos M, Silva V, Villena J, Jara-Gutiérrez C, Vera Quezada WE, Montenegro I, Madrid A. Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2989. [PMID: 39519908 PMCID: PMC11548438 DOI: 10.3390/plants13212989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Puya chilensis Mol. is a plant of the Bromeliaceae family, which has been traditionally used for medicinal applications in various digestive disorders. In this study, the phytoconstituents of six extracts of stems and flowers of P. chilensis were evaluated: phenols, flavonoids and total anthraquinones, as well as their antioxidant capacity and cytotoxicity in colon cancer cell lines HT-29. The data demonstrate that the ethyl acetate extract of P. chilensis flowers is cytotoxic in HT-29 cell lines (IC50 = 41.70 µg/mL) without causing toxic effects on healthy colon cells (IC50 > 100 µg/mL); also, this extract concentrated the highest amount of phenols (4.63 μg GAE/g d.e.), flavonoids (31.5 μg QE/g d.e.) and anthraquinones (12.60 μg EE/g d.e.) among all the extracts tested, which also correlated with its highlighted antioxidant capacity (DPPH∙IC50 = 4.15 mg/mL and FRAP 26.52 mM TEAC) over the other extracts. About thirty-five compounds were identified in this extract-the fatty acid esters present have been shown to have therapeutic effects on several types of cancer and could explain its antiproliferative activity.
Collapse
Affiliation(s)
- Manuel Martínez-Lobos
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Valentina Silva
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Waleska E. Vera Quezada
- Laboratorio de Química de Metabolitos Bioactivos, Escuela de Química y Farmacia, Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Iván Montenegro
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| |
Collapse
|
4
|
Thon FM, Müller C, Wittmann MJ. The evolution of chemodiversity in plants-From verbal to quantitative models. Ecol Lett 2024; 27:e14365. [PMID: 38362774 DOI: 10.1111/ele.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 12/09/2023] [Indexed: 02/17/2024]
Abstract
Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.
Collapse
Affiliation(s)
- Frans M Thon
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Faculty of Biology, Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Du ZY, Jenny Xiang QY, Cheng J, Zhou W, Wang QF, Soltis DE, Soltis PS. An updated phylogeny, biogeography, and PhyloCode-based classification of Cornaceae based on three sets of genomic data. AMERICAN JOURNAL OF BOTANY 2023; 110:e16116. [PMID: 36480351 DOI: 10.1002/ajb2.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
PREMISE A major goal of systematic biology is to uncover the evolutionary history of organisms and translate that knowledge into stable classification systems. Here, we integrate three sets of genome-wide data to resolve phylogenetic relationships in Cornaceae (containing only Cornus s.l.), reconstruct the biogeographic history of the clade, and provide a revised classification using the PhyloCode to stabilize names for this taxonomically controversial group. METHODS We conducted phylogenetic analyses using 312 single-copy nuclear genes and 70 plastid genes from Angiosperms353 Hyb-Seq, plus numerous loci from RAD-Seq. We integrated fossils using morphological data and produced a dated phylogeny for biogeographical analysis. RESULTS A well-resolved, strongly supported, comprehensive phylogeny was obtained. Biogeographic analyses support an origin and rapid diversification of Cornus into four morphologically distinct major clades in the Northern Hemisphere (with an eastern Asian ancestor) during the late Cretaceous. Dispersal into Africa from eastern Asia likely occurred along the Tethys Seaway during the Paleogene, whereas dispersal into South America likely occurred during the Neogene. Diversification within the northern hemisphere likely involved repeated independent colonization of new areas during the Paleogene and Neogene along the Bering Land Bridge, the North Atlantic Land Bridge, and the Tethys Seaway. Thirteen strongly supported clades were named following rules of the PhyloCode. CONCLUSIONS Our study provides an example of integrating genomic and morphological data to produce a robust, explicit species phylogeny that includes fossil taxa, which we translate into an updated classification scheme using the PhyloCode to stabilize names.
Collapse
Affiliation(s)
- Zhi-Yuan Du
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jin Cheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing-Feng Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611 FL, USA
- Department of Biology, University of Florida, Gainesville, 32611 FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611 FL, USA
| |
Collapse
|
6
|
Morrison JA, Woldemariam M. Ecological and metabolomic responses of plants to deer exclosure in a suburban forest. Ecol Evol 2022; 12:e9475. [PMID: 36381402 PMCID: PMC9643135 DOI: 10.1002/ece3.9475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Trees and shrubs in suburban forests can be subject to chronic herbivory from abundant white-tailed deer, influencing survival, growth, secondary metabolites, and ecological success in the community. We investigated how deer affect the size, cover, and metabolomes of four species in the understory of a suburban forest in central New Jersey, USA: the woody shrubs Euonymus alatus and Lindera benzoin, the tree Nyssa sylvatica, and the semi-woody shrub Rosa multiflora. For each species, we compared plants in 38 16 m2 plots with or without deer exclosure, measuring proportion cover and mean height after 6.5 years of fencing. We scored each species in all plots for deer browsing over 8 years and assessed selection by deer among the species. We did untargeted metabolomics by sampling leaves from three plants of each species in an equal number of fenced and unfenced plots, conducting chloroform-methanol extractions followed by LC-MS/MS, and conducting statistical analysis on MetaboAnalyst. The proportion of a species browsed ranged from 0.24 to 0.35. Nyssa sylvatica appeared most selected by and susceptible to deer; in unfenced plots, both its cover and mean height were significantly lower. Only cover or height was lower for E. alatus and L. benzoin in unfenced plots, while R. multiflora height was greater. The metabolomic analysis identified 2333 metabolites, which clustered by species but not fencing treatment. However, targeted analysis of the top metabolites grouped by fencing for all samples and for each species alone and was especially clear in N. sylvatica, which also grouped by fencing using all metabolites. The most significant metabolites that were upregulated in fenced plants include some involved in defense-related metabolic pathways, e.g., monoterpenoid biosynthesis. In overbrowsed suburban forests, variation of deer impact on species' ecological success, potentially mediated by metabolome-wide chemical responses to deer, may contribute to changes in community structure.
Collapse
|
7
|
Kudjordjie EN, Hooshmand K, Sapkota R, Darbani B, Fomsgaard IS, Nicolaisen M. Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiol Spectr 2022; 10:e0122622. [PMID: 35766498 PMCID: PMC9430778 DOI: 10.1128/spectrum.01226-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli (FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the A. thaliana root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. IMPORTANCE Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible Arabidopsis ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Behrooz Darbani
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Inge S. Fomsgaard
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| |
Collapse
|
8
|
Trogisch S, Liu X, Rutten G, Xue K, Bauhus J, Brose U, Bu W, Cesarz S, Chesters D, Connolly J, Cui X, Eisenhauer N, Guo L, Haider S, Härdtle W, Kunz M, Liu L, Ma Z, Neumann S, Sang W, Schuldt A, Tang Z, van Dam NM, von Oheimb G, Wang MQ, Wang S, Weinhold A, Wirth C, Wubet T, Xu X, Yang B, Zhang N, Zhu CD, Ma K, Wang Y, Bruelheide H. The significance of tree-tree interactions for forest ecosystem functioning. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhou W, Soghigian J, Xiang QYJ. A New Pipeline for Removing Paralogs in Target Enrichment Data. Syst Biol 2021; 71:410-425. [PMID: 34146111 PMCID: PMC8974407 DOI: 10.1093/sysbio/syab044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Target enrichment (such as Hyb-Seq) is a well-established high throughput sequencing
method that has been increasingly used for phylogenomic studies. Unfortunately, current
widely used pipelines for analysis of target enrichment data do not have a vigorous
procedure to remove paralogs in target enrichment data. In this study, we develop a
pipeline we call Putative Paralogs Detection (PPD) to better address putative paralogs
from enrichment data. The new pipeline is an add-on to the existing HybPiper pipeline, and
the entire pipeline applies criteria in both sequence similarity and heterozygous sites at
each locus in the identification of paralogs. Users may adjust the thresholds of sequence
identity and heterozygous sites to identify and remove paralogs according to the level of
phylogenetic divergence of their group of interest. The new pipeline also removes highly
polymorphic sites attributed to errors in sequence assembly and gappy regions in the
alignment. We demonstrated the value of the new pipeline using empirical data generated
from Hyb-Seq and the Angiosperms353 kit for two woody genera Castanea
(Fagaceae, Fagales) and Hamamelis (Hamamelidaceae, Saxifragales).
Comparisons of data sets showed that the PPD identified many more putative paralogs than
the popular method HybPiper. Comparisons of tree topologies and divergence times showed
evident differences between data from HybPiper and data from our new PPD pipeline. We
further evaluated the accuracy and error rates of PPD by BLAST mapping of putative
paralogous and orthologous sequences to a reference genome sequence of Castanea
mollissima. Compared to HybPiper alone, PPD identified substantially more
paralogous gene sequences that mapped to multiple regions of the reference genome (31
genes for PPD compared with 4 genes for HybPiper alone). In conjunction with HybPiper,
paralogous genes identified by both pipelines can be removed resulting in the construction
of more robust orthologous gene data sets for phylogenomic and divergence time analyses.
Our study demonstrates the value of Hyb-Seq with data derived from the Angiosperms353
probe set for elucidating species relationships within a genus, and argues for the
importance of additional steps to filter paralogous genes and poorly aligned regions
(e.g., as occur through assembly errors), such as our new PPD pipeline described in this
study. [Angiosperms353; Castanea; divergence time;
Hamamelis; Hyb-Seq, paralogs, phylogenomics.]
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27965, USA
| | - John Soghigian
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27965, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27965, USA
| |
Collapse
|
10
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
11
|
Karmakar K, Krishna S, Majumdar S, Nath U, Nataraj KN, Prakash NB, Chakravortty D. Co-cultivation of Beta vulgaris limits the pre-harvest colonization of foodborne pathogen (Salmonella spp.) on tomato. Int J Food Microbiol 2020; 332:108768. [PMID: 32623289 DOI: 10.1016/j.ijfoodmicro.2020.108768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/23/2022]
Abstract
Soil-borne Salmonella is associated with a large number of food-related disease outbreaks linked to pre-harvest contamination of plants (like tomato) in agricultural fields. Controlling the spread of Salmonella at field is very important in order to prevent various food-borne illnesses. One such approach involves the utilization of antimicrobial secondary metabolite of plant origin. We screened common salad vegetables for anti-Salmonella activity. Beta vulgaris root (beetroot) had very low colonization of Salmonella under in vitro conditions. We hypothesized that beetroot can be used to reclaim the soil contaminated with Salmonella. Cultivation of B. vulgaris in Salmonella treated soil brings down its CFU significantly. Since these antimicrobial effects are non-specific, a co-cultivation system of beet and tomato (a Salmonella susceptible plant) was used to analyze the effect on soil and its microbiota. The soil physicochemical properties and bacterial diversity were unaffected when tomato and beet co-cultivation was used. However, Salmonella burden on the tomato was reduced and its yield was restored. Thus, the inclusion of these crops in the crop-rotation or as a mixed/intercrop or as a bio-control crop can be a fruitful tool to reclaim the Salmonella contaminated soil.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Cooch Behar 736165, India.
| | - Sindhu Krishna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sabyasachi Majumdar
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Bangalore 560065, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Karaba N Nataraj
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - N B Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Bangalore 560065, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Anderson J, Song BH. Plant adaptation to climate change - Where are we? JOURNAL OF SYSTEMATICS AND EVOLUTION 2020; 58:533-545. [PMID: 33584833 PMCID: PMC7875155 DOI: 10.1111/jse.12649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Climate change poses critical challenges for population persistence in natural communities, agriculture and environmental sustainability, and food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and if adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in-depth understanding of these eco-evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function, to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting-edge omics toolkits, novel ecological strategies, newly-developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.
Collapse
Affiliation(s)
- Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| |
Collapse
|
13
|
De La Pascua DR, Smith-Winterscheidt C, Dowell JA, Goolsby EW, Mason CM. Evolutionary trade-offs in the chemical defense of floral and fruit tissues across genus Cornus. AMERICAN JOURNAL OF BOTANY 2020; 107:1260-1273. [PMID: 32984956 DOI: 10.1002/ajb2.1540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Defense investment in plant reproductive structures is relatively understudied compared to the defense of vegetative organs. Here the evolution of chemical defenses in reproductive structures is examined in light of the optimal defense, apparency, and resource availability hypotheses within the genus Cornus using a phylogenetic comparative approach in relation to phenology and native habitat environmental data. METHODS Individuals representing 25 Cornus species were tracked for reproductive phenology over a full growing season at the Arnold Arboretum of Harvard University. Floral, fruit, and leaf tissue was sampled to quantify defensive chemistry as well as fruit nutritional traits relevant to bird dispersal. Native habitat environmental characteristics were estimated using locality data from digitized herbarium records coupled with global soil and climate data sets. RESULTS The evolution of later flowering was correlated with increased floral tannins, and the evolution of later fruiting was correlated with increased total phenolics. Leaves were found to contain the highest tannin activity, while inflorescences contained the highest total flavonoids. Multiple aspects of fruit defensive chemistry were correlated with fruit nutritional traits. Floral and fruit defensive chemistry were evolutionarily correlated with aspects of native habitat temperature, precipitation, and soil characteristics. CONCLUSIONS Results provide tentative support for the apparency hypothesis with respect to both flower and fruit phenology, while relative concentrations of secondary metabolites across organs provide mixed support for the optimal defense hypothesis. The evolution of reproductive defense with native habitat provides, at best, mixed support for the resource availability hypothesis.
Collapse
Affiliation(s)
| | | | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
- Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
14
|
Chemical and Antifungal Variability of Several Accessions of Azadirachta indica A. Juss. from Six Locations Across the Colombian Caribbean Coast: Identification of Antifungal Azadirone Limonoids. PLANTS 2019; 8:plants8120555. [PMID: 31795367 PMCID: PMC6963471 DOI: 10.3390/plants8120555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Plant materials (i.e., leaves, fruits, and seeds) from 40 trees of Azadirachta indica A. Juss. were collected from six different locations across the Colombian Caribbean coast. Eighty-four ethanolic extracts were prepared and the total limonoid contents (TLiC) and the antifungal activity against Fusarium oxysporum conidia were measured. Their chemical profiles were also recorded via liquid chromatography-electrospray ionization interface-mass spectrometry (LC-ESI-MS) analysis and the top-ranked features were then annotated after supervised multivariate statistics. Inter-location chemical variability within sample set was assessed by sparse partial least squares discriminant analysis (sPLS-DA) and the chemical profiles and biological activity datasets were integrated through single-Y orthogonal partial least squares (OPLS) to identify antifungal bioactives in test extracts. The TLiC and antifungal activity (IC50 values) of the A. indica-derived extracts were found to be ranging from 4.5 to 48.5 mg limonin equivalent per g dry extract and 0.08-44.8 μg/mL, respectively. The presence/abundance of particular limonoids between collected samples influenced the variability among locations. In addition, the integration of chemical and antifungal activity datasets showed five features as markers probably contributing to the bioactivity, annotated as compounds with an azadirone-like moiety. To validate the information provided by the single-Y OPLS model, a high performance liquid chromatography (HPLC)-based microfractionation was then carried out on an active extract. The combined plot of chromatographic profile and microfraction bioactivity also evidenced five signals possessing the highest antifungal activity. The most active limonoid was identified as nimonol 1. Hence, this untargeted metabolite profiling was considered as a convenient tool for identifying metabolites as inter-location markers as well as antifungals against Fusarium oxysporum.
Collapse
|