1
|
Hoffmann J, Hogle S, Hiltunen T, Becks L. Temporal Changes in the Role of Species Sorting and Evolution Determine Community Dynamics. Ecol Lett 2025; 28:e70033. [PMID: 39737795 DOI: 10.1111/ele.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator. We found that species sorting contributed to increased community carrying capacity, while evolution contributed to decreased anti-predator defences. The relative roles of both processes changed over time, and our analysis indicates that if initial trait variation was in the direction of selection, species sorting prevailed, otherwise evolution drove phenotypic change. Furthermore, community composition, population densities and genomic evolution were affected by phenotypic match-mismatch combinations of predator and prey evolutionary history. Overall, our findings help to integrate when and how ecological and evolutionary processes structure communities.
Collapse
Affiliation(s)
- Julius Hoffmann
- Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany
| | - Shane Hogle
- Department of Biology, University of Turku, Turku, Finland
| | - Teppo Hiltunen
- Department of Biology, University of Turku, Turku, Finland
| | - Lutz Becks
- Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Wellenbeck A, Fehrmann L, Feilhauer H, Schmidtlein S, Misof B, Hein N. Discriminating woody species assemblages from National Forest Inventory data based on phylogeny in Georgia. Ecol Evol 2024; 14:e11569. [PMID: 39045499 PMCID: PMC11264350 DOI: 10.1002/ece3.11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/25/2024] Open
Abstract
Classifications of forest vegetation types and characterization of related species assemblages are important analytical tools for mapping and diversity monitoring of forest communities. The discrimination of forest communities is often based on β-diversity, which can be quantified via numerous indices to derive compositional dissimilarity between samples. This study aims to evaluate the applicability of unsupervised classification for National Forest Inventory data from Georgia by comparing two cluster hierarchies. We calculated the mean basal area per hectare for each woody species across 1059 plot observations and quantified interspecies distances for all 87 species. Following an unspuervised cluster analysis, we compared the results derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic variation. Incorporating genetic variation in the dissimilarity quantification resulted in a more nuanced discrimination of woody species assemblages and increased cluster coherence. Favorable statistics include the total number of clusters (23 vs. 20), mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13 vs. 112.92). Clusters derived from dissimilarities that account for genetic variation showed a more robust alignment with biogeographical units, such as elevation and known habitats. We demonstrate that the applicability of unsupervised classification of species assemblages to large-scale forest inventory data strongly depends on the underlying quantification of dissimilarity. Our results indicate that by incorporating phylogenetic variation, a more precise classification aligned with biogeographic units is attained. This supports the concept that the genetic signal of species assemblages reflects biogeographical patterns and facilitates more precise analyses for mapping, monitoring, and management of forest diversity.
Collapse
Affiliation(s)
- Alexander Wellenbeck
- Systematic ZoologyUniversity of BonnBonnGermany
- Forest Inventory and Remote SensingUniversity of GöttingenGöttingenGermany
| | - Lutz Fehrmann
- Forest Inventory and Remote SensingUniversity of GöttingenGöttingenGermany
| | - Hannes Feilhauer
- Remote Sensing Centre for Earth System Research (RSC4Earth)Leipzig UniversityLeipzigGermany
| | - Sebastian Schmidtlein
- Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Bernhard Misof
- Systematic ZoologyUniversity of BonnBonnGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum KoenigBonnGermany
| | - Nils Hein
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum KoenigBonnGermany
| |
Collapse
|
3
|
Coulon N, Pilet S, Lizé A, Lacoue-Labarthe T, Sturbois A, Toussaint A, Feunteun E, Carpentier A. Shark critical life stage vulnerability to monthly temperature variations under climate change. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106531. [PMID: 38696933 DOI: 10.1016/j.marenvres.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France.
| | - Stanislas Pilet
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France
| | - Anne Lizé
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Anthony Sturbois
- VivArmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Laboratoire des Sciences de l'environnement Marin (LEMAR), UMR 6539, France
| | - Aurèle Toussaint
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 - UPS-CNRS-IRD-INP, Université Paul-Sabatier - Toulouse 3, Toulouse, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; Centre de GéoEcologie Littorale (CGEL, EPHE-PSL), Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Rennes, France
| |
Collapse
|
4
|
Barnett SE, Shade A. Arrive and wait: Inactive bacterial taxa contribute to perceived soil microbiome resilience after a multidecadal press disturbance. Ecol Lett 2024; 27:e14393. [PMID: 38430049 DOI: 10.1111/ele.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Long-term (press) disturbances like the climate crisis and other anthropogenic pressures are fundamentally altering ecosystems and their functions. Many critical ecosystem functions, such as biogeochemical cycling, are facilitated by microbial communities. Understanding the functional consequences of microbiome responses to press disturbances requires ongoing observations of the active populations that contribute to functions. This study leverages a 7-year time series of a 60-year-old coal seam fire (Centralia, Pennsylvania, USA) to examine the resilience of soil bacterial microbiomes to a press disturbance. Using 16S rRNA and 16S rRNA gene amplicon sequencing, we assessed the interannual dynamics of the active subset and the 'whole' bacterial community. Contrary to our hypothesis, the whole communities demonstrated greater resilience than active subsets, suggesting that inactive members contributed to overall structural resilience. Thus, in addition to selection mechanisms of active populations, perceived microbiome resilience is also supported by mechanisms of dispersal, persistence, and revival from the local dormant pool.
Collapse
Affiliation(s)
- Samuel E Barnett
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, Ecole Nationale Véterinaire de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
5
|
Hopper GW, Miller EJ, Haag WR, Vaughn CC, Hornbach DJ, Jones JW, Atkinson CL. A test of the loose-equilibrium concept with long-lived organisms: Evaluating temporal change in freshwater mussel assemblages. J Anim Ecol 2024; 93:281-293. [PMID: 38243658 DOI: 10.1111/1365-2656.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
The loose-equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change. Long-lived, slow-growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long-lived animals because they can live >50 years and occur in dense, species-rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers. We used long-term data sets (10-40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC. Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species. Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.
Collapse
Affiliation(s)
- Garrett W Hopper
- School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana, USA
| | - Edwin J Miller
- Kansas Department of Wildlife and Parks, Independence, Kansas, USA
| | - Wendell R Haag
- US Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Frankfort, Kentucky, USA
| | - Caryn C Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Daniel J Hornbach
- Department of Environmental Studies, Macalester College, St. Paul, Minnesota, USA
| | - Jess W Jones
- U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation and Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
6
|
Wilsey B, Kaul A, Polley HW. Establishment from seed is more important for exotic than for native plant species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10132. [PMID: 38323131 PMCID: PMC10840371 DOI: 10.1002/pei3.10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Climate change has initiated movement of both native and non-native (exotic) species across the landscape. Exotic species are hypothesized to establish from seed more readily than comparable native species. We tested the hypothesis that seed limitation is more important for exotic species than native grassland species. We compared seed limitation and invasion resistance over three growing seasons between 18 native and 18 exotic species, grown in both monocultures and mixtures in a field experiment. Half of the plots received a seed mix of the contrasting treatment (i.e., exotic species were seeded into native plots, and native species were seeded into exotic plots), and half served as controls. We found that (1) establishment in this perennial grassland is seed limited, (2) establishment from seed is greater in exotic than native species, and (3) community resistance to seedling establishment was positively related to diversity of extant species, but only in native communities. Native-exotic species diversity and composition differences did not converge over time. Our results imply that native to exotic transformations occur when diversity declines in native vegetation and exotic seeds arrive from adjacent sites, suggesting that managing for high diversity will reduce transformations to exotic dominance.
Collapse
Affiliation(s)
- Brian Wilsey
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Andrew Kaul
- Center for Conservation and Sustainable DevelopmentMissouri Botanical GardenSt. LouisMissouriUSA
| | - H. Wayne Polley
- Grassland, Soil and Water Research LaboratoryUSDA‐ARSTempleTexasUSA
| |
Collapse
|
7
|
Tye SP, Fey SB, Gibert JP, Siepielski AM. Predator mass mortality events restructure food webs through trophic decoupling. Nature 2024; 626:335-340. [PMID: 38233526 DOI: 10.1038/s41586-023-06931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Predators have a key role in structuring ecosystems1-4. However, predator loss is accelerating globally4-6, and predator mass-mortality events7 (MMEs)-rapid large-scale die-offs-are now emblematic of the Anthropocene epoch6. Owing to their rare and unpredictable nature7, we lack an understanding of how MMEs immediately impact ecosystems. Past predator-removal studies2,3 may be insufficient to understand the ecological consequences of MMEs because, in nature, dead predators decompose in situ and generate a resource pulse8, which could alter ensuing ecosystem dynamics by temporarily enhancing productivity. Here we experimentally induce MMEs in tritrophic, freshwater lake food webs and report ecological dynamics that are distinct from predator losses2,3 or resource pulses9 alone, but that can be predicted from theory8. MMEs led to the proliferation of diverse consumer and producer communities resulting from weakened top-down predator control1-3 and stronger bottom-up effects through predator decomposition8. In contrast to predator removals alone, enhanced primary production after MMEs dampened the consumer community response. As a consequence, MMEs generated biomass dynamics that were most similar to those of undisturbed systems, indicating that they may be cryptic disturbances in nature. These biomass dynamics led to trophic decoupling, whereby the indirect beneficial effects of predators on primary producers are lost and later materialize as direct bottom-up effects that stimulate primary production amid intensified herbivory. These results reveal ecological signatures of MMEs and demonstrate the feasibility of forecasting novel ecological dynamics arising with intensifying global change.
Collapse
Affiliation(s)
- Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | - Samuel B Fey
- Department of Biology, Reed College, Portland, OR, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
8
|
Zhou C, Ding Y, Zang R. Compositional changes at neighborhood and stand scales during recovery of a tropical lowland rainforest after shifting cultivation on Hainan Island, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119951. [PMID: 38171125 DOI: 10.1016/j.jenvman.2023.119951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Understanding compositional changes during secondary forest recovery is crucial for effective restoration efforts. While previous research has predominantly focused on shifts in species composition at the stand scale, this study delves into the recovery dynamics in three compositional aspects of location (neighbor distances), size (tree diameters), and species (tree species) at both stand and neighborhood scale. The investigation spans nine chronosequence plots within a tropical lowland rainforest ecosystem after shifting cultivation, including three each for young-secondary forests (18-30 years), old-secondary forests (60 years), and old-growth forests (without obvious human interference). The quantification of location, size, and species composition involved categorized neighbor distances (Near, Moderate, Far-distance), tree diameters (Small, Medium, Large-tree), and tree species (Pioneer, Intermediate, Climax-species) into three groups, respectively. Compositional changes at the stand scale (plot) were directly based on these groups, while at the neighborhood scale, assessment involved combination types of these groups within a neighborhood (comprising three adjacent trees). At the stand scale, neighbor distances shifted from Near to Moderate and Far, tree diameters transitioned from Small to Medium and Large, and tree species of Pioneer gave way to Climax. Meanwhile, at the neighborhood scale, there was a notable decline in the aggregations of Near-distance (N), Small-tree (S), and Pioneer-species (P), while the mixtures of Far and Moderate-distance (F-M), Large and Small-tree (L-S), and Climax and Intermediate-species (C-I) experienced a marked increase. The compositional change exhibited a recovery pattern, with the fastest recovery in neighbor distances, followed by tree diameters and tree species. Moreover, compositional recovery in tree diameters and tree species at the neighborhood scale generally lagged behind that at the stand scale. The study suggests that rapid restoration of secondary forest can be achieved by different targeted cutting according to the recovery stages, aimed at reduce the Pioneer-species, Small-tree and Near-distance in neighborhood. Our findings underscore that analyzing the compositional changes in three aspects at two scales not only provides a profound understanding of secondary forest recovery dynamics, but also offers valuable insights for guiding practices in the restoration of degraded forest ecosystems.
Collapse
Affiliation(s)
- Chaofan Zhou
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yi Ding
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Runguo Zang
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
9
|
Meyneng M, Lemonnier H, Le Gendre R, Plougoulen G, Antypas F, Ansquer D, Serghine J, Schmitt S, Siano R. Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event. ENVIRONMENTAL MICROBIOME 2024; 19:10. [PMID: 38291506 PMCID: PMC10829310 DOI: 10.1186/s40793-024-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season. RESULTS Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions. CONCLUSION The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.
Collapse
Affiliation(s)
- M Meyneng
- IFREMER, DYNECO, BP70, Plouzané, France
| | - H Lemonnier
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - R Le Gendre
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - G Plougoulen
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - F Antypas
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - D Ansquer
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | | | - S Schmitt
- IFREMER, DYNECO, BP70, Plouzané, France
| | - R Siano
- IFREMER, DYNECO, BP70, Plouzané, France.
| |
Collapse
|
10
|
Neely WJ, Martins RA, Mendonça da Silva CM, Ferreira da Silva T, Fleck LE, Whetstone RD, Woodhams DC, Cook WH, Prist PR, Valiati VH, Greenspan SE, Tozetti AM, Earley RL, Becker CG. Linking microbiome and stress hormone responses in wild tropical treefrogs across continuous and fragmented forests. Commun Biol 2023; 6:1261. [PMID: 38087051 PMCID: PMC10716138 DOI: 10.1038/s42003-023-05600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Renato A Martins
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila M Mendonça da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Tainá Ferreira da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Lucas E Fleck
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ross D Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - W Harrison Cook
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Paula R Prist
- EcoHealth Alliance, 520 Eight Avenue, Suite 1200, New York, NY, 10018, USA
| | - Victor H Valiati
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexandro M Tozetti
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ryan L Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Zampa G, Azzola A, Bianchi CN, Morri C, Oprandi A, Montefalcone M. Patterns of change in coral reef communities of a remote Maldivian atoll revisited after eleven years. PeerJ 2023; 11:e16071. [PMID: 38077433 PMCID: PMC10710173 DOI: 10.7717/peerj.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/20/2023] [Indexed: 12/18/2023] Open
Abstract
Coral reefs are exposed worldwide to several global and local human pressures including climate change and coastal development. Assessing the effects of such pressures on coral reef communities and the changes they undergo over time is mandatory to understand their possible future trends. Nonetheless, some coral reefs receive no or little scientific attention, as in the case of Huvadhoo Atoll that is an under-studied region in the southernmost area of the Maldives (Indian Ocean). This study analyzes the changes occurring over time in eight coral reefs (four inner reefs within the atoll lagoon and four outer reefs on the ocean side) at Huvadhoo Atoll, firstly surveyed in 2009 and revisited in 2020 using the same field methods. The cover of 23 morphological benthic descriptors (including different growth forms of Acropora) was taken into account and then grouped into three categories (i.e., hard coral, other benthic taxa and abiotic descriptors) to analyze the change in the composition of the coral reef community. Significant changes (e.g., increase in hard coral cover and decrease in abiotic descriptors) were observed in the inner reefs as compared to the outer reefs, which showed less variability. A significant decrease in tabular Acropora cover was observed in both inner and outer reefs, with possible negative effects on reef complexity and functioning. By comparing two time periods and two reef types, this study provides novel information on the change over time in the community composition of Maldivian coral reefs.
Collapse
Affiliation(s)
- Greta Zampa
- BiGeA, Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Azzola
- Seascape Ecology Laboratory, DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Carlo Nike Bianchi
- Seascape Ecology Laboratory, DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Ecology and Biotechnology, Genoa Marine Centre, Stazione Zoologica Anton Dohrn –National Institute of Marine Biology, Genoa, Italy
| | - Carla Morri
- Seascape Ecology Laboratory, DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Ecology and Biotechnology, Genoa Marine Centre, Stazione Zoologica Anton Dohrn –National Institute of Marine Biology, Genoa, Italy
| | - Alice Oprandi
- Seascape Ecology Laboratory, DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Monica Montefalcone
- Seascape Ecology Laboratory, DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
12
|
Bakker MG, Whitaker BK, McCormick SP, Ainsworth EA, Vaughan MM. Manipulating atmospheric CO 2 concentration induces shifts in wheat leaf and spike microbiomes and in Fusarium pathogen communities. Front Microbiol 2023; 14:1271219. [PMID: 37881249 PMCID: PMC10595150 DOI: 10.3389/fmicb.2023.1271219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Changing atmospheric composition represents a source of uncertainty in our assessment of future disease risks, particularly in the context of mycotoxin producing fungal pathogens which are predicted to be more problematic with climate change. To address this uncertainty, we profiled microbiomes associated with wheat plants grown under ambient vs. elevated atmospheric carbon dioxide concentration [CO2] in a field setting over 2 years. We also compared the dynamics of naturally infecting versus artificially introduced Fusarium spp. We found that the well-known temporal dynamics of plant-associated microbiomes were affected by [CO2]. The abundances of many amplicon sequence variants significantly differed in response to [CO2], often in an interactive manner with date of sample collection or with tissue type. In addition, we found evidence that two strains within Fusarium - an important group of mycotoxin producing fungal pathogens of plants - responded to changes in [CO2]. The two sequence variants mapped to different phylogenetic subgroups within the genus Fusarium, and had differential [CO2] responses. This work informs our understanding of how plant-associated microbiomes and pathogens may respond to changing atmospheric compositions.
Collapse
Affiliation(s)
- Matthew G. Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Briana K. Whitaker
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Elizabeth A. Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, United States
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| |
Collapse
|
13
|
Li B, Zhang X, Wu G, Qin B, Tefsen B, Wells M. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production. WATER RESEARCH 2023; 244:120490. [PMID: 37659180 DOI: 10.1016/j.watres.2023.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Research on harmful algal blooms has focused on macronutrients, yet recent research increasingly indicates that understanding micronutrient roles is also important in the development of effective environmental management interventions. Here, we report results on metallophore production from mesocosms amended with copper and iron (enzymatic co-factors in photosynthetic electron transport) to probe questions of how cyanobacteria navigate the divide between copper nutrition, copper toxicity, and issues with iron bioavailability. These experiments utilized Microcystis, Chlorella and Desmodesmus spp., in mono- and mixed-cultures in lake water from a large, hypereutrophic lake (Taihu, China). To initiate experiments, copper and iron amendments were added to mesocosms containing algae that had been acclimated to achieve a state of copper and iron limitation. Mesocosms were analyzed over time for a range of analytes including algal growth parameters, algal assemblage progression, copper/iron concentrations and biomolecule production of chalkophore, siderophore and total microcystins. Community Trajectory Analysis and other multivariate methods were used for analysis resulting in our findings: 1) Microcystis spp. manage copper/iron requirements though a dynamically phased behavior of chalkophore/siderophore production according to their copper and iron limitation status (chalkophore correlates with Cu concentration, R2 = 0.99, and siderophore correlates with the sum of Cu and Fe concentrations, R2 = 0.98). 2) A strong correlation was observed between the production of chalkophore and the cyanobacterial toxin microcystin (R2 = 0.76)-Chalkophore is a predictor of microcystin production. 3) Based on our results and literature, we posit that Microcystis spp. produces microcystin in response to copper/iron availability to manage photosystem productivity and effect an energy-saving status. Results from this work underscore the importance of micronutrients in influencing harmful algal bloom progression and represents a major advance in understanding the ecological function for the cyanobacterial toxin microcystin as a hallmark of micronutrient limitation stress.
Collapse
Affiliation(s)
- Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gongjie Wu
- Department of Biochemistry and Systems Biology, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Boris Tefsen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA; Meadows Center for Water and the Environment, Texas State University, San Marcos, Texas, 78666, USA.
| |
Collapse
|
14
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
15
|
Penny A, Dornelas M, Magurran A. Comparing temporal dynamics of compositional reorganization in long-term studies of birds and fish. Ecol Lett 2023. [PMID: 37183392 DOI: 10.1111/ele.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
The composition of ecological assemblages has changed rapidly over the past century. Compositional reorganization rates are high relative to rates of alpha diversity change, creating an urgent need to understand how this compositional reorganization is progressing. We developed a quantitative framework for comparing temporal trajectories of compositional reorganization and applied it to two long-term bird and marine fish datasets. We then evaluated how the number and magnitude of short-term changes relate to overall rates of change. We found varied trajectories of turnover across birds and fish, with linear directional change predominating in birds and non-directional change more common in fish. The number of changes away from the baseline was a more consistent correlate of the overall rate of change than the magnitude of such changes, but large unreversed changes were found in both fish and birds, as were time series with accelerating compositional change. Compositional reorganization is progressing through a complex mix of temporal trajectories, including both threshold-like behaviour and the accumulation of repeated, linear change.
Collapse
Affiliation(s)
- Amelia Penny
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
16
|
DeSiervo MH, Sullivan LL, Kahan LM, Seabloom EW, Shoemaker LG. Disturbance alters transience but nutrients determine equilibria during grassland succession with multiple global change drivers. Ecol Lett 2023. [PMID: 37125464 DOI: 10.1111/ele.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as β $$ \beta $$ diversity change through transient and equilibrium states.
Collapse
|
17
|
Stowe ES, Petersen KN, Rao S, Walther EJ, Freeman MC, Wenger SJ. Stream restoration produces transitory, not permanent, changes to fish assemblages at compensatory mitigation sites. Restor Ecol 2023. [DOI: 10.1111/rec.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Edward S. Stowe
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | | | - Shishir Rao
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | - Eric J. Walther
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | - Mary C. Freeman
- Eastern Ecological Science Center U.S. Geological Survey Athens GA U.S.A
| | - Seth J. Wenger
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| |
Collapse
|
18
|
Lemke M, DeSalle R. The Next Generation of Microbial Ecology and Its Importance in Environmental Sustainability. MICROBIAL ECOLOGY 2023; 85:781-795. [PMID: 36826587 PMCID: PMC10156817 DOI: 10.1007/s00248-023-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 05/04/2023]
Abstract
Collectively, we have been reviewers for microbial ecology, genetics and genomics studies that include environmental DNA (eDNA), microbiome studies, and whole bacterial genome biology for Microbial Ecology and other journals for about three decades. Here, we wish to point out trends and point to areas of study that readers, especially those moving into the next generation of microbial ecology research, might learn and consider. In this communication, we are not saying the work currently being accomplished in microbial ecology and restoration biology is inadequate. What we are saying is that a significant milestone in microbial ecology has been reached, and approaches that may have been overlooked or were unable to be completed before should be reconsidered in moving forward into a new more ecological era where restoration of the ecological trajectory of systems has become critical. It is our hope that this introduction, along with the papers that make up this special issue, will address the sense of immediacy and focus needed to move into the next generation of microbial ecology study.
Collapse
Affiliation(s)
- Michael Lemke
- Department of Biology, University of Illinois at Springfield, Springfield, IL, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
19
|
Davies GM, Gray A, Power SC, Domènech R. Resilience of temperate peatland vegetation communities to wildfire depends upon burn severity and pre-fire species composition. Ecol Evol 2023; 13:e9912. [PMID: 37056693 PMCID: PMC10085816 DOI: 10.1002/ece3.9912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
Peatland ecosystems are of global conservation and environmental importance storing globally significant amounts of ancient carbon, regulating regional temperatures and hydrological regimes, and supporting unique biodiversity. Livestock grazing, land-use change, drainage, nutrient and acid deposition, and wildfire threaten the composition and function of many peatlands including those in the uplands of the United Kingdom. Presently, little is known about either the short- or long-term effects of wildfires within these systems in the UK. Our study aimed to evaluate how plant communities respond to wildfires across a range of vegetation communities, soil types, and burn severities. We evaluated wildfire burn severity using the ground-based Composite Burn Index adapted for treeless peatlands. Using paired burned-unburned plots, we quantified differences in the abundance of plant families and functional groups, vegetation diversity, and community composition. Multivariate differences in composition between burned and unburned areas were used as an index of community resilience to fire. Plots in heathland communities with shallow organic soils burned at the highest severities and had the greatest reductions in plant diversity and richness. There were significant declines in plot-scale species richness and diversity with increasing burn severity. Graminoids were resilient to fire whilst Ericaceae tended to increase with higher severity. Bryophyte composition was substantially altered-pleurocarpous species declined and acrocarpous species increased with greater burn severity. Community resilience was related to ground layer burn severity with higher burn severity driving greater changes in communities. Wildfire effects on temperate peatlands are a function of fire weather and site environmental and ecological characteristics. Management policy should ensure that the risk of severe wildfires is mitigated to protect ecosystem function and biodiversity. This will require system-specific fire management prescriptions across the gradient of peatland soil and vegetation types.
Collapse
Affiliation(s)
- G. Matt Davies
- School of Environment and Natural ResourcesThe Ohio State UniversityColumbusOhioUSA
| | - Alan Gray
- UK Centre for Ecology and HydrologyPenicuikScotland
| | - Simon C. Power
- School of Environment and Natural ResourcesThe Ohio State UniversityColumbusOhioUSA
| | - Rut Domènech
- Consortium of Environmental Policies of Terres de l'Ebre (COPATE)AmpostaSpain
| |
Collapse
|
20
|
Darragh K, Linden TA, Ramírez SR. Seasonal stability and species specificity of environmentally acquired chemical mating signals in orchid bees. J Evol Biol 2023; 36:675-686. [PMID: 36820763 DOI: 10.1111/jeb.14165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
Traits that mediate reproductive isolation between species, such as those involved in mate choice and/or recognition, are predicted to experience stabilizing selection towards the species mean. Male orchid bees collect chemical compounds from many sources, such as plants and fungi, which they use as a perfume signal (pheromone) during courtship display, and are suggested to contribute to reproductive isolation between species. Environmentally acquired signals are more prone to variation as source availability can vary through space and time. If orchid bee perfumes are important for reproductive isolation between species, we expect them to exhibit stable species-specific differences in time and space. Here, we describe phenotypic patterns of inter- and intraspecific variation in the male perfumes of three sympatric species of Euglossa orchid bees across an entire year, investigating both their seasonality and species specificity. Our analysis revealed considerable within-species variation in perfumes. However, species specificity was maintained consistently throughout the year, supporting the idea that these perfumes could play an important role in reproductive isolation and are experiencing stabilizing selection towards a species mean. Our analysis also identified strong correlations in the abundance of some compounds, possibly due to shared collection sources between species. Our study suggests that orchid bee perfumes are robust in the face of environmental changes in resource availability and thus can maintain reproductive isolation between species.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Tess A Linden
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
21
|
Grunberg RL, Joyner BN, Mitchell CE. Historical contingency in parasite community assembly: Community divergence results from early host exposure to symbionts and ecological drift. PLoS One 2023; 18:e0285129. [PMID: 37192205 DOI: 10.1371/journal.pone.0285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
Host individuals are commonly coinfected with multiple parasite species that may interact to shape within-host parasite community structure. In addition to within-host species interactions, parasite communities may also be structured by other processes like dispersal and ecological drift. The timing of dispersal (in particular, the temporal sequence in which parasite species infect a host individual) can alter within-host species interactions, setting the stage for historical contingency by priority effects, but how persistently such effects drive the trajectory of parasite community assembly is unclear, particularly under continued dispersal and ecological drift. We tested the role of species interactions under continued dispersal and ecological drift by simultaneously inoculating individual plants of tall fescue with a factorial combination of three symbionts (two foliar fungal parasites and a mutualistic endophyte), then deploying the plants in the field and tracking parasite communities as they assembled within host individuals. In the field, hosts were exposed to continued dispersal from a common pool of parasites, which should promote convergence in the structure of within-host parasite communities. Yet, analysis of parasite community trajectories found no signal of convergence. Instead, parasite community trajectories generally diverged from each other, and the magnitude of divergence depended on the initial composition of symbionts within each host, indicating historical contingency. Early in assembly, parasite communities also showed evidence of drift, revealing another source of among-host divergence in parasite community structure. Overall, these results show that both historical contingency and ecological drift contributed to divergence in parasite community assembly within hosts.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooklynn N Joyner
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
22
|
Jardim VL, Gauthier O, Toumi C, Grall J. Quantifying maerl (rhodolith) habitat complexity along an environmental gradient at regional scale in the Northeast Atlantic. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105768. [PMID: 36240648 DOI: 10.1016/j.marenvres.2022.105768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Maerl beds are ecologically important marine biogenic habitats founded on a few species of free-living coralline algae that aggregate and form highly complex rhodoliths. The high biodiversity found in these habitats have been mainly justified by the structural complexity that they provide. However, few attempts to quantify this complexity have been made. Maerl species distribution, density, rhodolith growth forms, and shapes vary with environmental conditions. Hydrodynamics and depth have been shown to drive morphology. Using species-specific metrics such as sphericity and branching density, as well as diameter and fractal dimension at the rhodolith level, and maerl density at the habitat level, we quantified the habitat complexity within ten maerl beds at a regional scale (along ∼400 km of the coastline of Brittany in Western France). Using both long-term monitoring data and environmental models, we investigated how maerl habitat complexity varies among beds and which environmental conditions drive those differences. The effects of currents, exposure to wind-generated waves, temperature and sediment granulometry were evaluated. We confirmed variations in complexity in maerl beds at the habitat and rhodolith levels at local and regional scales, which might have ecological and conservational implications for their associated biodiversity. The analysed environmental conditions drive around a third of the variance in habitat complexity. Sediment granulometry is the main driver of maerl habitat complexity in Brittany, while the isolated effects of depth and hydrodynamics accounted for less than 5% of the variability each. Our results have important implications for paleoecology, and we suggest that maerl facies should be interpreted carefully. Our study provides a first attempt at explicitly quantifying maerl habitat complexity, and further contributes to the understanding of this fundamental ecological question.
Collapse
Affiliation(s)
- Victor L Jardim
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France.
| | - Olivier Gauthier
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280, Plouzané, France
| | - Chirine Toumi
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France
| | - Jacques Grall
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280, Plouzané, France
| |
Collapse
|
23
|
Espinasse B, Sturbois A, Basedow SL, Hélaouët P, Johns DG, Newton J, Trueman CN. Temporal dynamics in zooplankton δ13C and δ15N isoscapes for the North Atlantic Ocean: Decadal cycles, seasonality, and implications for predator ecology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.986082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The limited amount of ecological data covering offshore parts of the ocean impedes our ability to understand and anticipate the impact of anthropogenic stressors on pelagic marine ecosystems. Isoscapes, i.e., spatial models of the distribution of stable isotope ratios, have been employed in the recent years to investigate spatio-temporal patterns in biogeochemical process and ecological responses. Development of isoscapes on the scale of ocean basins is hampered by access to suitable reference samples. Here we draw on archived material from long-running plankton survey initiatives, to build temporally explicit isoscape models for the North Atlantic Ocean (> 40°N). A total of 570 zooplankton samples were retrieved from Continuous Plankton Recorder archives and analysed for δ13C and δ15N values. Bayesian generalised additive models were developed to (1) model the relations between isotopic values and a set of predictors and (2) predict isotopic values for the whole of the study area. We produced yearly and seasonal isoscape models for the period 1998–2020. These are the first observation-based time-resolved C and N isoscapes developed at the scale of the North Atlantic Ocean. Drawing on the Stable Isotope Trajectory Analysis framework, we identify five isotopically distinct regions. We discuss the hydro-biogeochemical processes that likely explain theses modes, the differences in temporal dynamics (stability and cycles) and compare our results with previous bioregionalization efforts. Finally, we lay down the basis for using the isoscapes as a tool to define predator distributions and their interactions with the trophic environment. The isoscapes developed in this study have the potential to update our knowledge of marine predator ecology and therefore our capacity to improve their conservation in the future.
Collapse
|
24
|
Host genotype controls ecological change in the leaf fungal microbiome. PLoS Biol 2022; 20:e3001681. [PMID: 35951523 PMCID: PMC9371330 DOI: 10.1371/journal.pbio.3001681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics. We found a strong successional pattern in the microbiome shaped both by host genetics and environmental factors. Further, we used genome-wide association (GWA) mapping and RNA sequencing to show that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated with microbiome structure. We confirmed GWAS results in an independent set of genotypes for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA markers. Fungal pathogens were central to microbial covariance networks, and genotypes susceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host immune genes are a principal means of controlling the entire leaf microbiome. Leaf fungal microbiomes can strongly influence host plant success. Monitoring the leaf fungal microbiome of switchgrass over time shows microbial ecological succession, and reveals the host plant genes that influence community-wide changes.
Collapse
|
25
|
Faillace CA, Grunberg RL, Morin PJ. Historical contingency and the role of post-invasion evolution in alternative community states. Ecology 2022; 103:e3711. [PMID: 35362167 PMCID: PMC9287070 DOI: 10.1002/ecy.3711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
Historical contingency has long figured prominently in the conceptual frameworks of evolutionary biology and community ecology. Evolutionary biologists typically consider the effects of chance mutation and historical contingency in driving divergence and convergence of traits in populations, whereas ecologists instead are often interested in the role of historical contingency in community assembly and succession. Although genetic differences among individuals in populations can influence community interactions, variability among populations of the same species has received relatively little attention for its potential role in community assembly and succession. We used a community‐level study of experimental evolution in two compositionally different assemblages of protists and rotifers to explore whether initial differences in species abundances among communities attributed to differences in evolutionary history, persisted as species that continued to evolve over time. In each assemblage, we observed significant convergence between two invaded treatments initially differing in evolutionary history over an observation period equal to ~40–80 generations for most species. Nonetheless, community structure failed to converge completely across all invaded treatments within an assemblage to a single structure. This suggests that whereas the species in the assemblage represent a common selective regime, differences in populations reflecting their evolutionary history can produce long‐lasting transient alternative community states. In one assemblage, we also observed increasing within‐treatment variability among replicate communities over time, suggesting that ecological drift may be another factor contributing to community change. Although subtle, these transient alternative states, in which communities differed in the abundance of interacting species, could nonetheless have important functional consequences, suggesting that the role of evolution in driving these states deserves greater attention.
Collapse
Affiliation(s)
- Cara A Faillace
- Graduate Program in Ecology and Evolution, Dept. of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, Environmental & Natural Resources Building, 14 College Farm Road, New Brunswick, NJ
| | - Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Peter J Morin
- Graduate Program in Ecology and Evolution, Dept. of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, Environmental & Natural Resources Building, 14 College Farm Road, New Brunswick, NJ
| |
Collapse
|
26
|
Manhães A, Pantaleão L, Moraes L, Amazonas N, Saavedra M, Mantuano D, Sansevero J. FUNCTIONAL TRAJECTORY FOR THE ASSESSMENT OF ECOLOGICAL RESTORATION SUCCESS. Restor Ecol 2022. [DOI: 10.1111/rec.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A.P. Manhães
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - L.C. Pantaleão
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - L.F.D. Moraes
- Center of Agrobiology, Brazilian Agricultural Research Corporation (EMBRAPA) Seropédica RJ 23897‐000 Brazil
| | - N.T. Amazonas
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - M.M. Saavedra
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
| | - D. Mantuano
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
| | - J.B.B. Sansevero
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| |
Collapse
|
27
|
Sturbois A, Riera P, Desroy N, Brébant T, Carpentier A, Ponsero A, Schaal G. Spatio-temporal patterns in stable isotope composition of a benthic intertidal food web reveal limited influence from salt marsh vegetation and green tide. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105572. [PMID: 35134641 DOI: 10.1016/j.marenvres.2022.105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Assessing fluxes of matter and energy in food webs within and across benthic habitats is important to understand the ecological functioning in bays and estuaries, where the productivity is favoured by a wide diversity of primary producers. The temporal variability (March vs September 2019) in the carbon and nitrogen stable isotope composition of primary food sources and benthic invertebrates consumers was investigated in a large intertidal area (Western English-Channel, France). The study area is influenced by megatidal conditions and characterised by salt marshes in the sheltered part, and seasonal Ulva spp. blooms. The spatio-temporal variability in the structure of the benthic food web was analysed at the scales of both the whole bay and the different assemblages, which constitute the mosaic of habitats. Inferences on potential sources fuelling the food web were supported by spatio-temporal patterns based on covariations and stable isotope trajectory analysis. Results highlighted that phytoplankton, microphytobenthos and SOM were, most likely, the main food sources. The trophic connectivity between salt marsh and benthic habitats within the bay was limited to some macrofauna species inhabiting muddy creeks within the salt marsh. Unexpectedly, the influence of Ulva spp. blooms appeared also limited. Spatial patterns illustrates the constancy of the spatial variability in the benthic pelagic coupling, with a higher influence of microphytobenthos in the upper shore compared to low shore assemblages. This first attempt to characterize intertidal benthic food web constitutes a relevant baseline for the conservation of the bay of Saint-Brieuc where a national Nature Reserve has been created in 1998 for the conservation of overwintering birds. The spatial and temporal patterns of the benthic food web observed in this study (1) confirm the importance to consider food web variability at spatial and temporal scales from sampling designs to data analysis, and (2) demonstrate the ability of the stable isotope trajectory analysis framework to highlight food web dynamics.
Collapse
Affiliation(s)
- A Sturbois
- Vivarmor Nature, 18 C rue du Sabot, 22440, Ploufragan, France; Réserve naturelle nationale de la Baie de Saint-Brieuc, site de l'étoile, 22120, Hillion, France; Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, 35800, Dinard, France; Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280, Plouzané, France.
| | - P Riera
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Place Georges Teissier, CS90074, 29688, Roscoff Cedex, France
| | - N Desroy
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, 35800, Dinard, France
| | - T Brébant
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, 35800, Dinard, France
| | - A Carpentier
- Université de Rennes 1, BOREA, Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles), Campus de Beaulieu, 35000, Rennes, France
| | - A Ponsero
- Réserve naturelle nationale de la Baie de Saint-Brieuc, site de l'étoile, 22120, Hillion, France; Saint-Brieuc Agglomération Baie d'Armor, 5 rue du 71ème RI, 22000, Saint-Brieuc, France
| | - G Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280, Plouzané, France
| |
Collapse
|
28
|
Restoration Trajectories and Ecological Thresholds during Planted Urban Forest Successional Development. FORESTS 2022. [DOI: 10.3390/f13020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successfully reconstructing functioning forest ecosystems from early-successional tree plantings is a long-term process that often lacks monitoring. Many projects lack observations of critical successional information, such as the restoration trajectory of key ecosystem attributes and ecological thresholds, which signal that management actions are needed. Here, we present results from a 65 ha urban temperate rainforest restoration project in Aotearoa New Zealand, where trees have been planted annually on public retired pasture land, forming a 14 years chronosequence. In 25 plots (100 m2 each), we measured key ecosystem attributes that typically change during forest succession: native tree basal area, canopy openness, non-native herbaceous ground cover, leaf litter cover, ground fern cover, dead trees, and native tree seedling abundance and richness. We also monitored for the appearance of physiologically-sensitive plant guilds (moss, ferns, and epiphytes) that may be considered ecological indicators of succession. Linear regression models identified relationships between all but one of the key ecosystem attributes and forest age (years since planting). Further, using breakpoint analysis, we found that ecological thresholds occurred in many ecosystem attributes during their restoration trajectories: reduced canopy openness (99.8% to 3.4%; 9.6 years threshold), non-native herbaceous ground cover (100% to 0; 10.9 years threshold), leaf litter cover (0 to 95%; 10.8 years threshold), and increased tree deaths (0 to 4; 11 years threshold). Further, juvenile native plant recruitment increased (tree seedling abundance 0 to ~150 per 4 m2), tree seedling species richness (0 to 13 per 100 m2) and epiphytes colonized (0 to 3 individuals per 100 m2). These and other physiologically-sensitive plant guilds appeared around the 11 years mark, confirming their utility as ecological indicators during monitoring. Our results indicate that measurable, ecological thresholds occur during the restoration trajectories of ecosystem attributes, and they are predictable. If detected, these thresholds can inform project timelines and, along with use of ecological indicators, inform management interventions.
Collapse
|
29
|
Sturbois A, Cucherousset J, De Cáceres M, Desroy N, Riera P, Carpentier A, Quillien N, Grall J, Espinasse B, Cherel Y, Schaal G. Stable Isotope Trajectory Analysis (
SITA
): A new approach to quantify and visualize dynamics in stable isotope studies. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. Sturbois
- Vivarmor Nature, 18 C rue du Sabot Ploufragan France
- Réserve naturelle nationale de la Baie de Saint‐Brieuc, site de l'étoile, 22120 Hillion France
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - J. Cucherousset
- UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), CNRS, Université Paul Sabatier, IRD, 118 route de Narbonne Toulouse France
| | | | - N. Desroy
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
| | - P. Riera
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Place Georges Teissier CS90074, 29688, Roscoff Cedex France
| | - A. Carpentier
- Université de Rennes 1, BOREA, Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Campus de Beaulieu Rennes France
| | - N. Quillien
- France Energies Marines, 525 Avenue Alexis de Rochon Plouzané France
| | - J. Grall
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - B. Espinasse
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Y. Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - G. Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| |
Collapse
|
30
|
Crausbay SD, Sofaer HR, Cravens AE, Chaffin BC, Clifford KR, Gross JE, Knapp CN, Lawrence DJ, Magness DR, Miller-Rushing AJ, Schuurman GW, Stevens-Rumann CS. A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation. Bioscience 2021. [DOI: 10.1093/biosci/biab102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Earth is experiencing widespread ecological transformation in terrestrial, freshwater, and marine ecosystems that is attributable to directional environmental changes, especially intensifying climate change. To better steward ecosystems facing unprecedented and lasting change, a new management paradigm is forming, supported by a decision-oriented framework that presents three distinct management choices: resist, accept, or direct the ecological trajectory. To make these choices strategically, managers seek to understand the nature of the transformation that could occur if change is accepted while identifying opportunities to intervene to resist or direct change. In this article, we seek to inspire a research agenda for transformation science that is focused on ecological and social science and based on five central questions that align with the resist–accept–direct (RAD) framework. Development of transformation science is needed to apply the RAD framework and support natural resource management and conservation on our rapidly changing planet.
Collapse
Affiliation(s)
- Shelley D Crausbay
- Conservation Science Partners, Fort Collins, Colorado, and is a consortium partner for the US Geological Survey's North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Helen R Sofaer
- US Geological Survey Pacific Island Ecosystems Research Center, Hawaii Volcanoes National Park, Hawai'i, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | | - Katherine R Clifford
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - John E Gross
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | | | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | | | - Gregor W Schuurman
- US National Park Service Climate Change Response Program, in Fort Collins, Colorado, United States
| | - Camille S Stevens-Rumann
- Forest and Rangeland Stewardship Department and assistant director of the Colorado Forest Restoration Institute, at Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
31
|
Frog community composition-environment relationships vary over time: Are snapshot studies of metacommunity dynamics useful? Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Lamy T, Wisnoski NI, Andrade R, Castorani MCN, Compagnoni A, Lany N, Marazzi L, Record S, Swan CM, Tonkin JD, Voelker N, Wang S, Zarnetske PL, Sokol ER. The dual nature of metacommunity variability. OIKOS 2021. [DOI: 10.1111/oik.08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Lamy
- Marine Science Inst., Univ. of California Santa Barbara CA USA
- MARBEC, Univ. of Montpellier, CNRS, Ifremer, IRD Sète France
| | - Nathan I. Wisnoski
- Dept of Biology, Indiana Univ. Bloomington IN USA
- WyGISC, Univ. of Wyoming Laramie WY USA
| | - Riley Andrade
- Dept of Wildlife Ecology and Conservation, Univ. of Florida Gainesville FL USA
- Dept of Natural Resources and Environmental Sciences, Univ. of Illinois at Urbana – Champaign Urbana IL USA
| | | | - Aldo Compagnoni
- Martin Luther Univ. Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Nina Lany
- Dept of Forestry, Michigan State Univ. East Lansing MI USA
- Ecology, Evolution and Behavior Program, Michigan State Univ. East Lansing MI USA
| | - Luca Marazzi
- Inst. of Environment, Florida International Univ. Miami FL USA
| | - Sydne Record
- Dept of Biology, Bryn Mawr College Bryn Mawr PA USA
| | - Christopher M. Swan
- Dept of Geography and Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
| | - Jonathan D. Tonkin
- Dept of Integrative Biology, Oregon State Univ. OR USA
- School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Nicole Voelker
- Dept of Geography and Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Inst. of Ecology, College of Urban and Environmental Sciences, Peking Univ. Beijing China
| | - Phoebe L. Zarnetske
- Ecology, Evolution and Behavior Program, Michigan State Univ. East Lansing MI USA
- Dept of Integrative Biology, Michigan State Univ. East Lansing MI USA
| | - Eric R. Sokol
- Inst. of Arctic and Alpine Research (INSTAAR), Univ. of Colorado Boulder Boulder CO USA
- Battelle, National Ecological Observatory Network (NEON) Boulder CO USA
| |
Collapse
|
33
|
Stygobiont Diversity in the San Marcos Artesian Well and Edwards Aquifer Groundwater Ecosystem, Texas, USA. DIVERSITY 2021. [DOI: 10.3390/d13060234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Edwards Aquifer and related Edwards-Trinity Aquifer of Central Texas, USA, is a global hotspot of stygobiont biodiversity. We summarize 125 years of biological investigation at the San Marcos Artesian Well (SMAW), the best studied and most biodiverse groundwater site (55 stygobiont taxa: 39 described and 16 undescribed) within the Edwards Aquifer Groundwater Ecosystem. Cluster analysis and redundancy analysis (RDA) incorporating temporally derived, distance-based Moran’s Eigenvector Mapping (dbMem) illustrate temporal dynamics in community composition in 85 high-frequency samples from the SMAW. Although hydraulic variability related to precipitation and discharge partially explained changes in community composition at the SMAW, a large amount of temporal autocorrelation between samples remains unexplained. We summarize potential mechanisms by which hydraulic changes can affect community structure in deep, phreatic karst aquifers. We also compile information on 12 other Edwards and Edwards-Trinity Aquifer sites with 10 or more documented stygobionts and used distance-based RDA to assess the relative influences of distance and site type on three measures of β-diversity. Distance between sites was the most important predictor of total dissimilarity and replacement, although site type was also important. Species richness difference was not predicted by either distance or site type.
Collapse
|
34
|
Li B, Zhang X, Deng J, Cheng Y, Chen Z, Qin B, Tefsen B, Wells M. A new perspective of copper-iron effects on bloom-forming algae in a highly impacted environment. WATER RESEARCH 2021; 195:116889. [PMID: 33735628 DOI: 10.1016/j.watres.2021.116889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Relatively little work has been done on the role of micronutrients in influencing development and progression of harmful algal blooms, yet micronutrients are ineluctably required for growth. Relatively small changes in micronutrient status have wide-ranging consequences. Here, we report results from mesocosm experiments with Microcystis and Desmodesmus spp., in mono- and mixed-cultures, to probe questions of how copper, iron, and copper-iron amendments affect growth, short-term assemblage progression, and production of siderophore, chalkophore, and microcystin in lake water from a large, hypereutrophic lake (Taihu, China). Our approach offers an entirely new perspective to understanding micronutrient dynamics in aqueous environments, as this is the first work to systematically screen for chalkophores and siderophores separately, as a function of copper/iron amendment, and using community trajectory analysis. Singular findings are summarized as follows: 1) unlike lab-based studies, in our work we observe neither dramatic copper-modulation of iron demand, nor evidence of an iron-protective effect from copper toxicity. 2) The interplay between chalkophore/siderophore production supports a concept model wherein Microcystis spp. varies behavior to individually and uniquely manage copper/iron requirements in a phased manner. In being able to specifically screen for chalkophores, we observe a previously unreported link between chalkophore and microcystin production that may relate to iron-limitation. 3) Regarding harmful algal bloom (HAB) persistance, the lake water itself influences mesocosm changes; differentiated effects for iron regarding growth indicators and/or reduction of Fe-limitation stress were found at an HAB-free field station (Xukou Bay), likely a consequence of low bioavailability of iron in this station as compared to HAB-impacted stations (half the initial dissolved iron concentration, persisting throughout experiments). The low dissolved iron accompanies more intense chalkophore/siderophore community trajectories.
Collapse
Affiliation(s)
- Boling Li
- Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yili Cheng
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; Ronin Institute, Montclair, NJ 07043, United States.
| | - Mona Wells
- Environmental Sciences, Hawkes Bay Regional Council, Napier 4110, New Zealand.
| |
Collapse
|
35
|
Buckley HL, Day NJ, Case BS, Lear G. Measuring change in biological communities: multivariate analysis approaches for temporal datasets with low sample size. PeerJ 2021; 9:e11096. [PMID: 33889442 PMCID: PMC8038644 DOI: 10.7717/peerj.11096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Effective and robust ways to describe, quantify, analyse, and test for change in the structure of biological communities over time are essential if ecological research is to contribute substantively towards understanding and managing responses to ongoing environmental changes. Structural changes reflect population dynamics, changes in biomass and relative abundances of taxa, and colonisation and extinction events observed in samples collected through time. Most previous studies of temporal changes in the multivariate datasets that characterise biological communities are based on short time series that are not amenable to data-hungry methods such as multivariate generalised linear models. Here, we present a roadmap for the analysis of temporal change in short-time-series, multivariate, ecological datasets. We discuss appropriate methods and important considerations for using them such as sample size, assumptions, and statistical power. We illustrate these methods with four case-studies analysed using the R data analysis environment.
Collapse
Affiliation(s)
- Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bradley S. Case
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Buckley HL, Day NJ, Lear G, Case BS. Changes in the analysis of temporal community dynamics data: a 29-year literature review. PeerJ 2021; 9:e11250. [PMID: 33889452 PMCID: PMC8038643 DOI: 10.7717/peerj.11250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding how biological communities change over time is of increasing importance as Earth moves into the Anthropocene. A wide variety of methods are used for multivariate community analysis and are variously applied to research that aims to characterise temporal dynamics in community composition. Understanding these methods and how they are applied is useful for determining best practice in community ecology. METHODOLOGY We reviewed the ecological literature from 1990 to 2018 that used multivariate methods to address questions of temporal community dynamics. For each paper that fulfilled our search criteria, we recorded the types of multivariate analysis used to characterise temporal community dynamics in addition to the research aim, habitat type, location, taxon and the experimental design. RESULTS Most studies had relatively few temporal replicates; the median number was seven time points. Nearly 70% of studies applied more than one analysis method; descriptive methods such as bar graphs and ordination were the most commonly applied methods. Surprisingly, the types of analyses used were only related to the number of temporal replicates, but not to research aim or any other aspects of experimental design such as taxon, or habitat or year of study. CONCLUSIONS This review reveals that most studies interested in understanding community dynamics use relatively short time series meaning that several, more sophisticated, temporal analyses are not widely applicable. However, newer methods using multivariate dissimilarities are growing in popularity and many can be applied to time series of any length.
Collapse
Affiliation(s)
- Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bradley S. Case
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
37
|
Sturbois A, De Cáceres M, Sánchez-Pinillos M, Schaal G, Gauthier O, Mao PL, Ponsero A, Desroy N. Extending community trajectory analysis: New metrics and representation. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Mota‐Ferreira M, Filipe AF, Filomena Magalhães M, Carona S, Beja P. Spatial modelling of temporal dynamics in stream fish communities under anthropogenic change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Mário Mota‐Ferreira
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Ana Filipa Filipe
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Maria Filomena Magalhães
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Sara Carona
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Pedro Beja
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
39
|
Affiliation(s)
- Louie H. Yang
- Department of Entomology and Nematology University of California Davis California
| |
Collapse
|
40
|
Sánchez-Pinillos M, De Cáceres M, Ameztegui A, Coll L. Temporal dimension of forest vulnerability to fire along successional trajectories. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109301. [PMID: 31362169 DOI: 10.1016/j.jenvman.2019.109301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Understanding ecosystem vulnerability is essential in risk management to anticipate disasters. While valuable efforts have been made to characterize vulnerability components (exposure, sensitivity, and response capacity) at particular ecosystem stages, there is still a lack of context-specific studies accounting for the temporal dimension of vulnerability. In this study, we developed a procedure to identify the main natural dynamics of monospecific and mixed forests and to assess the variations of sensitivity and response capacity to fire along successional dynamics. In the procedure, we generated forest chronosequences by summarizing the dynamics between consecutive surveys of permanent plots into a set of longer successional trajectories represented in a multidimensional space. Then, we calculated several variables of sensitivity and response capacity to fire of forest stages associated with each trajectory and we assessed their variation along succession. The procedure was applied to Mediterranean forests in Spain dominated by a pine species poorly adapted to severe crown fires. We found that forest vulnerability components varied differently among successional trajectories, which depended on the composition and structure of their initial stages and the environmental context in which they occurred. Autosuccessional dynamics of pine forests showed relatively low sensitivity to fire along trajectories. However, their response capacity was related to the changes in shrub cover. In contrast, diversifying dynamics showed an increasing sensitivity to fire, but also a higher response capacity the greater the functional diversity along succession. These results highlight the need for considering the temporal dimension of vulnerability in risk management and the importance of assessing sensitivity and response capacity as independent components of vulnerability that can be modified through management at critical forest stages.
Collapse
Affiliation(s)
| | - Miquel De Cáceres
- Joint Research Unit CTFC - AGROTECNIO, Solsona E, 25280, Spain; Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès E, 08193, Spain
| | - Aitor Ameztegui
- Joint Research Unit CTFC - AGROTECNIO, Solsona E, 25280, Spain; Department of Agriculture and Forest Engineering (EAGROF), University of Lleida, Lleida E, 25198, Spain
| | - Lluís Coll
- Joint Research Unit CTFC - AGROTECNIO, Solsona E, 25280, Spain; Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès E, 08193, Spain; Department of Agriculture and Forest Engineering (EAGROF), University of Lleida, Lleida E, 25198, Spain
| |
Collapse
|
41
|
Inouye BD, Ehrlén J, Underwood N. Phenology as a process rather than an event: from individual reaction norms to community metrics. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1352] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian D. Inouye
- Biological Science Florida State University Tallahassee Florida 32306 USA
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Rocky Mountain Biological Lab Gothic Colorado 81224 USA
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Bolin Centre for Climate Research Stockholm University Stockholm 106 91 Sweden
| | - Nora Underwood
- Biological Science Florida State University Tallahassee Florida 32306 USA
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm 106 91 Sweden
- Rocky Mountain Biological Lab Gothic Colorado 81224 USA
| |
Collapse
|