1
|
Orellana JI, Amico GC, Nespolo RF, Sade S, Vilches-Gómez V, Fontúrbel FE. Mistletoes on lianas: Seed dispersal highways or drought safe havens? Evidence from South American temperate rainforests. Ecology 2025; 106:e4479. [PMID: 39586678 DOI: 10.1002/ecy.4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Affiliation(s)
- José I Orellana
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Guillermo C Amico
- INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Argentina
| | - Roberto F Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Soraya Sade
- Laboratorio de Ecología, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | - Valentina Vilches-Gómez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
2
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
3
|
Hatum PS, McMahon K, Mengersen K, K. McWhorter J, Wu PPY. In hot water: Uncertainties in projecting marine heatwaves impacts on seagrass meadows. PLoS One 2024; 19:e0298853. [PMID: 39602420 PMCID: PMC11602073 DOI: 10.1371/journal.pone.0298853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024] Open
Abstract
Seagrass ecosystems, vital as primary producer habitats for maintaining high biodiversity and delivering numerous ecosystem services, face increasing threats from climate change, particularly marine heatwaves. This study introduces a pioneering methodology that integrates Dynamic Bayesian Networks of ecosystem resilience with climate projections, aiming to enhance our understanding of seagrass responses to extreme climate events. We developed cutting-edge metrics for measuring shoot density and biomass in terms of population and site extinction, presented as annual ratios relative to their respective baselines. These metrics include associated uncertainties and projected recovery times. This innovative approach was applied in a case study focusing on Zostera muelleri in Gladstone Harbour, Australia. Utilising five downscaled climate models with a 10 km resolution, our study encompasses a range of Shared Socioeconomic Pathways and emissions trajectories, offering a comprehensive perspective on potential future scenarios. Our findings reveal significant variations in seagrass resilience and recovery times across different climate scenarios, accompanied by varying degrees of uncertainty. For instance, under the optimistic SSP1-1.9 scenario, seagrass demonstrated a capacity for recovery heat stress, with shoot density ratios improving from 0.2 (90% Prediction Interval 0.219, 0.221) in 2041 to 0.5 (90% PI 0.198, 1.076) by 2044. However, this scenario also highlighted potential site extinction risks, with recovery gaps spanning 12 to 18 years. In contrast, the more pessimistic SSP5-8.5 scenario revealed a significant decline in seagrass health, with shoot density ratios decreasing from 0.42 (90% PI 0.226, 0.455) in 2041 to just 0.2 (90% PI 0.211, 0.221) in 2048, and no recovery observed after 2038. This study, through its novel integration of climate models, Dynamic Bayesian Networks, and Monte Carlo methods, offers a groundbreaking approach to ecological forecasting, significantly enhancing seagrass resilience assessment and supporting climate adaptation strategies under changing climatic conditions. This methodology holds great potential for application across various sites and future climate scenarios, offering a versatile tool for integrating Dynamic Bayesian Networks ecosystem models.
Collapse
Affiliation(s)
- Paula S. Hatum
- School of Mathematical Sciences, Centre for Data Science, University of Technology, Brisbane, Queensland, Australia
| | - Kathryn McMahon
- School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kerrie Mengersen
- School of Mathematical Sciences, Centre for Data Science, University of Technology, Brisbane, Queensland, Australia
| | - Jennifer K. McWhorter
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, United States of America
| | - Paul P.-Y. Wu
- School of Mathematical Sciences, Centre for Data Science, University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Estelaji F, Zahedi R, Gitifar A, Naseri A, Yari MH, Asl BR, Abedi B. Integrating HEC-RAS, GIS, and LISREL for assessing and enhancing urban building resilience against flood threats: Comprehensive model and analysis. Heliyon 2024; 10:e39463. [PMID: 39497998 PMCID: PMC11532245 DOI: 10.1016/j.heliyon.2024.e39463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Floods pose significant threats to urban areas, resulting in substantial human and financial losses annually. The vulnerability of key urban centers to these risks diminishes their efficiency, leading to public dissatisfaction and service deficiencies. Recognizing and enhancing the resilience of essential buildings becomes crucial in mitigating these challenges. This study employs a comprehensive approach to achieve a resilience model for critical buildings facing floods. The research process involves the identification of city assets based on leveling criteria, utilizing GIS technology for spatial mapping. HECRAS software aids in river flow modeling, identifying areas lacking flood-carrying capacity. By overlaying vulnerable gravity centers with flood-prone regions, building resilience components are computed through structural factor analysis and LISREL modeling. The study identifies ten key criteria. Further analysis includes resilience modeling using TOPSIS and AHP methods. The positive ideal and negative ideal solutions are determined, resulting in the grading of building resilience. Notably, the balance redundancy index with cascading potential effects attains the highest positive ideal value at 0.257, while the resistance to a level of stress index achieves the lowest negative ideal value at 0.02. This comprehensive approach and modeling contribute to the understanding and enhancement of urban building resilience in the face of flood threats.
Collapse
Affiliation(s)
- Faraz Estelaji
- Department of Construction Engineering and Management, Faculty of Civil Engineering, Khajeh Nasir Toosi University, Tehran, Iran
| | - Rahim Zahedi
- Department of Energy Governance, University of Tehran, Tehran, Iran
| | - Arash Gitifar
- Department of Environmental System Engineering, University of Regina, Saskatchewan, Canada
| | - Alireza Naseri
- Department of Road and Transport Engineering, Faculty of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Bita Rouhi Asl
- Department of Environmental Management, Faculty of Marine Science and Technology, Azad University, Tehran, Iran
| | - Bita Abedi
- Department of Remote Sensing, Faculty of Geodesy and Geomatics, Khajeh Nasir Toosi University, Tehran, Iran
| |
Collapse
|
5
|
Quintero‐Galvis JF, Saenz‐Agudelo P, D'Elía G, Nespolo RF. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change. Ecol Evol 2024; 14:e70355. [PMID: 39371267 PMCID: PMC11450259 DOI: 10.1002/ece3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The two species of the microbiotheriid marsupial genus Dromiciops (Dromiciops bozinovici: "Panchos's monito del monte" and Dromiciops gliroides: "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D. bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D. gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D. bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D. gliroides, genetic variation appeared to be associated with more variables than D. bozinovici, including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D. gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops. Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges.
Collapse
Affiliation(s)
- Julian F. Quintero‐Galvis
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME)Las CrucesChile
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Colección de MamíferosUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
6
|
Nespolo RF, Quintero-Galvis JF, Fontúrbel FE, Cubillos FA, Vianna J, Moreno-Meynard P, Rezende EL, Bozinovic F. Climate change and population persistence in a hibernating marsupial. Proc Biol Sci 2024; 291:20240266. [PMID: 38920109 DOI: 10.1098/rspb.2024.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations (Dromiciops bozinovici) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
Collapse
Affiliation(s)
- Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
| | - Francisco E Fontúrbel
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso, Chile
| | - Francisco A Cubillos
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Departamento de Biología y Química, Universidad de Santiago de Chile , Santiago, Chile
- Millennium Institute for Integrative Biology (iBio) , Santiago, Chile
| | - Juliana Vianna
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
- Departamento de Ecosistemas y Medio Ambiente, Millennium Institute Center for Genome Regulation (CRG), Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Paulo Moreno-Meynard
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Centro de Investigación en Ecosistemas de la Patagonia CIEP , Coyhaique, Chile
| | - Enrico L Rezende
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| | - Francisco Bozinovic
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| |
Collapse
|
7
|
Zapata-Hernández G, Gajardo-Rojas M, Calderón-Seguel M, Muñoz AA, Yáñez KP, Requier F, Fontúrbel FE, Ormeño-Arriagada PI, Arrieta H. Advances and knowledge gaps on climate change impacts on honey bees and beekeeping: A systematic review. GLOBAL CHANGE BIOLOGY 2024; 30:e17219. [PMID: 38450832 DOI: 10.1111/gcb.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.
Collapse
Affiliation(s)
- Germán Zapata-Hernández
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martina Gajardo-Rojas
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matías Calderón-Seguel
- Departamento de Ciencias Sociales, Facultad de Ciencias Sociales, Universidad de Tarapacá, Iquique, Chile
| | - Ariel A Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Ciencia del Clima y la Resiliencia, Santiago, Chile
| | - Karen P Yáñez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fabrice Requier
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pablo I Ormeño-Arriagada
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Héctor Arrieta
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Ojeda S, Arancibia M, Gómez F, Sepúlveda IB, Orellana JI, Fontúrbel FE. Spatial aggregation patterns in four mistletoe species: ecological and environmental determinants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1186-1195. [PMID: 37703542 DOI: 10.1111/plb.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Plant spatial distribution is an important topic in ecology as it determines species coexistence and biodiversity dynamics. Usually, plants show clustered distributions in nature. Mistletoes are a good example of aggregated distributions, as they form dense aggregations due to several factors (availability of competent hosts, seed dispersal vectors, microclimate conditions). We analysed four native mistletoe species with divergent life histories and host ranges: Desmaria mutabilis and Tristerix corymbosus from the temperate rainforests of southern Chile; and Tristerix aphyllus and Tristerix verticillatus from the northern semi-desert zone. While T. corymbosus and T. verticillatus have a wide host range, T. aphyllus and D. mutabilis are specialists that can parasitize only a few plant species. We hypothesized that specialized species would be more aggregated due to ecological and environmental restrictions. We used heterogeneous Poisson models to quantify spatial aggregation. Three of the four mistletoe species were spatially clustered at both environments, with aggregation being stronger in the temperate rainforest of southern Chile and particularly in the host-specialist species. Our results suggest that environmental constraints are more important than ecological constraints (host range) in shaping mistletoe spatial structure. Mistletoe aggregated spatial distribution depends primarily on the environment that they inhabit, which conditions host spatial availability, and arrangement.
Collapse
Affiliation(s)
- S Ojeda
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - M Arancibia
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - F Gómez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - I B Sepúlveda
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - J I Orellana
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - F E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
9
|
Daru BH, Rock BM. Reorganization of seagrass communities in a changing climate. NATURE PLANTS 2023; 9:1034-1043. [PMID: 37336970 PMCID: PMC10356593 DOI: 10.1038/s41477-023-01445-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Although climate change projections indicate significant threats to terrestrial biodiversity, the effects are much more profound and striking in the marine environment. Here we explore how different facets of locally distinctive α- and β-diversity (changes in spatial composition) of seagrasses will respond to future climate change scenarios across the globe and compare their coverage with the existing network of marine protected areas. By using species distribution modelling and a dated phylogeny, we predict widespread reductions in species' range sizes that will result in increases in seagrass weighted and phylogenetic endemism. These projected increases of endemism will result in divergent shifts in the spatial composition of β-diversity leading to differentiation in some areas and the homogenization of seagrass communities in other regions. Regardless of the climate scenario, the potential hotspots of these projected shifts in seagrass α- and β-diversity are predicted to occur outside the current network of marine protected areas, providing new priority areas for future conservation planning that incorporate seagrasses. Our findings report responses of species to future climate for a group that is currently under represented in climate change assessments yet crucial in maintaining marine food chains and providing habitat for a wide range of marine biodiversity.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - Brianna M Rock
- Clearwater Marine Aquarium Research Institute, Clearwater, FL, USA
| |
Collapse
|
10
|
Hernandez JO, Naeem M, Zaman W. How Does Changing Environment Influence Plant Seed Movements as Populations of Dispersal Vectors Decline? PLANTS (BASEL, SWITZERLAND) 2023; 12:1462. [PMID: 37050088 PMCID: PMC10097094 DOI: 10.3390/plants12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Maldonado-Borja MG, Cerros-Tlatilpa R, Galván-González LG. A new species of Struthanthus Mart. (Loranthaceae) from Oaxaca, Mexico. PHYTOKEYS 2023; 225:69-81. [PMID: 37213817 PMCID: PMC10194811 DOI: 10.3897/phytokeys.225.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 05/23/2023]
Abstract
Struthanthusibe-dzisp. nov. is a new species described and illustrated from the cloud and pine-oak forests of the Sierra Madre del Sur in Oaxaca, Mexico. This species shares similarities of leaf shape and inflorescence type with S.deppeanus, S.quercicola, and S.ramiro-cruzii. However, S.ibe-dzi can be recognized by its glaucous branches, leaves and inflorescences; compressed nodes; convoluted distal half of styles in pistillate flowers; and staminate flowers with asymmetrical thecae and an extended connective forming an apiculate horn in both anther series. A distribution map and an identification key are provided to separate S.ibe-dzi from morphologically similar congeners present in the region.
Collapse
Affiliation(s)
- Maria Guadalupe Maldonado-Borja
- Maestría en Manejo de Recursos Naturales, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, MexicoUniversidad Autónoma del Estado de MorelosCuernavacaMexico
| | - Rosa Cerros-Tlatilpa
- Maestría en Manejo de Recursos Naturales, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, MexicoUniversidad Autónoma del Estado de MorelosCuernavacaMexico
| | - Luis Gil Galván-González
- Maestría en Manejo de Recursos Naturales, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, MexicoUniversidad Autónoma del Estado de MorelosCuernavacaMexico
| |
Collapse
|
12
|
Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis. Commun Biol 2022; 5:985. [PMID: 36115902 PMCID: PMC9482659 DOI: 10.1038/s42003-022-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractRising temperatures can lead to the occurrence of a large-scale climatic event, such as the melting of Greenland ice sheet, weakening the AMOC and further increasing dissimilarities between current and future climate. The impacts of such an event are still poorly assessed. Here, we evaluate those impacts across megadiverse countries on 21,146 species of tetrapods and vascular plants using the pessimistic climate change scenario (RCP 8.5) and four different scenarios of Greenland’s ice sheet melting. We show that RCP 8.5 emission scenario would lead to a widespread reduction in species’ geographic ranges (28–48%), which is projected to be magnified (58–99%) with any added contribution from the melting of Greenland. Also, declines in the potential geographical extent of species hotspots (12–89%) and alterations of species composition (19–91%) will be intensified. These results imply that the influence of a strong and rapid Greenland ice sheet melting, resulting in a large AMOC weakening, can lead to a faster collapse of biodiversity across the globe.
Collapse
|
13
|
Hilderbrand GV, White D, Newman B, Krausman PR. The Journal of Wildlife Management
is confronting the influences of climate change on wildlife. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Crates R, Watson DM, Albery GF, Bonnet T, Murphy L, Rayner L, Stojanovic D, Timewell C, Meney B, Roderick M, Ingwersen D, Heinsohn R. Mistletoes could moderate drought impacts on birds, but are themselves susceptible to drought-induced dieback. Proc Biol Sci 2022; 289:20220358. [PMID: 35858071 PMCID: PMC9277258 DOI: 10.1098/rspb.2022.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mistletoes are hemiparasitic plants and keystone species in many ecosystems globally. Given predicted increases in drought frequency and intensity, mistletoes may be crucial for moderating drought impacts on community structure. Dependent on host vascular flows, mistletoes can succumb to stress when water availability falls, making them susceptible to mortality during drought. We counted mistletoe across greater than 350 000 km2 of southeastern Australia and conducted standardized bird surveys between 2016 and 2021, spanning a major drought event in 2018-2019. We aimed to identify predictors of mistletoe abundance and mortality and determine whether mistletoes might moderate drought impacts on woodland birds. Live mistletoe abundance varied with tree species composition, land use and presence of mistletoebirds. Mistletoe mortality was widespread, consistent with high 2018/2019 summer temperatures, low 2019/2020 summer rainfall and the interaction between summer temperatures and rainfall in 2019/2020. The positive association between surviving mistletoes and woodland birds was greatest in the peak drought breeding seasons of 2018/2019 and 2019/2020, particularly for small residents and insectivores. Paradoxically, mistletoes could moderate drought impacts on birds, but are themselves vulnerable to drought-induced mortality. An improved understanding of the drivers and dynamics of mistletoe mortality is needed to address potential cascading trophic impacts associated with mistletoe die-off.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - David M. Watson
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | | | - Timothée Bonnet
- Research School of Biology, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Liam Murphy
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Laura Rayner
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | | | - Beau Meney
- BirdLife Australia, Carlton, Melbourne, Australia
| | | | | | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| |
Collapse
|
15
|
Griebel A, Peters JMR, Metzen D, Maier C, Barton CVM, Speckman HN, Boer MM, Nolan RH, Choat B, Pendall E. Tapping into the physiological responses to mistletoe infection during heat and drought stress. TREE PHYSIOLOGY 2022; 42:523-536. [PMID: 34612494 DOI: 10.1093/treephys/tpab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.
Collapse
Affiliation(s)
- Anne Griebel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
- Climate Change Science Institute & Environmental Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Daniel Metzen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Heather N Speckman
- Department of Botany, University of Wyoming, 1000 E. Univ. Ave, Laramie, WY 82071, USA
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| |
Collapse
|
16
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
17
|
Hayward KM, Clemente-Carvalho RBG, Jensen EL, de Groot PVC, Branigan M, Dyck M, Tschritter C, Sun Z, Lougheed SC. Genotyping-in-thousands by sequencing (GT-seq) of non-invasive fecal and degraded samples: a new panel to enable ongoing monitoring of Canadian polar bear populations. Mol Ecol Resour 2022; 22:1906-1918. [PMID: 35007402 PMCID: PMC9305793 DOI: 10.1111/1755-0998.13583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
Genetic monitoring using noninvasive samples provides a complement or alternative to traditional population monitoring methods. However, next‐generation sequencing approaches to monitoring typically require high quality DNA and the use of noninvasive samples (e.g., scat) is often challenged by poor DNA quality and contamination by nontarget species. One promising solution is a highly multiplexed sequencing approach called genotyping‐in‐thousands by sequencing (GT‐seq), which can enable cost‐efficient genomics‐based monitoring for populations based on noninvasively collected samples. Here, we develop and validate a GT‐seq panel of 324 single nucleotide polymorphisms (SNPs) optimized for genotyping of polar bears based on DNA from noninvasively collected faecal samples. We demonstrate (1) successful GT‐seq genotyping of DNA from a range of sample sources, including successful genotyping (>50% loci) of 62.9% of noninvasively collected faecal samples determined to contain polar bear DNA; and (2) that we can reliably differentiate individuals, ascertain sex, assess relatedness, and resolve population structure of Canadian polar bear subpopulations based on a GT‐seq panel of 324 SNPs. Our GT‐seq data reveal spatial‐genetic patterns similar to previous polar bear studies but at lesser cost per sample and through use of noninvasively collected samples, indicating the potential of this approach for population monitoring. This GT‐seq panel provides the foundation for a noninvasive toolkit for polar bear monitoring and can contribute to community‐based programmes – a framework which may serve as a model for wildlife conservation and management for species worldwide.
Collapse
Affiliation(s)
- Kristen M Hayward
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | | | - Marsha Branigan
- Department of Environment and Natural Resources, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Markus Dyck
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
| | | | - Zhengxin Sun
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
18
|
Fontúrbel FE, Rodríguez-Gómez GB, Orellana JI, Cortés-Miranda J, Rojas-Hernández N, Vega-Retter C. Geographical context outweighs habitat disturbance effects in explaining mistletoe population genetic differentiation at a regional scale. Mol Ecol 2022; 31:1389-1402. [PMID: 34995392 DOI: 10.1111/mec.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Genetic differentiation depends on ecological and evolutionary processes that operate at different spatial and temporal scales. While the geographical context is likely to determine large-scale genetic variation patterns, habitat disturbance events will probably influence small-scale genetic diversity and gene flow patterns. Therefore, the genetic diversity patterns that we observe today result from the combination of both processes, but they are rarely assessed simultaneously. We determined the population structure and genetic diversity of a hemiparasitic mistletoe (Tristerix corymbosus) from the temperate rainforests of southern Chile to determine the effects of geographical context and habitat disturbance at a regional scale and if it is affected by the abundance and occurrence of its seed disperser mutualist (the arboreal marsupial Dromiciops gliroides). We genotyped 359 individuals from 12 populations using single nucleotide polymorphisms, across three different geographical contexts and four disturbance conditions. We also used camera traps to estimate the abundance and occurrence of the seed disperser. Our results suggest that genetic differences among populations are related more to geographical context than to habitat disturbance. However, as disturbance increased, D. gliroides abundance and occurrence decreased, and mistletoe inbreeding index (FIS ) increased. We also found highly uneven gene flow among study sites. Despite the high levels of disturbance that these temperate rainforests are facing, our results suggest that mistletoe genetic differentiation at a regional scale was more influenced by historical events. However, habitat disturbance can indirectly affect mistletoe population genetic differentiation via the seed dispersal process, which may increase levels of inbreeding.
Collapse
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus of Patagonian Limit of Life (LiLi)
| | - Gloria B Rodríguez-Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José I Orellana
- Laboratorio de Vida Silvestre, Universidad de Los Lagos, Osorno, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Noemí Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Fontúrbel FE, Nespolo RF, Amico GC, Watson DM. Climate change can disrupt ecological interactions in mysterious ways: Using ecological generalists to forecast community-wide effects. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Local Actions to Tackle a Global Problem: A Multidimensional Assessment of the Pollination Crisis in Chile. DIVERSITY 2021. [DOI: 10.3390/d13110571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last decades, pollinators have drastically declined as a consequence of anthropogenic activities that have local and global impacts. The food industry has been expanding intensive agriculture crops, many of them dependent on animal pollination, but simultaneously reducing native pollinator habitats. Chile is a good example of this situation. Chile is becoming an agro-alimentary powerhouse in Latin America, where intensive agriculture expansion is performed at the expense of natural lands, posing a major threat to biodiversity. Here, we discussed the drivers responsible for the decline of pollinators (including habitat loss, pesticides, invasive species, and climate change) and its synergistic effects. This is particularly critical considering that Chile is a hotspot of endemic bee species locally adapted to specific habitats (e.g., Mediterranean-type ecosystems). However, there is a lack of data and monitoring programs that can provide evidence of their conservation status and contribution to crop yields. Based on our analysis, we identified information gaps to be filled and key threats to be addressed to reconcile crop production and biodiversity conservation. Addressing the local context is fundamental to undertake management and conservation actions with global impact.
Collapse
|
21
|
Griebel A, Metzen D, Pendall E, Nolan RH, Clarke H, Renchon AA, Boer MM. Recovery from Severe Mistletoe Infection After Heat- and Drought-Induced Mistletoe Death. Ecosystems 2021. [DOI: 10.1007/s10021-021-00635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Chaudhary A, Gutzwiller KJ. Forest bird abundance can vary with cross-scale interactions involving climate, exurban cover and forest patch size. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Urrutia-Jalabert R, Lara A, Barichivich J, Vergara N, Rodriguez CG, Piper FI. Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:905. [PMID: 32733500 PMCID: PMC7357304 DOI: 10.3389/fpls.2020.00905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
There is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides. Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species.
Collapse
Affiliation(s)
- Rocío Urrutia-Jalabert
- Instituto Forestal INFOR, Valdivia, Chile
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Antonio Lara
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| | - Jonathan Barichivich
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CRNS/CEA/UVSQ, Paris, France
| | - Nicolás Vergara
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Carmen Gloria Rodriguez
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Frida I. Piper
- Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile
| |
Collapse
|
24
|
Bell DM, Pabst RJ, Shaw DC. Tree growth declines and mortality were associated with a parasitic plant during warm and dry climatic conditions in a temperate coniferous forest ecosystem. GLOBAL CHANGE BIOLOGY 2020; 26:1714-1724. [PMID: 31507026 DOI: 10.1111/gcb.14834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Insects and pathogens are widely recognized as contributing to increased tree vulnerability to the projected future increasing frequency of hot and dry conditions, but the role of parasitic plants is poorly understood even though they are common throughout temperate coniferous forests in the western United States. We investigated the influence of western hemlock dwarf mistletoe (Arceuthobium tsugense) on large (≥45.7 cm diameter) western hemlock (Tsuga heterophylla) growth and mortality in a 500 year old coniferous forest at the Wind River Experimental Forest, Washington State, United States. We used five repeated measurements from a long-term tree record for 1,395 T. heterophylla individuals. Data were collected across a time gradient (1991-2014) capturing temperature increases and precipitation decreases. The dwarf mistletoe rating (DMR), a measure of infection intensity, varied among individuals. Our results indicated that warmer and drier conditions amplified dwarf mistletoe effects on T. heterophylla tree growth and mortality. We found that heavy infection (i.e., high DMR) resulted in reduced growth during all four measurement intervals, but during warm and dry intervals (a) growth declined across the entire population regardless of DMR level, and (b) both moderate and heavy infections resulted in greater growth declines compared to light infection levels. Mortality rates increased from cooler-wetter to warmer-drier measurement intervals, in part reflecting increasing mortality with decreasing tree growth. Mortality rates were positively related to DMR, but only during the warm and dry measurement intervals. These results imply that parasitic plants like dwarf mistletoe can amplify the impact of climatic stressors of trees, contributing to the vulnerability of forest landscapes to climate-induced productivity losses and mortality events.
Collapse
Affiliation(s)
- David M Bell
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, USA
| | - Robert J Pabst
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - David C Shaw
- Department of Forest Engineering, Resources & Management, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
25
|
Mukherjee R, Deb R, Devy SM. Diversity matters: Effects of density compensation in pollination service during rainfall shift. Ecol Evol 2019; 9:9701-9711. [PMID: 31534686 PMCID: PMC6745652 DOI: 10.1002/ece3.5500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 11/30/2022] Open
Abstract
Extreme weather events are increasing in frequency due to the warming climate. Such extremities can jeopardize ecosystem services and create economic imbalances. Tropical developing countries are predicted to suffer the maximum consequences of such events.We examined the impact of such an event-extreme rainfall fluctuation-on a critical ecosystem service-pollination, which can be intricately linked to a country's economy. We performed this study in a dominant peri-urban vegetable hub of an agriculture-dependent developing country.We found that the yield of all pollinator-dependent crops grown across a large spatial scale (district) over multiple years (six) drastically declined with the decrease in rainfall.At the local scale, we found that the dominant crop (representative horticultural crop) had a significant drop in yield during drought, likely due to the production of fewer female flowers and a significant shift in the pollinator community.We found that Trigona sp. (one of the four pollinators) was the critical pollinator positively influencing fruit-to-flower ratio (FFR) (an indicator of pollination service) in the normal rainfall year. However, despite its sharp decline during drought, the FFR remained unaffected. We found that during drought, Apis dorsata was crucial in maintaining FFR and compensated for the decline of the critical pollinator across 67% farmlands.Our study demonstrates the role of ecosystem stabilizing mechanism rescuing the crucial ecosystem service during climatic variability over the temporal scale.
Collapse
Affiliation(s)
- Ronita Mukherjee
- Ashoka Trust for Research in Ecology and the EnvironmentBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Rittik Deb
- National Centre for Biological SciencesBangaloreIndia
| | - Soubadra M. Devy
- Ashoka Trust for Research in Ecology and the EnvironmentBangaloreIndia
| |
Collapse
|
26
|
Do we know how mosquito disease vectors will respond to climate change? Emerg Top Life Sci 2019; 3:115-132. [DOI: 10.1042/etls20180125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Mosquito-borne diseases are on the rise globally. Besides invasion processes and the increasing connectivity between distant regions through the trade of goods and human mobility, climate change is seen as an important driver for changing the likelihood of occurrence of vectors and diseases, respectively. Ectothermic insects respond directly to thermal conditions and thus we can expect them to follow climatic trends. However, a variety of species and different stages in their life cycles need to be considered. Here, we review the current literature in this field and disentangle the state of knowledge and the challenges and open questions for future research. The integration of diurnal temperature ranges in prospective experimental studies will strongly improve the knowledge of mosquitoes’ ecology and mosquito-borne disease transmission for temperate regions in particular. In addition, invasive mosquitoes are known to rapidly adapt to the climatic conditions, but the underlying processes are not yet fully understood.
Collapse
|