1
|
Labonté A, Le Corre V, Matejicek A, Felten E, Turpin M, Laurent E, Michel S, Ducourtieux C, Vieren E, Proesmans W, Deytieux V, Cordeau S, Vanbergen AJ. Pollinator functional group abundance and floral heterogeneity in an agroecological context affect mating patterns in a self-incompatible wild plant. AMERICAN JOURNAL OF BOTANY 2024; 111:e16440. [PMID: 39592516 DOI: 10.1002/ajb2.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
PREMISE Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown. METHODS Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits). We also investigated how the maternal plant attractiveness, conspecific pollen donor density, and heterospecific floral richness and density interacted with pollinator functional group abundance to modulate C. segetum mating outcomes. RESULTS Multiple paternity increased (=lower paternity correlation) with greater local abundance of hoverflies (syrphids) and female medium-sized wild bees (albeit the latter's effect diminished with decreasing maternal plant attractiveness), and the presence of male bumblebees (Bombus) under low local floral richness. Cyanus segetum progeny genetic diversity increased with male Bombus presence but decreased with greater abundance of syrphids and honey bees (Apis mellifera). CONCLUSIONS Overall, field margins supported plant-pollinator interactions ensuring multiple paternity and conservation of allelic diversity in C. segetum progeny. The contribution to plant mating outcomes of different pollinator functional groups was dictated by their local abundance or traits affecting pollen transfer efficiency. The local floral richness or maternal plant attractiveness sometimes modulated these relationships. This complex response of wild plant mating patterns to community interactions has implications for the use of field margins to restore functional pollination systems in farmed landscapes.
Collapse
Affiliation(s)
- Audrey Labonté
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Valérie Le Corre
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Annick Matejicek
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Emeline Felten
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Mélinda Turpin
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Emilien Laurent
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Séverine Michel
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Chantal Ducourtieux
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Eric Vieren
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Willem Proesmans
- Laboratory of Zoology, Institute for Biosciences, Université de Mons, Place du Parc, 20, Mons, 7000, Belgium
| | - Violaine Deytieux
- U2E, INRAE, Unité Expérimentale du Domaine d'Epoisses, Bretenière, F-21110, France
| | - Stéphane Cordeau
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
2
|
Draghi J, Zook E. Spatial clustering of hosts can favor specialist parasites. Ecol Evol 2024; 14:e70273. [PMID: 39559465 PMCID: PMC11570423 DOI: 10.1002/ece3.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
Generalist parasites seem to enjoy the clear ecological advantage of a greater chance to find a host, and genetic trade-offs are therefore often invoked to explain why specialists can coexist with or outcompete generalists. Here we develop an alternative perspective based on optimal foraging theory to explain why spatial clustering can favor specialists even without genetic trade-offs. Using analytical and simulation models inspired by bacteriophage, we examine the optimal use of two hosts, one yielding greater reproductive success for the parasite than the other. We find that a phage may optimally ignore the worse host when the two hosts are clustered together in dense, ephemeral patches. We model conditions that enhance or reduce this selective benefit to a specialist parasite and show that it is eliminated entirely when the hosts occur only in separate patches. These results show that specialists can be favored even when trade-offs are weak or absent and emphasize the importance of spatiotemporal heterogeneity in models of optimal niche breadth.
Collapse
Affiliation(s)
- Jeremy Draghi
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Evan Zook
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Shannon DM, Richardson N, Lahondère C, Peach D. Mosquito floral visitation and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101230. [PMID: 38971524 DOI: 10.1016/j.cois.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We often consider mosquitoes through an 'anthropocentric lens' that disregards their interactions with nonhuman and nonpathogenic organisms, even though these interactions can be harnessed for mosquito control. Mosquitoes have been recognized as floral visitors, and pollinators, for more than a century. However, we know relatively little about mosquito-plant interactions, excepting some nutrition and chemical ecology-related topics, compared with mosquito-host interactions, and frequently use flawed methodology when investigating them. Recent work demonstrates mosquitoes use multimodal sensory cues to locate flowers, including ultraviolet visual cues, and we may underestimate mosquito pollination. This review focuses on current knowledge of how mosquitoes locate flowers, floral visitation assay methodology, mosquito pollination, and implications for technologies such as sterile male mosquito release through genetic control programs or Wolbachia infection.
Collapse
Affiliation(s)
- Danica M Shannon
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nalany Richardson
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Daniel Peach
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Precision One Health Initiative, University of Georgia, University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, University of Georgia, Athens, GA 30602, USA; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada.
| |
Collapse
|
4
|
Foster WA. Mosquito pollination of plants: an overview of their role and an assessment of the possible contribution of disease vectors. Transgenic Res 2024; 33:297-322. [PMID: 39172353 PMCID: PMC11588815 DOI: 10.1007/s11248-024-00394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 07/01/2024] [Indexed: 08/23/2024]
Abstract
Mosquitoes visit flowers to obtain sugar or other nutrients and therefore possibly serve as major or minor pollinators of some plant species. They also often derive plant nutrients from other sources, such as extrafloral nectaries and honeydew. In a few cases, the plant-mosquito relationship is close, and mosquito pollination has been confirmed. Most plant species visited by mosquitoes, however, appear to depend on multiple means of pollination, particularly other flower-feeding insects. In addition, most mosquito species visit the flowers of many kinds of plants, possibly dispersing pollen in both biologically meaningful and irrelevant ways. This apparent lack of selectivity by both plants and mosquitoes liberates each of them from dependence on an unreliable pollen vehicle or nutrient source. A hypothetical pollinating role for the two top vectors of devastating human-disease pathogens, Anopheles gambiae or Aedes aegypti, relies on indirect evidence. So far, this evidence suggests that their participation in pollen transfer of native, introduced, or beneficial plants is negligible. The few plant species likely to be pollinated by these vectors are mostly invasive, harmful weeds associated with humans. That conclusion draws support from four characteristics of these vectors: (1) the numerous alternative potential pollinators of the flowers they visit; (2) their common use of diverse non-floral sources of nutrients; (3) the females' infrequent sugar feeding and heavy reliance on human blood for energy; and (4) their relatively low population densities. From these traits it follows that focused suppression or elimination of these two vectors, by whatever means, is highly unlikely to have adverse effects on pollination in endemic biotic communities or on ornamental plants or food crops.
Collapse
Affiliation(s)
- Woodbridge A Foster
- Department of Evolution, Ecology and Organismal Biology and Department of Entomology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Duan D, Hang J, Wu C, Bai X, Rong Y, Hou G. Coexistence mechanism of ecological specialists and generalists based on a network dimension reduction method. Ecol Evol 2024; 14:e10967. [PMID: 38384818 PMCID: PMC10880134 DOI: 10.1002/ece3.10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
As an ecological strategy for species coexistence, some species adapt to a wide range of habitats, while others specialize in particular environments. Such 'generalists' and 'specialists' achieve normal ecological balance through a complex network of interactions between species. However, the role of these interactions in maintaining the coexistence of generalist and specialist species has not been elucidated within a general theoretical framework. Here, we analyze the ecological mechanism for the coexistence of specialist and generalist species in a class of mutualistic and competitive interaction ecosystems based on the network dimension reduction method. We find that ecological specialists and generalists can be identified based on the number of their respective interactions. We also find, using real-world empirical network simulations, that the removal of ecological generalists can lead to the collapse of local ecosystems, which is rarely observed with the loss of ecological specialists.
Collapse
Affiliation(s)
- Dongli Duan
- School of Information and Control EngineeringXi'an University of Architecture and TechnologyXi'anChina
| | - Jiale Hang
- School of Information and Control EngineeringXi'an University of Architecture and TechnologyXi'anChina
| | - Chengxing Wu
- School of Information and Control EngineeringXi'an University of Architecture and TechnologyXi'anChina
| | - Xue Bai
- School of Information and Control EngineeringXi'an University of Architecture and TechnologyXi'anChina
| | - Yisheng Rong
- School of EconomicsNorthWest University of Politics and LawXi'anChina
| | - Gege Hou
- School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
6
|
Vaudo AD, Dyer LA, Leonard AS. Pollen nutrition structures bee and plant community interactions. Proc Natl Acad Sci U S A 2024; 121:e2317228120. [PMID: 38190523 PMCID: PMC10801918 DOI: 10.1073/pnas.2317228120] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation. To fill this gap, we asked how pollen nutrition (relative protein and lipid content) sampled from 109 co-flowering plant species structured visitation patterns observed among 75 subgenera of pollen-collecting bees in the Great Basin/Eastern Sierra region (USA). We found that the degree of similarity in co-flowering plant species' pollen nutrition predicted similarity among their visitor communities, even after accounting for floral morphology and phylogeny. Consideration of pollen nutrition also shed light on the structure of this interaction network: Bee subgenera and plant genera were arranged into distinct, interconnected groups, delineated by differences in pollen macronutrient values, revealing potential nutritional niches. Importantly, variation in pollen nutrition alone (high in protein, high in lipid, or balanced) did not predict the diversity of bee visitors, indicating that plant species offering complementary pollen nutrition may be equally valuable in supporting bee diversity. Nutritional diversity should thus be a key consideration when selecting plants for habitat restoration, and a nutritionally explicit perspective is needed when considering reward systems involved in the community ecology of pollination.
Collapse
Affiliation(s)
- Anthony D. Vaudo
- Department of Biology, University of Nevada, Reno, NV89557
- Rocky Mountain Research Station, United States Department of Agriculture Forest Service, Moscow, ID83843
| | - Lee A. Dyer
- Department of Biology, University of Nevada, Reno, NV89557
| | | |
Collapse
|
7
|
Nabors A, Hung KLJ, Corkidi L, Bethke JA. California Native Perennials Attract Greater Native Pollinator Abundance and Diversity Than Nonnative, Commercially Available Ornamentals in Southern California. ENVIRONMENTAL ENTOMOLOGY 2022; 51:836-847. [PMID: 35854655 DOI: 10.1093/ee/nvac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 06/15/2023]
Abstract
While many factors have been implicated in global pollinator decline, habitat loss is a key driver of wild pollinator decline in both abundance and species richness. An increase in and diversification of pollinator habitat, even in urban settings, can assist in the conservation of pollinator populations. In Southern California, a highly fragmented and urbanized landscape with a rich yet threatened native pollinator fauna, the availability of food resources for native pollinators hinges largely upon the selection of ornamental plants grown in the urban landscape. To examine the pollinator attractiveness of ornamental plants in a Southern California context, we installed an experimental garden with common California native and nonnative ornamental perennials and observed floral visitation and visitor community composition for 3 yr. Our study demonstrates that while native pollinators visited common ornamental perennials native to California at a higher rate than they visited nonnative ornamentals, introduced honey bees showed no significant preference for either native or nonnative species. Native plants also received a greater diversity of visitor taxa, including a richer suite of native bees. Plant species differed dramatically in attractiveness, by as much as a factor of 12, even within the native status group. Our results suggest that including a data-driven selection of both native and non-native ornamental perennials in the urban landscape can diversify the assemblage of native pollinators, provide critical floral resources throughout the year, and reduce the impact of honey bee landscape foraging dominance by providing plants highly attractive to native pollinators and less so to honey bees.
Collapse
Affiliation(s)
- Annika Nabors
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| | - Keng-Lou James Hung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Oklahoma Natural Heritage Inventory & Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA
| | - Lea Corkidi
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| | - James A Bethke
- University of California Cooperative Extension, San Diego County, San Diego, CA, USA
| |
Collapse
|
8
|
Lázaro A, Gómez‐Martínez C. Habitat loss increases seasonal interaction rewiring in plant‐pollinator networks. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amparo Lázaro
- Mediterranean Institute for Advanced Studies (IMEDEA; UIB‐CSIC). Global Change Research Group. C/ Miquel Marquès 21 Esporles Balearic Islands Spain
| | - Carmelo Gómez‐Martínez
- Mediterranean Institute for Advanced Studies (IMEDEA; UIB‐CSIC). Global Change Research Group. C/ Miquel Marquès 21 Esporles Balearic Islands Spain
| |
Collapse
|
9
|
Nicholls E, Rands SA, Botías C, Hempel de Ibarra N. Flower sharing and pollinator health: a behavioural perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210157. [PMID: 35491598 DOI: 10.1098/rstb.2021.0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease is an integral part of any organisms' life, and bees have evolved immune responses and a suite of hygienic behaviours to keep them at bay in the nest. It is now evident that flowers are another transmission hub for pathogens and parasites, raising questions about adaptations that help pollinating insects stay healthy while visiting hundreds of plants over their lifetime. Drawing on recent advances in our understanding of how bees of varying size, dietary specialization and sociality differ in their foraging ranges, navigational strategies and floral resource preferences, we explore the behavioural mechanisms and strategies that may enable foraging bees to reduce disease exposure and transmission risks at flowers by partitioning overlapping resources in space and in time. By taking a novel behavioural perspective, we highlight the missing links between disease biology and the ecology of plant-pollinator relationships, critical for improving the understanding of disease transmission risks and the better design and management of habitat for pollinator conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- E Nicholls
- Evolution, Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - S A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, 19180 Guadalajara, Spain
| | - N Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
10
|
Stanley AM, Martel C, Arceo-Gómez G. Spatial variation in bidirectional pollinator-mediated interactions between two co-flowering species in serpentine plant communities. AOB PLANTS 2021; 13:plab069. [PMID: 34804469 PMCID: PMC8598379 DOI: 10.1093/aobpla/plab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pollinator-mediated competition and facilitation are two important mechanisms mediating co-flowering community assembly. Experimental studies, however, have mostly focused on evaluating outcomes for a single interacting partner at a single location. Studies that evaluate spatial variation in the bidirectional effects between co-flowering species are necessary if we aim to advance our understanding of the processes that mediate species coexistence in diverse co-flowering communities. Here, we examine geographic variation (i.e. at landscape level) in bidirectional pollinator-mediated effects between co-flowering Mimulus guttatus and Delphinium uliginosum. We evaluated effects on pollen transfer dynamics (conspecific and heterospecific pollen deposition) and plant reproductive success. We found evidence of asymmetrical effects (one species is disrupted and the other one is facilitated) but the effects were highly dependent on geographical location. Furthermore, effects on pollen transfer dynamics did not always translate to effects on overall plant reproductive success (i.e. pollen tube growth) highlighting the importance of evaluating effects at multiple stages of the pollination process. Overall, our results provide evidence of a spatial mosaic of pollinator-mediated interactions between co-flowering species and suggest that community assembly processes could result from competition and facilitation acting simultaneously. Our study highlights the importance of experimental studies that evaluate the prevalence of competitive and facilitative interactions in the field, and that expand across a wide geographical context, in order to more fully understand the mechanisms that shape plant communities in nature.
Collapse
Affiliation(s)
- Aiden M. Stanley
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carlos Martel
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Instituto de Ciencias Ómicas y Biotecnología Aplicada, Pontificia Universidad Católica del Perú, San Miguel 15088, Lima, Peru
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
11
|
Paudel S, Cobb AB, Boughton EH, Spiegal S, Boughton RK, Silveira ML, Swain HM, Reuter R, Goodman LE, Steiner JL. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Shishir Paudel
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
- Phipps Conservatory and Botanical Gardens Pittsburgh Pennsylvania 15213 USA
| | - Adam B. Cobb
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
| | | | - Sheri Spiegal
- US Department of Agriculture–Agriculture Research Service (USDA‐ARS) Jornada Experimental Range Las Cruces New Mexico 88003 USA
| | - Raoul K. Boughton
- Range Cattle Research and Education Center University of Florida 3401 Experiment Station Ona Florida 33865 USA
| | - Maria L. Silveira
- Range Cattle Research and Education Center University of Florida 3401 Experiment Station Ona Florida 33865 USA
| | | | - Ryan Reuter
- Department of Animal Science Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Laura E. Goodman
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Jean L. Steiner
- Grazinglands Research Laboratory USDA‐ARS El Reno Oklahoma 73036 USA
- Department of Agronomy Kansas State University Manhattan Kansas 66502 USA
| |
Collapse
|
12
|
Ventre Lespiaucq A, Jacquemyn H, Rasmussen HN, Méndez M. Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. THE NEW PHYTOLOGIST 2021; 230:1690-1699. [PMID: 33621346 DOI: 10.1111/nph.17291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Temporal turnover events in biotic interactions involving plants are rarely assessed, although such changes might afford a considerable acclimation potential to the plant. This could enable fairly rapid responses to short-term fluctuations in growth conditions as well as lasting responses to long-term climatic trends. Here, we present a classification of temporal turnover encompassing 11 possible scenarios. Using orchid mycorrhiza as a study model, we show that temporal changes are common, and discuss under which conditions temporal turnover of fungal symbiont is expected. We provide six research questions and identify technical challenges that we deem most important for future studies. Finally, we discuss how the same framework can be applied to other types of biotic interactions.
Collapse
Affiliation(s)
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, 3001, Belgium
| | - Hanne N Rasmussen
- Department of Geosciences and Nature Management, Section for Forest, Nature and Biomass, University of Copenhagen, Copenhagen, 1958, Denmark
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, 28933, Spain
| |
Collapse
|
13
|
Zografou K, Swartz MT, Adamidis GC, Tilden VP, McKinney EN, Sewall BJ. Species traits affect phenological responses to climate change in a butterfly community. Sci Rep 2021; 11:3283. [PMID: 33558563 PMCID: PMC7870830 DOI: 10.1038/s41598-021-82723-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Diverse taxa have undergone phenological shifts in response to anthropogenic climate change. While such shifts generally follow predicted patterns, they are not uniform, and interspecific variation may have important ecological consequences. We evaluated relationships among species' phenological shifts (mean flight date, duration of flight period), ecological traits (larval trophic specialization, larval diet composition, voltinism), and population trends in a butterfly community in Pennsylvania, USA, where the summer growing season has become warmer, wetter, and longer. Data were collected over 7-19 years from 18 species or species groups, including the extremely rare eastern regal fritillary Speyeria idalia idalia. Both the direction and magnitude of phenological change over time was linked to species traits. Polyphagous species advanced and prolonged the duration of their flight period while oligophagous species delayed and shortened theirs. Herb feeders advanced their flight periods while woody feeders delayed theirs. Multivoltine species consistently prolonged flight periods in response to warmer temperatures, while univoltine species were less consistent. Butterflies that shifted to longer flight durations, and those that had polyphagous diets and multivoltine reproductive strategies tended to decline in population. Our results suggest species' traits shape butterfly phenological responses to climate change, and are linked to important community impacts.
Collapse
Affiliation(s)
- Konstantina Zografou
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA.
| | - Mark T Swartz
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - George C Adamidis
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA
| | - Virginia P Tilden
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - Erika N McKinney
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - Brent J Sewall
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|