1
|
Aizaz M, Lubna, Hashmi SS, Khan MA, Jan R, Bilal S, Kim KM, Al-Harrasi A, Asaf S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1131. [PMID: 40219203 PMCID: PMC11991662 DOI: 10.3390/plants14071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant-microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Salman Hashmi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Technology, Peshawar 25000, Pakistan;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
Argueta‐Guzmán M, Spasojevic MJ, McFrederick QS. Solitary Bees Acquire and Deposit Bacteria via Flowers: Testing the Environmental Transmission Hypothesis Using Osmia lignaria, Phacelia tanacetifolia, and Apilactobacillus micheneri. Ecol Evol 2025; 15:e71138. [PMID: 40177686 PMCID: PMC11962201 DOI: 10.1002/ece3.71138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics of Apilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary bee Osmia lignaria (Megachilidae) and the plant Phacelia tanacetifolia (Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers.
Collapse
Affiliation(s)
- Magda Argueta‐Guzmán
- Department of Life & Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
- Department of EntomologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Environmental Dynamics and GeoEcology InstituteUniversity of CaliforniaRiversideCaliforniaUSA
| | | |
Collapse
|
3
|
Cecala JM, Landucci L, Vannette RL. Seasonal Assembly of Nectar Microbial Communities Across Angiosperm Plant Species: Assessing Contributions of Climate and Plant Traits. Ecol Lett 2025; 28:e70045. [PMID: 39737670 DOI: 10.1111/ele.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators. We monitored weather and, after 24 h, collected and cultured communities. We found a strong signature of plant species on resulting microbial abundance and community composition, in part explained by plant phylogeny and nectar peroxide content, but not floral morphology. Increasing temperature reduced microbial diversity, while higher minimum temperatures increased growth, suggesting complex ecological effects of temperature. Consistent nectar microbial communities within plant species could enable plant or pollinator adaptation. Our work supports the roles of host identity, traits and temperature in microbial community assembly, and indicates diversity-productivity relationships within host-associated microbiomes.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Leta Landucci
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Meng Q, Huang R, Xun L, Wu X, Deng S, Yue D, Zhao W, Dong X, Gong X, Dong K. Endophytic bacteria in Camellia reticulata pedicels: isolation, screening and analysis of antagonistic activity against nectar yeasts. Front Microbiol 2024; 15:1459354. [PMID: 39498126 PMCID: PMC11533746 DOI: 10.3389/fmicb.2024.1459354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Camellia reticulata, an ancient plant species endemic to Yunnan Province, China, remains underexplored in terms of its endophytic bacterial communities. The plant tissue pedicel serves as the connection between the flower and the stem, not only delivers nutrients but also transmits metabolic substances from endophytic bacteria to the nectar during long-term microbial colonization and probably improves the antagonistic activity of nectar against yeast. Hence, 138 isolates of endophytic bacteria have been isolated in this study from the pedicels of 12- and 60-year-old C. reticulata. Comparative analysis revealed significantly higher density of endophytic bacteria in older trees. Among these isolates, 29 exhibited inhibitory effects against nectar yeasts. Most of the isolates displayed positive results for Gram staining, catalase reaction, gelatin liquefaction, and motility. Additionally, the isolates demonstrated the ability to utilize diverse substrates, such as glucose, nitrate, and starch. Based on 16S rRNA molecular biology analysis, these isolates were identified to be 11 different species of 6 genera, with the majority belonging to Bacillus genus. Notably, C1 isolate, identified as Bacillus spizizenii, exhibited strongest antagonistic effect against three yeasts, i.e., Metschnikowia reukaufii, Cryptococcus laurentii, and Rhodotorula glutinis, with minimum inhibitory concentration values below 250 μg/mL. Major metabolites of B. spizizenii were aminoglycosides, beta-lactams, and quinolones, which possess antimicrobial activities. Furthermore, KEGG enrichment pathways primarily included the synthesis of plant secondary metabolites, phenylpropanoids, amino acids, alkaloids, flavonoids, neomycin, kanamycin, and gentamicin. Therefore, antagonistic activity of B. spizizenii against yeasts could be attributed to these antibiotics. The findings highlight the diverse endophytic bacteria associated with C. reticulata, indicating their potential as a valuable resource of bioactive metabolites. Additionally, this study provides new insights into the role of endophytic bacteria of pedicels in enhancing nectar resistance against yeasts.
Collapse
Affiliation(s)
- Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Rong Huang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lijie Xun
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Xiaoman Wu
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shangkao Deng
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Dan Yue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenzheng Zhao
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xia Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
6
|
Mukhtar S, Hassani MA, Zarrillo T, Cui Z, Sundin GW, Zeng Q. The role of foraging pollinators in assembling the flower microbiota and transmitting the fire blight pathogen Erwinia amylovora. Environ Microbiol 2024; 26:e16702. [PMID: 39389580 DOI: 10.1111/1462-2920.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Flowers serve as hubs for biotic interactions with pollinators and microbes, which can significantly impact plant reproduction and health. Previous studies have shown that the flower microbiota undergoes dynamic assembly processes during anthesis. However, the influence of foraging pollinators on the assembly and dispersal of the flower microbiota and the transmission of plant pathogens remains poorly understood. In this study, we used insect exclusion netting to investigate the role of pollinators in the assembly of the microbiota on apple stigma and the transmission of the fire blight pathogen Erwinia amylovora. We found that excluding pollinators had a minor impact on the community diversity and composition of the apple stigma microbiota, while the flower's developmental stage had a strong influence. Additionally, pollinator exclusion altered bacterial dispersal and the relative abundance of different bacterial species, including E. amylovora, suggesting that pollinators play a role in transmitting plant pathogens. Using a reporter system, we demonstrated that bumble bees can transmit the fire blight pathogen from an infected flower under controlled growth conditions. Our study highlights the importance of intrinsic and pollinator-independent microbes as sources of inoculum for the stigma microbiota and underscores the role of foraging pollinators in vectoring plant pathogens.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - M Amine Hassani
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Tracy Zarrillo
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Cullen NP, Ashman TL. Hyperaccumulation of nickel but not selenium drives floral microbiome differentiation: A study with six species of Brassicaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16382. [PMID: 39148360 DOI: 10.1002/ajb2.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024]
Abstract
PREMISE Intraspecific variation in flower microbiome composition can mediate pollination and reproduction, and so understanding the community assembly processes driving this variation is critical. Yet the relative importance of trait-based host filtering and dispersal in shaping among-species variation in floral microbiomes remains unknown. METHODS Within two clades of Brassicaceae, we compared diversity and composition of floral microbiomes in natural populations of focal nickel and selenium hyperaccumulator species and two of their non-accumulating relatives. We assessed the relative strengths of floral elemental composition, plant phylogenetic distance (host filtering), and geography (dispersal) in driving floral microbiome composition. RESULTS Species in the nickel hyperaccumulator clade had strongly divergent floral microbiomes, the most of that variation driven by floral elemental composition, followed by geographic distance between plant populations and, lastly, phylogenetic distance. Conversely, within the selenium hyperaccumulator clade, floral microbiome divergence was much lower among the species and elemental composition, geography, and plant phylogeny were far weaker determinants of microbiome variation. CONCLUSIONS Our results show that the strength of elemental hyperaccumulation's effect on floral microbiomes differs substantially among plant clades, possibly due to variation in elements as selective filters or in long-distance dispersal probability in different habitats.
Collapse
Affiliation(s)
- Nevin P Cullen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| |
Collapse
|
8
|
Rivest S, Forrest JRK. Do flower-colonizing microbes influence floral evolution? A test with fast-cycling Brassica. J Evol Biol 2024; 37:935-946. [PMID: 38902913 DOI: 10.1093/jeb/voae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Pollinators are thought to be the main drivers of floral evolution. Flowers are also colonized by abundant communities of microbes that can affect the interaction between plants and their pollinators. Very little is known, however, about how flower-colonizing microbes influence floral evolution. Here we performed a 6-generation experimental evolution study using fast-cycling Brassica rapa, in which we factorially manipulated the presence of pollinators and flower microbes to determine how pollinators and microbes interact in driving floral evolution. We measured the evolution of 6 morphological traits, as well as the plant mating system and flower attractiveness. Only one of the 6 traits (flower number) evolved in response to pollinators, while microbes did not drive the evolution of any trait, nor did they interact with pollinators in driving the evolution of morphological traits. Moreover, we did not find evidence that pollinators or microbes affected the evolution of flower attractiveness to pollinators. However, we found an interactive effect of pollinators and microbes on the evolution of autonomous selfing, a trait that is expected to evolve in response to pollinator limitations. Overall, we found only weak evidence that microbes mediate floral evolution. However, our ability to detect an interactive effect of pollinators and microbes might have been limited by weak pollinator-mediated selection in our experimental setting. Our results contrast with previous (similar) experimental evolution studies, highlighting the susceptibility of such experiments to drift and to experimental artefacts.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
9
|
Rivest S, Lee ST, Cook D, Forrest JRK. Consequences of pollen defense compounds for pollinators and antagonists in a pollen-rewarding plant. Ecology 2024; 105:e4306. [PMID: 38590050 DOI: 10.1002/ecy.4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Stephen T Lee
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
10
|
Weinhold A, Grüner E, Keller A. Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments. Front Cell Infect Microbiol 2024; 14:1342781. [PMID: 38500505 PMCID: PMC10945022 DOI: 10.3389/fcimb.2024.1342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Question The large earth bumble bee (Bombus terrestris) maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems. Still, it is not fully clear whether access to different flower diversities will have a significant influence on the bumble bee microbiota. Here, we tested in a semi-field experiment if the bumble bee microbiota changes over time when exposed to different flower diversities within outdoor flight cages. We used commercial hives to distinguish between vertically and horizontally transmitted bacteria, respectively from the nest environment or the exposed outside environment. Result The sequential sampling of foraging workers over a period of 35 days indicated a temporal progression of the bumble bee microbiota when placed outside. The microbiota increased in diversity and changed in composition and variability over time. We observed a major increase in relative abundance of the families Lactobacillaceae, Bifidobacteriaceae and Weeksellaceae. In contrast, major core-taxa like Snodgrassella and Gilliamella declined in their relative abundance over time. The genus Lactobacillus showed a high diversity and strain specific turnover, so that only specific ASVs showed an increase over time, while others had a more erratic occurrence pattern. Exposure to different flower diversities had no significant influence on the progression of the bumble bee microbiota. Conclusion The bumble bee microbiota showed a dynamic temporal succession with distinct compositional changes and diversification over time when placed outdoor. The exposure of bumble bees to environmental conditions, or environmental microbes, increases dissimilarity and changes the gut-community composition. This shows the importance of environmental influences on the temporal dynamic and progression of the bumble bee microbiota.
Collapse
Affiliation(s)
- Arne Weinhold
- Cellular and Organismic Networks, Faculty of Biology, Center for Organismic Adaptation, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
11
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Mueller TG, Francis JS, Vannette RL. Nectar compounds impact bacterial and fungal growth and shift community dynamics in a nectar analog. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:170-180. [PMID: 36779256 PMCID: PMC10464699 DOI: 10.1111/1758-2229.13139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/04/2022] [Indexed: 05/06/2023]
Abstract
Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species-poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non-sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co-culture across a subset of treatments. We found that some compounds such as H2 O2 suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeast Metschnikowia reukaufii was unaffected by most nectar compounds assayed. However, many non-nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe-specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non-sugar compounds can affect microbial community assembly in flowers.
Collapse
Affiliation(s)
- Tobias G. Mueller
- Department of Entomology and NematologyUniversity of California, DavisDavisCaliforniaUSA
- Department of EntomologyCornell UniversityIthacaNew YorkUSA
| | - Jacob S. Francis
- Department of Entomology and NematologyUniversity of California, DavisDavisCaliforniaUSA
| | - Rachel L. Vannette
- Department of Entomology and NematologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
14
|
Fetters AM, Ashman TL. The pollen virome: A review of pollen-associated viruses and consequences for plants and their interactions with pollinators. AMERICAN JOURNAL OF BOTANY 2023:e16144. [PMID: 36924316 DOI: 10.1002/ajb2.16144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant-pollinator-virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.
Collapse
Affiliation(s)
- Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
15
|
Hietaranta E, Juottonen H, Kytöviita MM. Honeybees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia 2023; 201:59-72. [PMID: 36434466 DOI: 10.1007/s00442-022-05285-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/07/2022] [Indexed: 11/26/2022]
Abstract
Basic knowledge on dispersal of microbes in pollinator networks is essential for plant, insect, and microbial ecology. Thorough understanding of the ecological consequences of honeybee farming on these complex plant-pollinator-microbe interactions is a prerequisite for sustainable honeybee keeping. Most research on plant-pollinator-microbe interactions have focused on temperate agricultural systems. Therefore, information on a wild plant that is a seasonal bottleneck for pollinators in cold climate such as Salix phylicifolia is of specific importance. We investigated how floral visitation by insects influences the community structure of bacteria and fungi in Salix phylicifolia inflorescences under natural conditions. Insect visitors were experimentally excluded with net bags. We analyzed the microbiome and measured pollen removal in open and bagged inflorescences in sites where honeybees were foraging and in sites without honeybees. Site and plant individual explained most of the variation in floral microbial communities. Insect visitation and honeybees had a smaller but significant effect on the community composition of microbes. Honeybees had a specific effect on the inflorescence microbiome and, e.g., increased the relative abundance of operational taxonomic units (OTUs) from the bacterial order Lactobacillales. Site had a significant effect on the amount of pollen removed from inflorescences but this was not due to honeybees. Insect visitors increased bacterial and especially fungal OTU richness in the inflorescences. Pollinator visits explained 38% variation in fungal richness, but only 10% in bacterial richness. Our work shows that honeybee farming affects the floral microbiome in a wild plant in rural boreal ecosystems.
Collapse
Affiliation(s)
- Elsi Hietaranta
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Heli Juottonen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Minna-Maarit Kytöviita
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
16
|
Nicholls E, Rands SA, Botías C, Hempel de Ibarra N. Flower sharing and pollinator health: a behavioural perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210157. [PMID: 35491598 DOI: 10.1098/rstb.2021.0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease is an integral part of any organisms' life, and bees have evolved immune responses and a suite of hygienic behaviours to keep them at bay in the nest. It is now evident that flowers are another transmission hub for pathogens and parasites, raising questions about adaptations that help pollinating insects stay healthy while visiting hundreds of plants over their lifetime. Drawing on recent advances in our understanding of how bees of varying size, dietary specialization and sociality differ in their foraging ranges, navigational strategies and floral resource preferences, we explore the behavioural mechanisms and strategies that may enable foraging bees to reduce disease exposure and transmission risks at flowers by partitioning overlapping resources in space and in time. By taking a novel behavioural perspective, we highlight the missing links between disease biology and the ecology of plant-pollinator relationships, critical for improving the understanding of disease transmission risks and the better design and management of habitat for pollinator conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- E Nicholls
- Evolution, Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - S A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, 19180 Guadalajara, Spain
| | - N Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
17
|
Takeda K, Sakai S. Idea paper: Extended benefits of pollinator‐mediated microbial dispersal among flowers. Ecol Res 2022. [DOI: 10.1111/1440-1703.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuya Takeda
- Center for Ecological Research Kyoto University Otsu Shiga Japan
- Research Institute for Food and Agriculture Ryukoku University Shiga Japan
| | - Shoko Sakai
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| |
Collapse
|
18
|
Heminger AR, Belden LK, Barney JN, Badgley BD, Haak DC. Horsenettle ( Solanum carolinense) fruit bacterial communities are not variable across fine spatial scales. PeerJ 2021; 9:e12359. [PMID: 34820171 PMCID: PMC8582302 DOI: 10.7717/peerj.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Fruit house microbial communities that are unique from the rest of the plant. While symbiotic microbial communities complete important functions for their hosts, the fruit microbiome is often understudied compared to other plant organs. Fruits are reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus they are directly tied to plant fitness. Fruit microbial communities may, therefore, also impact plant fitness. In this study, we assessed how bacterial communities associated with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial scales (<0.5 km). A majority of the studies conducted on plant microbial communities have been done at large spatial scales and have observed microbial community variation across these large spatial scales. However, both the environment and pollinators play a role in shaping plant microbial communities and likely have impacts on the plant microbiome at fine scales. We collected fruit samples from eight sampling locations, ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using 16S rRNA gene amplicon sequencing. Overall, we found no differences in observed richness or microbial community composition among sampling locations. Bacterial community structure of fruits collected near one another were not more different than those that were farther apart at the scales we examined. These fine spatial scales are important to obligate out-crossing plant species such as S. carolinense because they are ecologically relevant to pollinators. Thus, our results could imply that pollinators serve to homogenize fruit bacterial communities across these smaller scales.
Collapse
Affiliation(s)
- Ariel R Heminger
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K Belden
- Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
19
|
Pollinator effectiveness is affected by intraindividual behavioral variation. Oecologia 2021; 197:189-200. [PMID: 34392412 DOI: 10.1007/s00442-021-05016-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Variation in pollinator quality is fundamental to the evolution of plant-pollinator mutualisms and such variation frequently results from differences in foraging behavior. Surprisingly, despite substantial intraindividual variation in pollinator foraging behavior, the consequences for pollen removal and deposition on flowers are largely unknown. We asked how two pollen foraging behaviors of a generalist pollinator (Bombus impatiens) affect removal and deposition of heterospecific and conspecific pollen, key aspects of pollinator quality, for multiple plant species. In addition, we examined how bee body size and pollen placement among body parts shaped pollen movement. We manipulated foraging behavior types using artificial flowers, which donated pollen that captive bees then deposited on three recipient plant species. While body size primarily affected donor pollen removal, foraging behavior primarily affected donor pollen deposition. How behavior affected donor pollen deposition depended on the plant species and the quantity of donor pollen on the bee's abdomen. Plant species with smaller stigmas received significantly less pollen and fewer bees successfully transferred pollen to them. For a single plant species, heterospecific pollen interfered with conspecific pollen deposition, such that more heterospecific pollen on the bee's abdomen resulted in less conspecific pollen deposition on the flower. Thus, intraindividual variation in foraging behavior and its interaction with the amount and placement of acquired pollen and with floral morphology can affect pollinator quality and may shape plant fitness via both conspecific and heterospecific pollen transfer.
Collapse
|
20
|
Wei N, Russell AL, Jarrett AR, Ashman TL. Pollinators mediate floral microbial diversity and microbial network under agrochemical disturbance. Mol Ecol 2021; 30:2235-2247. [PMID: 33738885 DOI: 10.1111/mec.15890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
How pollinators mediate microbiome assembly in the anthosphere is a major unresolved question of theoretical and applied importance in the face of anthropogenic disturbance. We addressed this question by linking visitation of diverse pollinator functional groups (bees, wasps, flies, butterflies, beetles, true bugs and other taxa) to the key properties of the floral microbiome (microbial α- and β-diversity and microbial network) under agrochemical disturbance, using a field experiment of bactericide and fungicide treatments on cultivated strawberries that differ in flower abundance. Structural equation modelling was used to link agrochemical disturbance and flower abundance to pollinator visitation to floral microbiome properties. Our results revealed that (i) pollinator visitation influenced the α- and β-diversity and network centrality of the floral microbiome, with different pollinator functional groups affecting different microbiome properties; (ii) flower abundance influenced the floral microbiome both directly by governing the source pool of microbes and indirectly by enhancing pollinator visitation; and (iii) agrochemical disturbance affected the floral microbiome primarily directly by fungicide, and less so indirectly via pollinator visitation. These findings improve the mechanistic understanding of floral microbiome assembly, and may be generalizable to many other plants that are visited by diverse insect pollinators in natural and managed ecosystems.
Collapse
Affiliation(s)
- Na Wei
- The Holden Arboretum, Kirtland, Ohio, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Abigail R Jarrett
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Francis JS, Tatarko AR, Richman SK, Vaudo AD, Leonard AS. Microbes and pollinator behavior in the floral marketplace. CURRENT OPINION IN INSECT SCIENCE 2021; 44:16-22. [PMID: 33075580 DOI: 10.1016/j.cois.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Pollinator foraging decisions shape microbial dispersal, and microbes change floral phenotypes in ways perceivable by pollinators. Yet, the role microbes play in the cognitive ecology of pollination is relatively unexplored. Reviewing recent literature on floral microbial ecology and pollinator behavior, we advocate for further integration between these two fields. Insights into pollinator learning, memory, and decision-making can help explain their responses to microbially-altered floral phenotypes. Specifically, considering how pollinators forage for multiple nutrients, cope with uncertainty, structure foraging bouts, and move through their environment could inform predictions about microbial dispersal within plant communities. We highlight how behavior connects microbial changes in floral phenotype to downstream effects on both microbial dispersal and plant fitness.
Collapse
Affiliation(s)
- Jacob S Francis
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anna R Tatarko
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Sarah K Richman
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anthony D Vaudo
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anne S Leonard
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
22
|
Essenberg CJ. Intraspecific relationships between floral signals and rewards with implications for plant fitness. AOB PLANTS 2021; 13:plab006. [PMID: 33708371 PMCID: PMC7937183 DOI: 10.1093/aobpla/plab006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Within-species variation in traits such as petal size or colour often provides reliable information to pollinators about the rewards offered to them by flowers. In spite of potential disadvantages of allowing pollinators to discriminate against less-rewarding flowers, examples of informative floral signals are diverse in form and widely distributed across plant taxa, apparently having evolved repeatedly in different lineages. Although hypotheses about the adaptive value of providing reward information have been proposed and tested in a few cases, a unified effort to understand the evolutionary mechanisms favouring informative floral signals has yet to emerge. This review describes the diversity of ways in which floral signals can be linked with floral rewards within plant species and discusses the constraints and selective pressures on floral signal-reward relationships. It focuses particularly on how information about floral rewards can influence pollinator behaviour and how those behavioural changes may, in turn, affect plant fitness, selecting either for providing or withholding reward information. Most of the hypotheses about the evolution of floral signal-reward relationships are, as yet, untested, and the review identifies promising research directions for addressing these considerable gaps in knowledge. The advantages and disadvantages of sharing floral reward information with pollinators likely play an important role in floral trait evolution, and opportunities abound to further our understanding of this neglected aspect of floral signalling.
Collapse
|
23
|
Adler LS, Irwin RE, McArt SH, Vannette RL. Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. CURRENT OPINION IN INSECT SCIENCE 2021; 44:1-7. [PMID: 32866657 PMCID: PMC7914268 DOI: 10.1016/j.cois.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 05/22/2023]
Abstract
Flowers provide resources for pollinators, and can also be transmission venues for beneficial or pathogenic pollinator-associated microbes. Floral traits could mediate transmission similarly for beneficial and pathogenic microbes, although some beneficial microbes can grow in flowers while pathogenic microbes may only survive until acquired by a new host. In spite of conceptual similarities, research on beneficial and pathogenic pollinator-associated microbes has progressed mostly independently. Recent advances demonstrate that floral traits are associated with transmission of beneficial and pathogenic microbes, with consequences for pollinator populations and communities. However, there is a near-absence of experimental manipulations of floral traits to determine causal effects on transmission, and a need to understand how floral, microbe and host traits interact to mediate transmission.
Collapse
Affiliation(s)
- Lynn S Adler
- Department of Biology, University of Massachusetts, 221 Morrill Science Center, 611 N. Pleasant St., Amherst MA 01002 USA.
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, 127 David Clark Labs, 100 Eugene Brooks Ave., Raleigh, NC 27695 USA
| | - Scott H McArt
- Department of Entomology, Cornell University, 4132 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853 USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, 43 Briggs Hall, Davis CA 95616 USA
| |
Collapse
|
24
|
Crowley-Gall A, Rering CC, Rudolph AB, Vannette RL, Beck JJ. Volatile microbial semiochemicals and insect perception at flowers. CURRENT OPINION IN INSECT SCIENCE 2021; 44:23-34. [PMID: 33096275 DOI: 10.1016/j.cois.2020.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated microbial communities produce volatile signals that influence insect responses, yet the impact of floral microorganisms has received less attention than other plant microbiomes. Floral microorganisms alter plant and floral odors by adding their own emissions or modifying plant volatiles. These contextual and microbe species-specific changes in floral signaling are detectable by insects and can modify their behavior. Opportunities for future work in floral systems include identifying specific microbial semiochemicals that underlie insect behavioral responses and examining if insect species vary in their responses to microbial volatiles. Examining if documented patterns are consistent across diverse plant-microbe-insect interactions and in realistic plant-based studies will improve our understanding of how microbes mediate pollination interactions in complex system.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Entomology and Nematology, University of California Davis, 43 Briggs Hall, Davis, CA 95616, USA.
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, 43 Briggs Hall, Davis, CA 95616, USA
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| |
Collapse
|
25
|
Gaube P, Junker RR, Keller A. Changes amid constancy: Flower and leaf microbiomes along land use gradients and between bioregions. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Hayes RA, Rebolleda‐Gómez M, Butela K, Cabo LF, Cullen N, Kaufmann N, O'Neill S, Ashman T. Spatially explicit depiction of a floral epiphytic bacterial community reveals role for environmental filtering within petals. Microbiologyopen 2021; 10:e1158. [PMID: 33650801 PMCID: PMC7859501 DOI: 10.1002/mbo3.1158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
The microbiome of flowers (anthosphere) is an understudied compartment of the plant microbiome. Within the flower, petals represent a heterogeneous environment for microbes in terms of resources and environmental stress. Yet, little is known of drivers of structure and function of the epiphytic microbial community at the within-petal scale. We characterized the petal microbiome in two co-flowering plants that differ in the pattern of ultraviolet (UV) absorption along their petals. Bacterial communities were similar between plant hosts, with only rare phylogenetically distant species contributing to differences. The epiphyte community was highly culturable (75% of families) lending confidence in the spatially explicit isolation and characterization of bacteria. In one host, petals were heterogeneous in UV absorption along their length, and in these, there was a negative relationship between growth rate and position on the petal, as well as lower UV tolerance in strains isolated from the UV-absorbing base than from UV reflecting tip. A similar pattern was not seen in microbes isolated from a second host whose petals had uniform patterning along their length. Across strains, the variation in carbon usage and chemical tolerance followed common phylogenetic patterns. This work highlights the value of petals for spatially explicit explorations of bacteria of the anthosphere.
Collapse
Affiliation(s)
- Rebecca A. Hayes
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Maria Rebolleda‐Gómez
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Kristen Butela
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Leah F. Cabo
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Nevin Cullen
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Nancy Kaufmann
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Steffani O'Neill
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Tia‐Lynn Ashman
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
27
|
OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 2020; 186:107506. [PMID: 33249062 DOI: 10.1016/j.jip.2020.107506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.
Collapse
|
28
|
Vannette RL. The Floral Microbiome: Plant, Pollinator, and Microbial Perspectives. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-013401] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowers at times host abundant and specialized communities of bacteria and fungi that influence floral phenotypes and interactions with pollinators. Ecological processes drive variation in microbial abundance and composition at multiple scales, including among plant species, among flower tissues, and among flowers on the same plant. Variation in microbial effects on floral phenotype suggests that microbial metabolites could cue the presence or quality of rewards for pollinators, but most plants are unlikely to rely on microbes for pollinator attraction or reproduction. From a microbial perspective, flowers offer opportunities to disperse between habitats, but microbial species differ in requirements for and benefits received from such dispersal. The extent to which floral microbes shape the evolution of floral traits, influence fitness of floral visitors, and respond to anthropogenic change is unclear. A deeper understanding of these phenomena could illuminate the ecological and evolutionary importance of floral microbiomes and their role in the conservation of plant–pollinator interactions.
Collapse
Affiliation(s)
- Rachel L. Vannette
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
29
|
Floral fungal-bacterial community structure and co-occurrence patterns in four sympatric island plant species. Fungal Biol 2020; 125:49-61. [PMID: 33317776 DOI: 10.1016/j.funbio.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Flowers' fungal and bacterial communities can exert great impacts on host plant wellness and reproductive success-both directly and indirectly through species interactions. However, information about community structure and co-occurrence patterns in floral microbiome remains scarce. Here, using culture-independent methods, we investigated fungal and bacterial communities associated with stamens and pistils of four plant species (Scaevola taccada, Ipomoea cairica, Ipomoea pes-caprae, and Mussaenda kwangtungensis) growing together under the same environment conditions in an island located in South China. Plant species identity significantly influenced community composition of floral fungi but not bacteria. Stamen and pistil microbiomes did not differ in community composition, but differed in co-occurrence network topological features. Compared with the stamen network, pistil counterpart had fewer links between bacteria and fungi and showed more modular but less concentrated and connected structure. In addition, degree distribution of microbial network in each host species and each microhabitat (stamen or pistil) followed a significant power-law pattern. These results enhance our understanding in the assembly principles and ecological interactions of floral microbial communities.
Collapse
|
30
|
Klaps J, Lievens B, Álvarez-Pérez S. Towards a better understanding of the role of nectar-inhabiting yeasts in plant-animal interactions. Fungal Biol Biotechnol 2020; 7:1. [PMID: 31921433 PMCID: PMC6947986 DOI: 10.1186/s40694-019-0091-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022] Open
Abstract
Flowers offer a wide variety of substrates suitable for fungal growth. However, the mycological study of flowers has only recently begun to be systematically addressed from an ecological point of view. Most research on the topic carried out during the last decade has focused on studying the prevalence and diversity of flower-inhabiting yeasts, describing new species retrieved from floral parts and animal pollinators, and the use of select nectar yeasts as model systems to test ecological hypotheses. In this primer article, we summarize the current state of the art in floral nectar mycology and provide an overview of some research areas that, in our view, still require further attention, such as the influence of fungal volatile organic compounds on the foraging behavior of pollinators and other floral visitors, the analysis of the direct and indirect effects of nectar-inhabiting fungi on the fitness of plants and animals, and the nature and consequences of fungal-bacterial interactions taking place within flowers.
Collapse
Affiliation(s)
- Joon Klaps
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), KU Leuven, Willem De Croylaan 46, Leuven, 3001 Belgium
| | - Bart Lievens
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), KU Leuven, Willem De Croylaan 46, Leuven, 3001 Belgium
| | - Sergio Álvarez-Pérez
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), KU Leuven, Willem De Croylaan 46, Leuven, 3001 Belgium
| |
Collapse
|
31
|
Rebolleda Gómez M, Ashman T. Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (
Mimulus guttatus
) floral microbiome. Mol Ecol 2019; 28:5155-5171. [DOI: 10.1111/mec.15280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
| | - Tia‐Lynn Ashman
- Department of Biological Sciences University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
32
|
Rebolleda-Gómez M, Forrester NJ, Russell AL, Wei N, Fetters AM, Stephens JD, Ashman TL. Gazing into the anthosphere: considering how microbes influence floral evolution. THE NEW PHYTOLOGIST 2019; 224:1012-1020. [PMID: 31442301 DOI: 10.1111/nph.16137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The flower is the hallmark of angiosperms and its evolution is key to their diversification. As knowledge of ecological interactions between flowers and their microbial communities (the anthosphere) expands, it becomes increasingly important to consider the evolutionary impacts of these associations and their potential eco-evolutionary dynamics. In this Viewpoint we synthesize current knowledge of the anthosphere within a multilevel selection framework and illustrate the potential for the extended floral phenotype (the phenotype expressed from the genes of the plant and its associated flower microbes) to evolve. We argue that flower microbes are an important, but understudied, axis of variation that shape floral trait evolution and angiosperm reproductive ecology. We highlight knowledge gaps and discuss approaches that are critical for gaining a deeper understanding of the role microbes play in mediating plant reproduction, ecology, and evolution.
Collapse
Affiliation(s)
- María Rebolleda-Gómez
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jessica D Stephens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|