1
|
Shryock DF, Lê N, DeFalco LA, Esque TC. Concordant Signal of Genetic Variation Across Marker Densities in the Desert Annual Chylismia brevipes Is Linked With Timing of Winter Precipitation. Evol Appl 2024; 17:e70046. [PMID: 39691745 PMCID: PMC11649585 DOI: 10.1111/eva.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Climate change coupled with large-scale surface disturbances necessitate active restoration strategies to promote resilient and genetically diverse native plant communities. However, scarcity of native plant materials hinders restoration efforts, leading practitioners to choose from potentially viable but nonlocal seed sources. Genome scans for genetic variation linked with selective environmental gradients have become a useful tool in such efforts, allowing rapid delineation of seed transfer zones along with predictions of genomic vulnerability to climate change. When properly applied, genome scans can reduce the risk of maladaptation due to mismatches between seed source and planting site. However, results are rarely replicated among complimentary data sources. Here, we compared RAD-seq datasets with 819 and 2699 SNPs (in 625 and 356 individuals, respectively) from the Mojave Desert winter annual Chylismia brevipes. Overall, we found that the datasets consistently characterized both neutral population structure and genetic-environmental associations. Ancestry analyses indicated consistent spatial genetic structuring into four regional populations. We also detected a marked signal of isolation by resistance (IBR), wherein spatial genetic structure was better explained by habitat resistance than by geographic distance. Potentially adaptive loci identified from genome scans were associated with the same environmental gradients-fall precipitation, winter minimum temperature, and precipitation timing-regardless of dataset. Paired with our finding that habitat resistance best explained genetic divergence, our results suggest that isolation of populations within environmentally similar habitats-and subsequent local adaption along gradients parallel to these habitats-drive genome-wide divergence in this species. Moreover, strong genetic associations with winter precipitation timing, along with forecasted shifts in precipitation regime due to midcentury climate change, could impact future population dynamics, habitat distribution, and genetic connectivity for C. brevipes populations within the Mojave Desert.
Collapse
Affiliation(s)
- Daniel F Shryock
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| | - Nila Lê
- California Botanic Garden Claremont California USA
| | - Lesley A DeFalco
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| | - Todd C Esque
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| |
Collapse
|
2
|
Gade F, Metz J. Competition, Drought, Season Length? Disentangling Key Factors for Local Adaptation in Two Mediterranean Annuals across Combined Macroclimatic and Microclimatic Aridity Gradients. Ecol Evol 2024; 14:e70513. [PMID: 39530034 PMCID: PMC11550922 DOI: 10.1002/ece3.70513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Competition in mesic sites and drought stress combined with short growing seasons in drier sites are key environmental factors along macroclimatic aridity gradients. They impose a triangular trade-off for local adaptation. However, as experiments have rarely disentangled their effects on plant fitness, uncertainty remained whether mesic populations are indeed better competitors and drier populations better adapted to drought stress and short season length. Aridity differs also at microclimatic scale between north (more mesic) and south (more arid) exposed hill-slopes. Little is known whether local adaptation occurs among exposures and whether south exposures harbor conspecifics better adapted to drier climates that could provide adaptive reservoirs under climate change. We sampled two Mediterranean annuals (Brachypodium hybridum, Hedypnois rhagadioloides) in 15 sites along a macroclimatic aridity gradient (89-926 mm rainfall) on corresponding north and south exposures. In a large greenhouse experiment, we measured their fitness under drought stress, competition, and short vs. long growing seasons. Along the macroclimatic gradient, mesic populations were better competitors under benign conditions. Drier populations performed no better under drought stress per se but coped better with the short growing seasons typical for drier macroclimates. At microclimatic scale, north exposure plants were slightly better competitors in H. rhagadioloides; in B. hybridum, south exposure plants coped better with drought under short season length. We demonstrate that local adaptation to drier macroclimates is trading-off with competitive ability under benign conditions and vice-versa. Drought escape via short life-cycles was the primary adaptation to drier macroclimates, suggesting that intensified drought stress within the growing season under climate change challenges arid and mesic populations alike. Moreover, the drier microclimates at south exposures exhibited some potential as nearby reservoirs of drier-adapted genotypes. This potential needs further investigation, yet may assist populations to persist under climate change and lessen the need for long-distance migration.
Collapse
Affiliation(s)
- Florian Gade
- Plant Ecology & Nature Conservation Group, Institute of Biology & ChemistryUniversity of HildesheimHildesheimGermany
| | - Johannes Metz
- Plant Ecology & Nature Conservation Group, Institute of Biology & ChemistryUniversity of HildesheimHildesheimGermany
| |
Collapse
|
3
|
Kurze S, Ouyang J, Gade F, Katz O, Schaller J, Metz J. Ecotypic differentiation of leaf silicon concentration in the grass Brachypodium hybridum along a rainfall gradient. FRONTIERS IN PLANT SCIENCE 2024; 15:1417721. [PMID: 39524562 PMCID: PMC11544377 DOI: 10.3389/fpls.2024.1417721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Ecotypic differentiation, reflected in substantial trait differences across populations, has been observed in various plant species distributed across aridity gradients. Nevertheless, ecotypic differentiation in leaf silicon concentration, known to alleviate drought stress in plants, remained hardly explored. Here, we provide a systematic test for ecotypic differentiation in leaf silicon concentration along two aridity gradients in the grass Brachypodium hybridum in Israel. Seed material was sampled in 15 sites along a macroclimatic aridity gradient (89 - 926 mm mean annual rainfall) and from corresponding north (moister) and south (more arid) exposed slopes (microclimatic gradient) at similar altitudes (mean north: 381 m a.s.l., mean south: 385 m a.s.l.). Plants were subsequently grown under common conditions and their leaf silicon concentration was analysed. Leaf silicon concentration increased with increasing aridity across the macroclimatic gradient, but did not differ between north and south slopes. The higher leaf silicon concentrations under more arid conditions can enhance the ability of plants to cope with more arid conditions by two mutually not exclusive mechanisms: (i) withstanding drought by reducing water loss and increasing water uptake or (ii) escaping drought by facilitating fast growth. Our study highlights that leaf silicon concentration contributes to ecotypic differentiation in annual grasses along macroclimatic aridity gradients.
Collapse
Affiliation(s)
- Susanne Kurze
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Jinyu Ouyang
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Florian Gade
- Plant Ecology and Nature Conservation, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel
- Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Johannes Metz
- Plant Ecology and Nature Conservation, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
4
|
Jinga P, Manyangadze T. Variable intraspecific response to climate change in a medicinally important African tree species, Vachellia sieberiana (DC.) (paperbark thorn). Ecol Evol 2024; 14:e11314. [PMID: 38694755 PMCID: PMC11056962 DOI: 10.1002/ece3.11314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change is predicted to disproportionately impact sub-Saharan Africa, with potential devastating consequences on plant populations. Climate change may, however, impact intraspecific taxa differently. The aim of the study was to determine the current distribution and impact of climate change on three varieties of Vachellia sieberiana, that is, var. sieberiana, var. villosa and var. woodii. Ensemble species distribution models (SDMs) were built in "biomod2" using 66, 45, and 137 occurrence records for var. sieberiana, var. villosa, and var. woodii, respectively. The ensemble SDMs were projected to 2041-2060 and 2081-2100 under three general circulation models (GCMs) and two shared socioeconomic pathways (SSPs). The three GCMs were the Canadian Earth System Model version 5, the Institut Pierre-Simon Laplace Climate Model version 6A Low Resolution, and the Model for Interdisciplinary Research on Climate version 6. The suitable habitat of var. sieberiana predominantly occurs in the Sudanian and Zambezian phytochoria while that of var. villosa largely occurs in the Sudanian phytochorion. The suitable habitat of var. woodii mainly occurs in the Zambezian phyotochorion. There is coexistence of var. villosa and var. sieberiana in the Sudanian phytochorion while var. sieberiana and var. woodii coexist in the Zambezian phytochorion. Under SSP2-4.5 in 2041-2060 and averaged across the three GCMs, the suitable habitat expanded by 33.8% and 119.7% for var. sieberiana and var. villosa, respectively. In contrast, the suitable habitat of var. woodii contracted by -8.4%. Similar trends were observed in 2041-2060 under SSP5-8.5 [var. sieberiana (38.6%), var. villosa (139.0%), and var. woodii (-10.4%)], in 2081-2100 under SSP2-4.5 [var. sieberiana (4.6%), var. villosa (153.4%), and var. woodii (-14.4%)], and in 2081-2100 under SSP5-8.5 [var. sieberiana (49.3%), var. villosa (233.4%), and var. woodii (-30.7%)]. Different responses to climate change call for unique management and conservation decisions for the varieties.
Collapse
Affiliation(s)
- Percy Jinga
- Biological Sciences DepartmentBindura University of Science EducationBinduraZimbabwe
| | - Tawanda Manyangadze
- Geosciences DepartmentBindura University of Science EducationBinduraZimbabwe
| |
Collapse
|
5
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Hankin LE, Leger EA, Bisbing SM. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2897. [PMID: 37305925 DOI: 10.1002/eap.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Forest persistence in regions impacted by increasing water and temperature stress will depend upon species' ability to either rapidly adjust to novel conditions or migrate to track ecological niches. Predicted, rapid climate change is likely to outpace the adaptive and migratory capacity of long-lived isolated tree species, and reforestation may be critical to species' persistence. Facilitating persistence both within and beyond a species' range requires identification of seed lots best adapted to the current and future conditions predicted with rapid climate change. We evaluate variation in emergent seedling performance that leads to differential survival among species and populations for three high elevation five-needle pines. We paired a fully reciprocal field common garden experiment with a greenhouse common garden study to (1) quantify variation in seedling emergence and functional traits, (2) ask how functional traits affect performance under different establishment conditions, and (3) evaluate whether trait and performance variation demonstrates local adaptation and plasticity. Among study species-limber, Great Basin bristlecone, and whitebark pines-we found divergence in emergence and functional traits, though soil moisture was the strongest driver of seedling emergence and abundance across all species. Generalist limber pine had a clear emergence advantage as well as traits associated with drought adaptation, while edaphic specialist bristlecone pine was characterized by low emergence yet high early survival once established. Despite evidence for edaphic specialization, soil characteristics alone did not explain bristlecone success. Across species, trait-environment relationships provided some evidence for local adaptation in drought-adapted traits, but we found no evidence of local adaptation in emergence or survival at this early life stage. For managers looking to promote persistence, sourcing seed from drier environments is likely to impart greater drought resistance into reforestation efforts through strategies such as greater root investment, increasing the probability of early seedling survival. This research demonstrates, through a rigorous reciprocal transplant experimental design, that it may be possible to select climate- and soil-appropriate seed sources for reforestation. However, planting success will ultimately rely on a suitable establishment environment, requiring careful consideration of interannual climate variability for management interventions in these climate and disturbance-impacted tree species.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Elizabeth A Leger
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Sarah M Bisbing
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
7
|
Warson J, Baguette M, Stevens VM, Honnay O, De Kort H. The impact of habitat loss on molecular signatures of coevolution between an iconic butterfly (Alcon blue) and its host plant (Marsh gentian). J Hered 2023; 114:22-34. [PMID: 36749638 DOI: 10.1093/jhered/esac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Habitat loss is threatening natural communities worldwide. Small and isolated populations suffer from inbreeding and genetic drift, which jeopardize their long-term survival and adaptive capacities. However, the consequences of habitat loss for reciprocal coevolutionary interactions remain poorly studied. In this study, we investigated the effects of decreasing habitat patch size and connectivity associated with habitat loss on molecular signatures of coevolution in the Alcon blue butterfly (Phengaris alcon) and its most limited host, the marsh gentian (Gentiana pneumonanthe). Because reciprocal coevolution is characterized by negative frequency-dependent selection as a particular type of balancing selection, we investigated how signatures of balancing selection vary along a gradient of patch size and connectivity, using single nucleotide polymorphisms (SNPs). We found that signatures of coevolution were unaffected by patch characteristics in the host plants. On the other hand, more pronounced signatures of coevolution were observed in both spatially isolated and in large Alcon populations, together with pronounced spatial variation in SNPs that are putatively involved in coevolution. These findings suggest that habitat loss can facilitate coevolution in large butterfly populations through limiting swamping of locally beneficial alleles by maladaptive ones. We also found that allelic richness (Ar) of the coevolutionary SNPs is decoupled from neutral Ar in the butterfly, indicating that habitat loss has different effects on coevolutionary as compared with neutral processes. We conclude that this specialized coevolutionary system requires particular conservation interventions aiming at generating a spatial mosaic of both connected and of isolated habitat to maintain coevolutionary dynamics.
Collapse
Affiliation(s)
- Jonas Warson
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Michel Baguette
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'HistoireNaturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Hanne De Kort
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
8
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
9
|
McClinton JD, Kulpa SM, Grames EM, Leger EA. Field observations and remote assessment identify climate change, recreation, invasive species, and livestock as top threats to critically imperiled rare plants in Nevada. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
IntroductionRare plant species comprise >36.5% of the world’s flora and disproportionately support ecosystem function and resilience. However, rare species also lead global plant extinctions, and unique ecological characteristics can make them vulnerable to anthropogenic pressure. Despite their vulnerability, many rare plants receive less monitoring than is needed to inform conservation efforts due to limited capacity for field surveys.MethodsWe used field observations and geospatial data to summarize how 128 imperiled, rare vascular plant species in Nevada are affected by various threats. We assessed correlations between threats predicted by geospatial data and threats observed on the ground and asked how historic and current threats compare.ResultsThe most commonly observed threats were from recreation, invasive and non-native/alien species, and livestock farming and ranching. Threat prevalence varied by elevation (e.g., a greater variety of threats at lower elevations, greater threat from climate change observed at higher elevations) and land management. There was a 28.1% overall correlation between predicted and observed threats, which was stronger for some threats (e.g., development of housing and urban areas, livestock farming and ranching) than others. All species experienced extreme climatic differences during 1990-2020 compared to baseline conditions, with the most extreme change in southern Nevada. The average number of threats observed per occurrence increased by 0.024 each decade.DiscussionWhile geospatial data did not perfectly predict observed threats, many of these occurrences have not been visited in over 30 years, and correlations may be stronger than we were able to detect here. Our approach can be used to help guide proactive monitoring, conservation, and research efforts for vulnerable species.
Collapse
|
10
|
Zaiats A, Requena‐Mullor JM, Germino MJ, Forbey JS, Richardson BA, Caughlin TT. Spatial models can improve the experimental design of field-based transplant gardens by preventing bias due to neighborhood crowding. Ecol Evol 2022; 12:e9630. [PMID: 36532138 PMCID: PMC9750843 DOI: 10.1002/ece3.9630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/16/2022] Open
Abstract
Field-based transplant gardens, including common and reciprocal garden experiments, are a powerful tool for studying genetic variation and gene-by-environment interactions. These experiments assume that individuals within the garden represent independent replicates growing in a homogenous environment. Plant neighborhood interactions are pervasive across plant populations and could violate assumptions of transplant garden experiments. We demonstrate how spatially explicit models for plant-plant interactions can provide novel insights on genotypes' performance in field-transplant garden designs. We used individual-based models, based on data from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial plant-plant interactions on between-group differences in plant growth. We found that planting densities within the range of those used in many common gardens can bias experimental outcomes. Our results demonstrate that higher planting densities can lead to inflated group differences and may confound genotypes' competitive ability and genetically underpinned variation. Synthesis. We propose that spatially explicit models can help avoid biased results by informing the design and analysis of field-based transplant garden experiments. Alternately, including neighborhood effects in post hoc analyses of transplant garden experiments is likely to provide novel insights into the roles of biotic factors and density dependence in genetic differentiation.
Collapse
Affiliation(s)
| | | | - Matthew J. Germino
- U.S. Geological Survey Forest and Rangeland Ecosystem Science CenterBoiseIdahoUSA
| | | | | | | |
Collapse
|
11
|
Costa e Silva J, Potts BM, Wiehl G, Prober SM. Linking leaf economic and hydraulic traits with early-age growth performance and survival of Eucalyptus pauciflora. FRONTIERS IN PLANT SCIENCE 2022; 13:973087. [PMID: 36426150 PMCID: PMC9679299 DOI: 10.3389/fpls.2022.973087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Selection on plant functional traits may occur through their direct effects on fitness (or a fitness component), or may be mediated by attributes of plant performance which have a direct impact on fitness. Understanding this link is particularly challenging for long-lived organisms, such as forest trees, where lifetime fitness assessments are rarely achievable, and performance features and fitness components are usually quantified from early-life history stages. Accordingly, we studied a cohort of trees from multiple populations of Eucalyptus pauciflora grown in a common-garden field trial established at the hot and dry end of the species distribution on the island of Tasmania, Australia. We related the within-population variation in leaf economic (leaf thickness, leaf area and leaf density) and hydraulic (stomatal density, stomatal length and vein density) traits, measured from two-year-old plants, to two-year growth performance (height and stem diameter) and to a fitness component (seven-year survival). When performance-trait relationships were modelled for all traits simultaneously, statistical support for direct effects on growth performance was only observed for leaf thickness and leaf density. Performance-based estimators of directional selection indicated that individuals with reduced leaf thickness and increased leaf density were favoured. Survival-performance relationships were consistent with size-dependent mortality, with fitness-based selection gradients estimated for performance measures providing evidence for directional selection favouring individuals with faster growth. There was no statistical support for an effect associated with the fitness-based quadratic selection gradient estimated for growth performance. Conditional on a performance measure, fitness-based directional selection gradients estimated for the leaf traits did not provide statistical support for direct effects of the focal traits on tree survival. This suggested that, under the environmental conditions of the trial site and time period covered in the current study, early-stage selection on the studied leaf traits may be mediated by their effects on growth performance, which in turn has a positive direct influence on later-age survival. We discuss the potential mechanistic basis of the direct effects of the focal leaf traits on tree growth, and the relevance of a putative causal pathway of trait effects on fitness through mediation by growth performance in the studied hot and dry environment.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Brad M. Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Australian Research Council (ARC) Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Georg Wiehl
- CSIRO Land and Water, Private Bag 5, Wembley, WA, Australia
| | | |
Collapse
|
12
|
Vitt P, Finch J, Barak RS, Braum A, Frischie S, Redlinski I. Seed sourcing strategies for ecological restoration under climate change: A review of the current literature. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.938110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Climate change continues to alter the seasonal timing and extremes of global temperature and precipitation patterns. These departures from historic conditions along with the predicted variability of future climates present a challenge to seed sourcing, or provenance strategy decisions, within the practice of ecological restoration. The “local is best” for seed sourcing paradigm is predicated upon the assumption that ecotypes are genetically adapted to their local environment. However, local adaptations are potentially being outpaced by climate change, and the ability of plant populations to naturally migrate or shift their distribution accordingly may be limited by habitat fragmentation. Restoration practitioners and natural area managers have a general understanding of the importance of matching the inherent adaptations of source populations with the current and/or future site conditions where those seeds or propagules are planted. However, for many species used in seed-based restoration, there is a lack of empirical evidence to guide seed sourcing decisions, which are critical for the longevity and ecological function of restored natural communities. With the goal of characterizing, synthesizing, and applying experimental research to guide restoration practice, we conducted a systematic review of the literature on provenance testing of taxa undertaken to inform seed sourcing strategies for climate resiliency. We found a strong bias in the choice of study organism: most studies have been conducted on tree species. We also found a strong bias regarding where this research has been conducted, with North America (52%) and Europe (31%) overrepresented. Experiments were designed to assess how propagule origin influences performance across both climatic (26%) and geographic (15%) distance, with some studies focused on determining how climate normal conditions (39%) impacted performance related to survivorship, growth and other parameters. We describe the patterns and gaps our review identified, highlight specific topics which require further research, and provide practical suggestions of immediate and longer-term tools that restoration practitioners can use to guide and build resilient natural communities under future climate scenarios.
Collapse
|
13
|
Climatic history, constraints, and the plasticity of phytochemical traits under water stress. Ecosphere 2022. [DOI: 10.1002/ecs2.4167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Baughman OW, Kerby JD, Boyd CS, Madsen MD, Svejcar TJ. Can delaying germination reduce barriers to successful emergence for early‐germinating, fall‐sown native bunchgrass seeds in cold deserts? Restor Ecol 2022. [DOI: 10.1111/rec.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Chad S. Boyd
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| | - Matthew D. Madsen
- Department of Plant and Wildlife Sciences Brigham Young University Provo UT 84602 U.S.A
| | - Tony J. Svejcar
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| |
Collapse
|
15
|
Massatti R, Winkler DE. Spatially explicit management of genetic diversity using ancestry probability surfaces. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rob Massatti
- US Geological Survey, Southwest Biological Science Center Flagstaff AZ USA
| | - Daniel E. Winkler
- US Geological Survey, Southwest Biological Science Center Tucson AZ USA
| |
Collapse
|
16
|
St.Clair JB, Richardson BA, Stevenson‐Molnar N, Howe GT, Bower AD, Erickson VJ, Ward B, Bachelet D, Kilkenny FF, Wang T. Seedlot Selection Tool and Climate‐Smart Restoration Tool: Web‐based tools for sourcing seed adapted to future climates. Ecosphere 2022. [DOI: 10.1002/ecs2.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | - Glenn T. Howe
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon USA
| | - Andrew D. Bower
- Olympic National Forest USDA‐Forest Service Olympia Washington USA
| | | | - Brendan Ward
- Conservation Biology Institute Corvallis Oregon USA
| | | | | | - Tongli Wang
- Centre for Forest Conservation Genetics, Department of Forest and Conservation Science University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
17
|
Copeland SM, Bradford JB, Hardegree SP, Schlaepfer DR, Badik KJ. Management and environmental factors associated with simulated restoration seeding barriers in sagebrush steppe. Restor Ecol 2022. [DOI: 10.1111/rec.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Stella M. Copeland
- USDA−Agricultural Research Service, Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 USA
| | - John B. Bradford
- US Geological Survey, Southwest Biological Science Center, 2255 N. Gemini Dr Flagstaff AZ 86001 USA
| | - Stuart P. Hardegree
- USDA‐Agricultural Research Service, Northwest Watershed Research Center, 251 Front St., Suite 400 Boise ID 83702 USA
| | - Daniel R. Schlaepfer
- US Geological Survey, Southwest Biological Science Center, 2255 N. Gemini Dr Flagstaff AZ 86001 USA
- Center for Adaptable Western Landscapes Northern Arizona University, PO Box 6077 Flagstaff AZ 86011 USA
| | - Kevin J. Badik
- The Nature Conservancy 1 E. 1st St. Suite 1007 Reno NV 89501 USA
| |
Collapse
|
18
|
Agneray AC, Parchman TL, Leger EA. Phenotypes and environment predict seedling survival for seven co‐occurring Great Basin plant taxa growing with invasive grass. Ecol Evol 2022; 12:e8870. [PMID: 35509617 PMCID: PMC9055296 DOI: 10.1002/ece3.8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Trait–environment correlations can arise from local adaptation and can identify genetically and environmentally appropriate seeds for restoration projects. However, anthropogenic changes can disrupt the relationships between traits and fitness. Finding the best seed sources for restoration may rely on describing plant traits adaptive in disturbed and invaded environments, recognizing that while traits may differ among species and functional groups, there may be similarities in the strategies that increase seedling establishment. Focusing on three grass genera, two shrub species, and two forb genera, we collected seeds of all taxa from 16 common sites in the sagebrush steppe of the western United States. We measured seed and seedling characteristics, including seed size, emergence timing, and root and shoot traits, and compiled a suite of environmental variables for each collection site. We described trait–environment associations and asked how traits or environment of origin were associated with seedling survival in invaded gardens. Sampling seven taxa from the same sites allowed us to ask how trait–environment–performance associations differ among taxa and whether natural selection favors similar traits across multiple taxa and functional groups. All taxa showed trait–environment associations consistent with local adaptation, and both environment of origin and phenotypes predicted survival in competitive restoration settings, with some commonalities among taxa. Notably, rapid emergence and larger seeds increased survival for multiple taxa. Environmental factors at collection sites, including lower slopes (especially for grasses), greater mean annual temperatures (especially for shrubs and forbs), and greater precipitation seasonality were frequently associated with increased survival. We noted one collection site with high seedling survival across all seven taxa, suggesting that conditions within some sites may result in selection for traits that increase establishment for multiple species. Thus, choosing native plant sources with the most adaptive traits, along with matching climates, will likely improve the restoration of invaded communities.
Collapse
Affiliation(s)
- Alison C. Agneray
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
- Nevada State Office Bureau of Land Management Reno USA
| | - Thomas L. Parchman
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
| | - Elizabeth A. Leger
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|
19
|
Shryock DF, DeFalco LA, Esque TC. Seed Menus: An integrated decision‐support framework for native plant restoration in the Mojave Desert. Ecol Evol 2022; 12:e8805. [PMID: 35432931 PMCID: PMC9005930 DOI: 10.1002/ece3.8805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
The combination of ecosystem stressors, rapid climate change, and increasing landscape‐scale development has necessitated active restoration across large tracts of disturbed habitats in the arid southwestern United States. In this context, programmatic directives such as the National Seed Strategy for Rehabilitation and Restoration have increasingly emphasized improved restoration practices that promote resilient, diverse plant communities, and enhance native seed reserves. While decision‐support tools have been implemented to support genetic diversity by guiding seed transfer decisions based on patterns in local adaptation, less emphasis has been placed on identifying priority seed mixes composed of native species assemblages. Well‐designed seed mixes can provide foundational ecosystem services including resilience to disturbance, resistance to invasive species, plant canopy structure to facilitate natural seedling recruitment, and habitat to support wildlife and pollinator communities. Drawing from a newly developed dataset of species distribution models for priority native plant taxa in the Mojave Desert, we created a novel decision support tool by pairing spatial predictions of species habitat with a database of key species traits including life history, flowering characteristics, pollinator relationships, and propagation methods. This publicly available web application, Mojave Seed Menus, helps restoration practitioners generate customized seed mixes for native plant restoration in the Mojave Desert based on project locations. Our application forms part of an integrated Mojave Desert restoration program designed to help practitioners identify species to include in local seed mixes and nursery stock development while accounting for local adaptation by identifying appropriate seed source locations from key restoration species.
Collapse
Affiliation(s)
- Daniel F. Shryock
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| | - Lesley A. DeFalco
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| | - Todd C. Esque
- U.S. Geological Survey Western Ecological Research Center Boulder City Nevada USA
| |
Collapse
|
20
|
Solé-Medina A, Robledo-Arnuncio JJ, Ramírez-Valiente JA. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea). THE NEW PHYTOLOGIST 2022; 234:462-478. [PMID: 35028942 DOI: 10.1111/nph.17968] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/16/2021] [Indexed: 05/21/2023]
Abstract
Resource-use strategies are hypothesized to evolve along climatic gradients. However, our understanding of the environmental factors driving divergent evolution of resource-use strategies and the relationship between trait genetic variation and phenotypic plasticity is far from complete. Using the Mediterranean tree Quercus faginea as study system, we tested the hypothesis that a conservative resource-use strategy with increased drought tolerance and reduced phenotypic plasticity has evolved in areas with longer and more severe dry seasons. We conducted a glasshouse experiment in which we measured leaf morphological, physiological, growth and allocation traits in seedlings from 10 range-wide climatically contrasting populations, grown under two different watering treatments. Both univariate and multivariate analyses revealed a genetic gradient of resource-use strategies and phenotypic plasticity associated with provenance climate. In particular, populations from harsher (drier and colder) environments had more sclerophyllous leaves, lower growth rates, better physiological performance under dry conditions and reduced multi-trait phenotypic plasticity compared to populations from more mesic and milder environments. Our results suggest that contrasting precipitation and temperature regimes play an important role in the adaptive intraspecific evolution of multivariate phenotypes and their plasticity, resulting in coordinated morphology, physiology, growth and allometry according to alternative resource-use strategies.
Collapse
Affiliation(s)
- Aida Solé-Medina
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933, Spain
| | - Juan José Robledo-Arnuncio
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
| | - José Alberto Ramírez-Valiente
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB) 10 Edifici C, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
21
|
O'Brien MJ, Escudero A. Topography in tropical forests enhances growth and survival differences within and among species via water availability and biotic interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael J. O'Brien
- Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Spain
- Southeast Asia Rainforest Research Partnership (SEARRP) Kota Kinabalu Sabah Malaysia
| | - Adrián Escudero
- Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Spain
| |
Collapse
|
22
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
23
|
Aavik T, Träger S, Zobel M, Honnay O, Van Geel M, Bueno CG, Koorem K. The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tsipe Aavik
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Olivier Honnay
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Kadri Koorem
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
24
|
Eren Ö, Hierro JL. Trait variation, trade-offs, and attributes may contribute to colonization and range expansion of a globally distributed weed. AMERICAN JOURNAL OF BOTANY 2021; 108:2183-2195. [PMID: 34609739 DOI: 10.1002/ajb2.1755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Trait variation, trade-offs, and attributes can facilitate colonization and range expansion. We explored how those trait features compare between ancestral and nonnative populations of the globally distributed weed Centaurea solstitialis. METHODS We measured traits related to survival, size, reproduction, and dispersal in field sampling following major environmental gradients; that of elevation in Anatolia (ancestral range) and that of precipitation in Argentina (nonnative range). We also estimated abundance. RESULTS We found that overall variation in traits in ancestral populations was similar to that in nonnative populations. Only one trait-seed mass-displayed greater variation in ancestral than nonnative populations; coincidentally, seed mass has been shown to track global range expansion of C. solstitialis. Traits displayed several associations, among which seed mass and number were positively related in both ranges. Many traits varied with elevation in the ancestral range, whereas none varied with precipitation in the nonnative one. Interestingly, most traits varying with elevation within the ancestral range also displayed differences in attributes between ancestral and nonnative ranges. Unexpectedly, ancestral plants were more fecund than nonnative plants, but density was greater in the nonnative than ancestral range, indicating that C. solstitialis survives at larger proportions in the nonnative than ancestral range. CONCLUSIONS Our results suggest that maintaining levels of trait variation in nonnative populations comparable to those in ancestral populations, avoiding trait trade-offs, and developing differences in trait attributes between ranges can play a major role in the success of many weeds in novel environments.
Collapse
Affiliation(s)
- Özkan Eren
- Biyoloji Bölümü, Fen-Edebiyat Fakültesi, Aydın Adnan Menderes Üniversitesi, Aydın, 09010, Turkey
| | - José L Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Pampa (UNLPam), Mendoza 109, Santa Rosa, La Pampa, 6300, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPam, Uruguay 151, Santa Rosa, La Pampa, 6300, Argentina
| |
Collapse
|
25
|
McCormick ML, Carr AN, Massatti R, Winkler DE, De Angelis P, Olwell P. How to increase the supply of native seed to improve restoration success: the US native seed development process. Restor Ecol 2021. [DOI: 10.1111/rec.13499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Molly L. McCormick
- Southwest Biological Science Center U.S. Geological Survey 2255 N Gemini Dr Flagstaff Arizona 86001 U.S.A
| | - Amanda N. Carr
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden 1000 Lake Cook Road Glencoe Illinois 60022 U.S.A
| | - Rob Massatti
- Southwest Biological Science Center U.S. Geological Survey 2255 N Gemini Dr Flagstaff Arizona 86001 U.S.A
| | - Daniel E. Winkler
- Southwest Biological Science Center U.S. Geological Survey 2290 S West Resource Blvd Moab Utah 84532 U.S.A
| | - Patricia De Angelis
- Division of Scientific Authority U.S. Fish and Wildlife Service, International Affairs 5275 Leesburg Pike Falls Church Virginia 22041‐3803 U.S.A
| | - Peggy Olwell
- Plant Conservation and Restoration Program Bureau of Land Management 1387 S Vinnell Way Boise Idaho 83709 U.S.A
| |
Collapse
|
26
|
Davies KW, Boyd CS. Seeding locally sourced native compared to introduced bunchgrasses post‐wildfire in frigid Wyoming big sagebrush communities. Restor Ecol 2021. [DOI: 10.1111/rec.13397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kirk W. Davies
- Eastern Oregon Agricultural Research Center USDA‐Agricultural Research Service Burns Oregon USA
| | - Chad S. Boyd
- Eastern Oregon Agricultural Research Center USDA‐Agricultural Research Service Burns Oregon USA
| |
Collapse
|
27
|
Rupprecht D, Hölzel N, Bucharova A. Is there local adaptation in plant species to soil reaction? A lesson from a multispecies experiment. Restor Ecol 2021. [DOI: 10.1111/rec.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Denise Rupprecht
- Biodiversity and Ecosystem Research Group University of Münster, Institute of Landscape Ecology Münster Germany
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research Group University of Münster, Institute of Landscape Ecology Münster Germany
| | - Anna Bucharova
- Biodiversity and Ecosystem Research Group University of Münster, Institute of Landscape Ecology Münster Germany
| |
Collapse
|
28
|
Davies KW, Leger EA, Boyd CS, Hallett LM. Living with exotic annual grasses in the sagebrush ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112417. [PMID: 33765575 DOI: 10.1016/j.jenvman.2021.112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Exotic annual grasses dominate millions of hectares and increase fire frequency in the sagebrush ecosystem of North America. This devastating invasion is so costly and challenging to revegetate with perennial vegetation that restoration efforts need to be prioritized and strategically implemented. Management needs to break the annual grass-fire cycle and prevent invasion of new areas, while research is needed to improve restoration success. Under current land management and climate regimes, extensive areas will remain annual grasslands, because of their expansiveness and the low probability of transition to perennial dominance. We propose referring to these communities as Intermountain West Annual Grasslands, recognizing that they are a stable state and require different management goals and objectives than perennial-dominated systems. We need to learn to live with annual grasslands, reducing their costs and increasing benefits derived from them, at the same time maintaining landscape-level plant diversity that could allow transition to perennial dominance under future scenarios. To accomplish this task, we propose a framework and research to improve our ability to live with exotic annual grasses in the sagebrush biome.
Collapse
Affiliation(s)
- Kirk W Davies
- Eastern Oregon Agricultural Research Center, USDA-Agricultural Research Service, 67826-A Hwy 205, Burns, OR, 97720, USA.
| | - Elizabeth A Leger
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Chad S Boyd
- Eastern Oregon Agricultural Research Center, USDA-Agricultural Research Service, 67826-A Hwy 205, Burns, OR, 97720, USA
| | - Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, 12010 University of Oregon, Eugene, OR, 97405, USA
| |
Collapse
|
29
|
Pazzaglia J, Reusch TBH, Terlizzi A, Marín‐Guirao L, Procaccini G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol Appl 2021; 14:1181-1201. [PMID: 34025759 PMCID: PMC8127715 DOI: 10.1111/eva.13212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Coastal oceans are particularly affected by rapid and extreme environmental changes with dramatic consequences for the entire ecosystem. Seagrasses are key ecosystem engineering or foundation species supporting diverse and productive ecosystems along the coastline that are particularly susceptible to fast environmental changes. In this context, the analysis of phenotypic plasticity could reveal important insights into seagrasses persistence, as it represents an individual property that allows species' phenotypes to accommodate and react to fast environmental changes and stress. Many studies have provided different definitions of plasticity and related processes (acclimation and adaptation) resulting in a variety of associated terminology. Here, we review different ways to define phenotypic plasticity with particular reference to seagrass responses to single and multiple stressors. We relate plasticity to the shape of reaction norms, resulting from genotype by environment interactions, and examine its role in the presence of environmental shifts. The potential role of genetic and epigenetic changes in underlying seagrasses plasticity in face of environmental changes is also discussed. Different approaches aimed to assess local acclimation and adaptation in seagrasses are explored, explaining strengths and weaknesses based on the main results obtained from the most recent literature. We conclude that the implemented experimental approaches, whether performed with controlled or field experiments, provide new insights to explore the basis of plasticity in seagrasses. However, an improvement of molecular analysis and the application of multi-factorial experiments are required to better explore genetic and epigenetic adjustments to rapid environmental shifts. These considerations revealed the potential for selecting the best phenotypes to promote assisted evolution with fundamental implications on restoration and preservation efforts.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Thorsten B. H. Reusch
- Marine Evolutionary EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Antonio Terlizzi
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnNaplesItaly
| | - Lázaro Marín‐Guirao
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Seagrass Ecology GroupOceanographic Center of MurciaSpanish Institute of OceanographyMurciaSpain
| | - Gabriele Procaccini
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
30
|
Amaral EJ, Franco AC, Rivera VL, Munhoz CBR. Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil. Oecologia 2021; 197:1-11. [PMID: 33885981 DOI: 10.1007/s00442-021-04923-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Leaf traits are closely linked to plant responses to the environment and can provide important information on adaptation and evolution. These traits may also result from common ancestry, so phylogenetic relationships also play an important role in adaptive evolution. We evaluated the effects of the closed forest environment (gallery forest) and the open savanna environment (cerrado) on the selection of leaf traits of graminoid species. The two plant communities differ in light, nutrients, and water availability, which are important drivers in the selection and differentiation of these traits. We also investigated the functional structure and the role of phylogeny in the functional organization of species, considering leaf traits. Patterns of leaf trait variation differed between forest and savanna species suggesting habitat specialization. Wider and longer leaves, with higher values of specific leaf area, chlorophyll, and nitrogen, seem to be an advantage for graminoid species growing in forest environments, while thicker leaves, with higher values of leaf dry-matter content and carbon, benefit species growing in savanna environments. We found few phylogenetic signals related to leaf traits in each environment. Therefore, the functional similarity that the gallery forest and cerrado graminoid species share within their group is independent of their phylogenetic proximity. Environmental filters affect the functional structure of communities differently, generating communities with trait values that are more distant than expected by chance in cerrado (functional dispersion), and closer than expected by chance in the gallery forest (functional convergence).
Collapse
Affiliation(s)
- Eliel J Amaral
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| | - Augusto C Franco
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Vanessa L Rivera
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Cássia B R Munhoz
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
31
|
Simón-Porcar VI, Silva JL, Vallejo-Marín M. Rapid local adaptation in both sexual and asexual invasive populations of monkeyflowers (Mimulus spp.). ANNALS OF BOTANY 2021; 127:655-668. [PMID: 33604608 PMCID: PMC8052927 DOI: 10.1093/aob/mcab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Traditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual. METHODS We compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species. KEY RESULTS Populations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK. CONCLUSIONS This study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.
Collapse
Affiliation(s)
- Violeta I Simón-Porcar
- Departmento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | - Jose L Silva
- Pyrenean Institute of Ecology (CSIC), Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| |
Collapse
|
32
|
Blumenthal DM, LeCain DR, Porensky LM, Leger EA, Gaffney R, Ocheltree TW, Pilmanis AM. Local adaptation to precipitation in the perennial grass Elymus elymoides: Trade-offs between growth and drought resistance traits. Evol Appl 2021; 14:524-535. [PMID: 33664792 PMCID: PMC7896711 DOI: 10.1111/eva.13137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding local adaptation to climate is critical for managing ecosystems in the face of climate change. While there have been many provenance studies in trees, less is known about local adaptation in herbaceous species, including the perennial grasses that dominate arid and semiarid rangeland ecosystems. We used a common garden study to quantify variation in growth and drought resistance traits in 99 populations of Elymus elymoides from a broad geographic and climatic range in the western United States. Ecotypes from drier sites produced less biomass and smaller seeds, and had traits associated with greater drought resistance: small leaves with low osmotic potential and high integrated water use efficiency (δ13C). Seasonality also influenced plant traits. Plants from regions with relatively warm, wet summers had large seeds, large leaves, and low δ13C. Irrespective of climate, we also observed trade-offs between biomass production and drought resistance traits. Together, these results suggest that much of the phenotypic variation among E. elymoides ecotypes represents local adaptation to differences in the amount and timing of water availability. In addition, ecotypes that grow rapidly may be less able to persist under dry conditions. Land managers may be able to use this variation to improve restoration success by seeding ecotypes with multiple drought resistance traits in areas with lower precipitation. The future success of this common rangeland species will likely depend on the use of tools such as seed transfer zones to match local variation in growth and drought resistance to predicted climatic conditions.
Collapse
Affiliation(s)
| | - Daniel R. LeCain
- USDA‐ARS Rangeland Resources & Systems Research UnitFort CollinsCOUSA
| | | | | | - Rowan Gaffney
- USDA‐ARS Rangeland Resources & Systems Research UnitFort CollinsCOUSA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|
33
|
Shryock DF, Washburn LK, DeFalco LA, Esque TC. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Mol Ecol 2021; 30:698-717. [PMID: 33007116 DOI: 10.1111/mec.15672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Local adaptation features critically in shaping species responses to changing environments, complicating efforts to revegetate degraded areas. Rapid climate change poses an additional challenge that could reduce fitness of even locally sourced seeds in restoration. Predictive restoration strategies that apply seeds with favourable adaptations to future climate may promote long-term resilience. Landscape genomics is increasingly used to assess spatial patterns in local adaption and may represent a cost-efficient approach for identifying future-adapted genotypes. To demonstrate such an approach, we genotyped 760 plants from 64 Mojave Desert populations of the desert annual Plantago ovata. Genome scans on 5,960 SNPs identified 184 potentially adaptive loci related to climate and satellite vegetation metrics. Causal modelling indicated that variation in potentially adaptive loci was not confounded by isolation by distance or isolation by habitat resistance. A generalized dissimilarity model (GDM) attributed spatial turnover in potentially adaptive loci to temperature, precipitation and NDVI amplitude, a measure of vegetation green-up potential. By integrating a species distribution model (SDM), we find evidence that summer maximum temperature may both constrain the range of P. ovata and drive adaptive divergence in populations exposed to higher temperatures. Within the species' current range, warm-adapted genotypes are predicted to experience a fivefold expansion in climate niche by midcentury and could harbour key adaptations to cope with future climate. We recommend eight seed transfer zones and project each zone into its relative position in future climate. Prioritizing seed collection efforts on genotypes with expanding future habitat represents a promising strategy for restoration practitioners to address rapidly changing climates.
Collapse
Affiliation(s)
- Daniel F Shryock
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | | | - Lesley A DeFalco
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | - Todd C Esque
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| |
Collapse
|
34
|
Leger EA, Barga S, Agneray AC, Baughman O, Burton R, Williams M. Selecting native plants for restoration using rapid screening for adaptive traits: methods and outcomes in a Great Basin case study. Restor Ecol 2020. [DOI: 10.1111/rec.13260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elizabeth A. Leger
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada, Reno 1664 N. Virginia St., Reno, NV 89557 U.S.A
| | - Sarah Barga
- USDA Forest Service—Rocky Mountain Research Station 322 E. Front St., Suite 401, Boise, ID 83702 U.S.A
| | - Alison C. Agneray
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada, Reno 1664 N. Virginia St., Reno, NV 89557 U.S.A
| | - Owen Baughman
- The Nature Conservancy, Eastern Oregon Agricultural Research Center 67826‐A Hwy. 205, Burns, OR 97720 U.S.A
| | - Robert Burton
- Bureau of Land Management Humboldt Field Office, 5100 East Winnemucca Blvd., Winnemucca, NV 89445 U.S.A
| | - Mark Williams
- Bureau of Land Management, Salt Lake Field Office 2370 South Decker Lake Blvd., West Valley, UT 84119 U.S.A
| |
Collapse
|
35
|
Barga SC, Olwell P, Edwards F, Prescott L, Leger EA. Seeds of Success: A conservation and restoration investment in the future of U.S.lands. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sarah C. Barga
- Department of BiologyUniversity of Nevada, Reno Reno Nevada USA
- United States Department of Agriculture Forest ServiceRocky Mountain Research Station Boise Idaho USA
| | - Peggy Olwell
- Plant Conservation and Restoration Program, Bureau of Land Management Washington District of Columbia USA
| | - Fred Edwards
- Plant Conservation and Restoration Program, Bureau of Land Management Washington District of Columbia USA
- Bureau of Land Management Reno Nevada USA
| | | | | |
Collapse
|
36
|
Massatti R, Shriver RK, Winkler DE, Richardson BA, Bradford JB. Assessment of population genetics and climatic variability can refine climate‐informed seed transfer guidelines. Restor Ecol 2020. [DOI: 10.1111/rec.13142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rob Massatti
- U.S. Geological SurveySouthwest Biological Science Center Flagstaff Arizona 86001 U.S.A
| | - Robert K. Shriver
- U.S. Geological SurveySouthwest Biological Science Center Flagstaff Arizona 86001 U.S.A
| | - Daniel E. Winkler
- U.S. Geological SurveySouthwest Biological Science Center Moab Utah 84532 U.S.A
| | | | - John B. Bradford
- U.S. Geological SurveySouthwest Biological Science Center Flagstaff Arizona 86001 U.S.A
| |
Collapse
|
37
|
Gillard MB, Drenovsky RE, Thiébaut G, Tarayre M, Futrell CJ, Grewell BJ. Seed source regions drive fitness differences in invasive macrophytes. AMERICAN JOURNAL OF BOTANY 2020; 107:749-760. [PMID: 32406537 PMCID: PMC7384113 DOI: 10.1002/ajb2.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Worldwide, ecosystems are threatened by global changes, including biological invasions. Invasive species arriving in novel environments experience new climatic conditions that can affect their successful establishment. Determining the response of functional traits and fitness components of invasive populations from contrasting environments can provide a useful framework to assess species responses to climate change and the variability of these responses among source populations. Much research on macrophytes has focused on establishment from clonal fragments; however, colonization from sexual propagules has rarely been studied. Our objective was to compare trait responses of plants generated from sexual propagules sourced from three climatic regions but grown under common environmental conditions, using L. peploides subsp. montevidensis as a model taxon. METHODS We grew seedlings to reproductive stage in experimental mesocosms under a mediterranean California (MCA) climate from seeds collected in oceanic France (OFR), mediterranean France (MFR), and MCA. RESULTS Seed source region was a major factor influencing differences among invasive plants recruiting from sexual propagules of L. peploides subsp. montevidensis. Trait responses of young individual recruits from MCA and OFR, sourced from geographically distant and climatically distinct source regions, were the most different. The MCA individuals accumulated more biomass, flowered earlier, and had higher leaf N concentrations than the OFR plants. Those from MFR had intermediate profiles. CONCLUSIONS By showing that the closer a seedling is from its parental climate, the better it performs, this study provides new insights to the understanding of colonization of invasive plant species and informs its management under novel and changing environmental conditions.
Collapse
Affiliation(s)
- Morgane B. Gillard
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| | | | | | | | - Caryn J. Futrell
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| | - Brenda J. Grewell
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| |
Collapse
|
38
|
Yoko ZG, Volk KL, Dochtermann NA, Hamilton JA. The importance of quantitative trait differentiation in restoration: landscape heterogeneity and functional traits inform seed transfer guidelines. AOB PLANTS 2020; 12:plaa009. [PMID: 32257091 PMCID: PMC7112727 DOI: 10.1093/aobpla/plaa009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/28/2020] [Indexed: 06/01/2023]
Abstract
For widely distributed species, understanding the scale over which genetic variation correlates to landscape structure and composition is critical. Particularly within the context of restoration, the evolution of genetic differences may impact success if seeds are maladapted to the restoration environment. In this study, we used Geum triflorum to quantify the scale over which genetic differences for quantitative traits important to adaptation have evolved, comparing the proportion of variance attributed to broad regional- and local population-level effects. Geum triflorum is a widely distributed species spanning a range of environments, including alvar and prairie habitats, which have extreme regional differences in soil-moisture availability. Alvar habitats are regions of thin soil over limestone that experience substantial seasonal variation in water availability, from flooding to desiccation annually. This contrasts with prairie habitats, whose deeper soils mitigate irregular flood-desiccation cycles. Using a common garden experiment, we evaluated 15 traits broadly grouped into three trait classes: resource allocation, stomatal characteristics, and leaf morphological traits for individuals sourced from prairie and alvar environments. We quantified the proportion of trait variance explained by regional- and population-scale effects and compared the proportion of regional- and population-trait variances explained across trait classes. Significant regional differentiation was observed for the majority of quantitative traits; however, population-scale effects were equal or greater than regional effects, suggesting that important genetic differences may have evolved across the finer population scale. Stomatal and resource allocation trait classes exhibited substantial regional differentiation relative to morphological traits, which may indicate increased strength of selection for stomatal and resource allocation traits relative to morphological traits. These patterns point towards the value in considering the scale over which genetic differences may have evolved for widely distributed species and identify different functional trait classes that may be valuable in establishing seed transfer guidelines.
Collapse
Affiliation(s)
- Zebadiah G Yoko
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Kate L Volk
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Ned A Dochtermann
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
39
|
Zeldin J, Lichtenberger TM, Foxx AJ, Webb Williams E, Kramer AT. Intraspecific functional trait structure of restoration‐relevant species: Implications for restoration seed sourcing. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jacob Zeldin
- Plant Science and Conservation Chicago Botanic Garden Glencoe IL USA
| | - Taran M. Lichtenberger
- Plant Science and Conservation Chicago Botanic Garden Glencoe IL USA
- Plant Biology and Conservation Northwestern University Evanston IL USA
| | - Alicia J. Foxx
- Plant Science and Conservation Chicago Botanic Garden Glencoe IL USA
- Plant Biology and Conservation Northwestern University Evanston IL USA
| | | | - Andrea T. Kramer
- Plant Science and Conservation Chicago Botanic Garden Glencoe IL USA
| |
Collapse
|
40
|
St. Clair AB, Dunwiddie PW, Fant JB, Kaye TN, Kramer AT. Mixing source populations increases genetic diversity of restored rare plant populations. Restor Ecol 2020. [DOI: 10.1111/rec.13131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Adrienne Basey St. Clair
- Program in Plant Biology and ConservationNorthwestern University 2205 Tech Drive Evanston IL 60208 U.S.A
- Negaunee Institute for Plant Conservation Science and ActionNegaunee Institute for Plant Conservation Science and Action Botanic Garden 1000 Lake Cook Road Chicago IL 60022 U.S.A
| | | | - Jeremie B. Fant
- Negaunee Institute for Plant Conservation Science and ActionNegaunee Institute for Plant Conservation Science and Action Botanic Garden 1000 Lake Cook Road Chicago IL 60022 U.S.A
| | - Thomas N. Kaye
- Institute for Applied Ecology 563 SW Jefferson Avenue Corvallis OR 97333 U.S.A
- Department of Botany and Plant PathologyOregon State University Corvallis OR 97331 U.S.A
| | - Andrea T. Kramer
- Negaunee Institute for Plant Conservation Science and ActionNegaunee Institute for Plant Conservation Science and Action Botanic Garden 1000 Lake Cook Road Chicago IL 60022 U.S.A
| |
Collapse
|
41
|
Hamerlynck EP, Denton EM, Davies KW, Boyd CS. Photosynthetic regulation in seed heads and flag leaves of sagebrush-steppe bunchgrasses. CONSERVATION PHYSIOLOGY 2019; 7:coz112. [PMID: 31949896 PMCID: PMC6956783 DOI: 10.1093/conphys/coz112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Native sagebrush-steppe bunchgrass populations are threatened by the spread and dominance of exotic invasive annual grasses, in part due to low, episodic seed production. In contrast, the widespread exotic bunchgrass, crested wheatgrass, readily produces viable seed cohorts. The mechanisms underlying these differences are unclear. To address this, we measured seed head specific mass (g m-2) and net photosynthetic assimilation (A net) as a function of internal [CO2] (A/Ci curves) in pre- and post-anthesis seed heads and flag leaves of crested wheatgrass and four native bunchgrasses to determine if differences in allocation and photosynthetic characteristics of seed heads was consistent with differential reproductive success. Crested wheatgrass seed heads had 2-fold greater specific mass compared to the native grasses, concurrent with greater CO2-saturated photosynthesis (A max), mesophyll carboxylation efficiency (CE), and higher intrinsic water-use efficiency (WUE i ; A net/stomatal conductance (g s)), but with similar relative stomatal limitations to photosynthesis (RSL). Post-anthesis seed head A max, CE, RSL and g s decreased in native grasses, while crested wheatgrass RSL decreased and CE increased dramatically, likely due to tighter coordination between seed head structural changes with stomatal and biochemical dynamics. Our results suggest native sagebrush-steppe bunchgrasses have greater stomatal and structural constraints to reproductive photosynthesis, while the exotic grass has evolved seed heads functionally similar to leaves. This study shows elucidating reproduction-related ecophysiological mechanisms provide understanding of plant attributes that underlie restoration success and could help guide the development of native plant materials with functional attributes needed to overcome demographic bottlenecks that limit their restoration into degraded sagebrush-steppe.
Collapse
Affiliation(s)
- Erik P Hamerlynck
- USDA-ARS, Eastern Oregon Agricultural Research Center, 67826 Highway 205, Burns, OR 97720, USA
| | - Elsie M Denton
- USDA-ARS, Eastern Oregon Agricultural Research Center, 67826 Highway 205, Burns, OR 97720, USA
| | - Kirk W Davies
- USDA-ARS, Eastern Oregon Agricultural Research Center, 67826 Highway 205, Burns, OR 97720, USA
| | - Chad S Boyd
- USDA-ARS, Eastern Oregon Agricultural Research Center, 67826 Highway 205, Burns, OR 97720, USA
| |
Collapse
|
42
|
Baughman OW, Agneray AC, Forister ML, Kilkenny FF, Espeland EK, Fiegener R, Horning ME, Johnson RC, Kaye TN, Ott J, St. Clair JB, Leger EA. Strong patterns of intraspecific variation and local adaptation in Great Basin plants revealed through a review of 75 years of experiments. Ecol Evol 2019; 9:6259-6275. [PMID: 31236219 PMCID: PMC6580289 DOI: 10.1002/ece3.5200] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Variation in natural selection across heterogeneous landscapes often produces (a) among-population differences in phenotypic traits, (b) trait-by-environment associations, and (c) higher fitness of local populations. Using a broad literature review of common garden studies published between 1941 and 2017, we documented the commonness of these three signatures in plants native to North America's Great Basin, an area of extensive restoration and revegetation efforts, and asked which traits and environmental variables were involved. We also asked, independent of geographic distance, whether populations from more similar environments had more similar traits. From 327 experiments testing 121 taxa in 170 studies, we found 95.1% of 305 experiments reported among-population differences, and 81.4% of 161 experiments reported trait-by-environment associations. Locals showed greater survival in 67% of 24 reciprocal experiments that reported survival, and higher fitness in 90% of 10 reciprocal experiments that reported reproductive output. A meta-analysis on a subset of studies found that variation in eight commonly measured traits was associated with mean annual precipitation and mean annual temperature at the source location, with notably strong relationships for flowering phenology, leaf size, and survival, among others. Although the Great Basin is sometimes perceived as a region of homogeneous ecosystems, our results demonstrate widespread habitat-related population differentiation and local adaptation. Locally sourced plants likely harbor adaptations at rates and magnitudes that are immediately relevant to restoration success, and our results suggest that certain key traits and environmental variables should be prioritized in future assessments of plants in this region.
Collapse
Affiliation(s)
- Owen W. Baughman
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNevada
- Present address:
The Nature ConservancyBurnsOregon
| | - Alison C. Agneray
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNevada
| | | | | | - Erin K. Espeland
- Pest Management Research UnitUSDA‐Agricultural Research Service Northern Plains Agricultural LaboratorySidneyMontana
| | | | - Matthew E. Horning
- Deschutes National ForestUSDA Forest Service Pacific Northwest RegionBendOregon
| | | | | | - Jeff Ott
- Rocky Mountain Research StationUSDA Forest ServiceBoiseIdaho
| | | | - Elizabeth A. Leger
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNevada
| |
Collapse
|