1
|
Hikino K, Hesse BD, Gebhardt T, Hafner BD, Buchhart C, Baumgarten M, Häberle KH, Grams TEE. Drought legacy in mature spruce alleviates physiological stress during recurrent drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40375713 DOI: 10.1111/plb.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Forest ecosystems are facing severe and prolonged droughts with delayed recovery, known as "drought legacy". This study presents positive legacy effects following a long-term, experimental drought and subsequent recovery in a mature mixed Norway spruce and European beech forest. Approximately 50 mature trees were exposed to five consecutive years of summer drought by completely excluding growing season precipitation from May 2014 to June 2019. Experimental drought recovery started in July 2019, after which the trees received natural precipitation. Taking advantage of the natural summer drought of 2022, following the unique long-term experimental drought, we investigated how drought legacy affects tree physiological responses to recurrent drought. The long-term experimental drought resulted in a 60% reduction in spruce leaf area, which was still reduced by 30% 4 years after the drought release. This slow recovery and associated reduced water use resulted in higher soil water availability under spruce during the 2022 drought, leading to significantly reduced physiological drought stress: about two times higher predawn leaf water potential, leaf gas exchange and sap flow density in legacy spruce compared to previous controls. Furthermore, neighbouring beech, displaying no leaf area reduction during the experimental drought, also had higher predawn leaf water potential and leaf gas exchange during the 2022 drought compared to previous controls, likely benefitting from the reduced water use of spruce. The slow recovery of spruce leaf area as a pronounced drought legacy effect proved advantageous for trees in alleviating physiological stress and overcoming future drought events.
Collapse
Affiliation(s)
- K Hikino
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - B D Hesse
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Gebhardt
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- School of Life Sciences, Forest and Agroforest Systems, Technical University of Munich, Freising, Germany
| | - B D Hafner
- School of Life Sciences, Soil Biophysics & Environmental Systems, Technical University of Munich, Freising, Germany
| | - C Buchhart
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - M Baumgarten
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| | - K-H Häberle
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Knüver T, Bär A, Hamann E, Zuber M, Mayr S, Beikircher B, Ruehr NK. Stress dose explains drought recovery in Norway spruce. FRONTIERS IN PLANT SCIENCE 2025; 16:1542301. [PMID: 40115942 PMCID: PMC11922940 DOI: 10.3389/fpls.2025.1542301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
Introduction Understanding the stress recovery of trees, particularly with respect to increasing droughts due to climate change, is crucial. An often-overlooked aspect is how short versus long drought events of high intensity (i.e., low and high stress dose) result in stress damage and affect post-stress recovery. Methods This study examines the stress and recovery dynamics of 3-year-old Picea abies following a short drought (n = 5) of 18 days or a long drought (n = 9) of 51 days during late summer. We particularly assessed how the recovery of canopy conductance and tree transpiration is linked to i) stress intensity in terms of minimum water potential, ii) stress duration inferred by days below a water potential related to 12% hydraulic conductance loss (dP12), iii) stress dose inferred by the cumulative tree water deficit on days below P12 (TWDP12) as well as the cumulative water potential (Ψcum), and iv) the percent loss of conductive xylem area (PLA). Results Both drought treatments resulted in stem and root embolism with a higher PLA of 49% ± 10% in the long drought treatment compared to 18% ± 6% in the short drought treatment consistent across the measured plant parts. Suffering from embolism and leaf shedding (long drought, 32%; short drought, 12%), canopy conductance in the long drought treatment recovered to 41% ± 3% of the control and in the short drought treatment to 66% ± 4% at 12 days after drought release. These recovery rates were well explained by the observed PLA (R2 = 0.66) and the dP12 (R2 = 0.62) but best explained by stress dose metrics, particularly the cumulative TWDP12 (R2 = 0.88). Discussion Our study highlights that stress duration and intensity should be integrated to assess post-stress recovery rates. Here, the tree water deficit derived from point dendrometers appears promising, as it provides a non-destructive and high temporal resolution of the stress dose.
Collapse
Affiliation(s)
- Timo Knüver
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Nadine K Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| |
Collapse
|
3
|
Hafner BD, Hesse BD, Grams TEE. Redistribution of soil water by mature trees towards dry surface soils and uptake by seedlings in a temperate forest. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39822033 DOI: 10.1111/plb.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) 2H labeling and (2) 18O natural abundance. In a throughfall exclusion experiment, 2H water was applied to 30-50 cm soil depth around mature beech trees and traced in soils, in coarse and fine roots, and in the rhizosphere. On five additional natural plots, the 18O signal was measured in seedlings of European beech, Douglas fir, silver fir, sycamore maple, and Norway spruce at dawn and noon after a rain-free period. We found a significant enrichment in 2H in surface soil fine roots of mature beech, and an indication for transfer of this water into their rhizosphere, suggesting hydraulic redistribution from deeper, moist to drier surface soils. On four of the five additional plots, δ18O of seedlings' root water was lower at dawn than at noon. This indicated that dawn root water originated from soil layers deeper than the seedlings' rooting depth, suggesting hydraulic redistribution by neighbouring mature trees. Hydraulic redistribution equated to about 10% of daily transpiration in mature beech trees, and contributed to root water in understory seedlings, emphasizing hydraulic redistribution as a notable mechanism in temperate forests. Transport mechanisms and potential of different tree species to redistribute water should be further addressed.
Collapse
Affiliation(s)
- B D Hafner
- School of Life Sciences, Soil Biophysics and Environmental Systems, Technical University of Munich, Freising, Germany
| | - B D Hesse
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Wang Y, Rammig A, Blickensdörfer L, Wang Y, Zhu XX, Buras A. Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177938. [PMID: 39689475 DOI: 10.1016/j.scitotenv.2024.177938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies. In this study, we used remotely sensed peak-season canopy greenness as a proxy for tree vitality to estimate the drought response of four widely abundant tree species in Germany (oak, beech, spruce, and pine). We focused on two questions: (1) How were the four tree species affected by these two droughts? (2) Which environmental parameters primarily determined canopy greenness? To address these questions, we combined a recently published tree species classification map with remotely sensed canopy greenness and environmental variables related to plant available water capacity (PAWC) and atmospheric vapor pressure deficit (VPD). Our results indicate that the more isohydric species featured a greater decline in canopy greenness under these droughts compared to the more anisohydric species despite similar soil moisture conditions. Based on spatial lag models, we found that the influence of PAWC on canopy greenness increases with increasing isohydricity while the influence of VPD decreases. Our statistical analysis indicates that oak was the only species with significantly higher canopy greenness in 2022 compared to 2018. Yet, all species are likely to be susceptible to accumulated drought effects, such as insufficient recovery time and increased vulnerability to biotic pathogens, in the coming years. Our study provides critical insights into the diverse responses of different tree species to changing environments over a large environmental gradient in Central Europe and sheds light on the complex interactions between soil moisture, climate variables, and canopy greenness. These findings contribute to understanding forests' climate-change resilience and may guide forest management and conservation strategies.
Collapse
Affiliation(s)
- Yixuan Wang
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany.
| | - Anja Rammig
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| | - Lukas Blickensdörfer
- Thünen Institute of Farm Economics, Bundesallee 63, Braunschweig 38116, Germany; Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, Eberswalde 16225, Germany; Earth Observation Lab, Geography Department, Humboldt University of Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Yuanyuan Wang
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany
| | - Xiao Xiang Zhu
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany; Munich Center for Machine Learning, Arcisstraße 21, Munich 80333, Germany
| | - Allan Buras
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| |
Collapse
|
5
|
Beloiu Schwenke M, Bigler C, Petritan AM, Petritan IC, Madonna G, Griess VC. Early-successional species show higher tolerance of drought than late-successional species across Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176997. [PMID: 39427904 DOI: 10.1016/j.scitotenv.2024.176997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Climate change is exacerbating forest disturbances through more frequent and more intense droughts and fires, undermining their ability to recover from such disturbances. The response of fast-growing early-successional species to drought is poorly understood, despite their key role in ecological succession and their ability to enhance ecosystem resilience. Here, we compared the growth responses to drought events of three early-successional species (silver birch, black poplar, and Scots pine) with that of one late-successional species (European beech) across their natural distribution ranges in Europe. We used tree-ring widths of 6340 trees from 109 forest sites to establish species-specific tree-ring chronologies. We then used multiple linear regression to analyze which climatic or growth variables (pre-drought growth and growth during drought) best explained the tree responses to drought. Silver birch, Scots pine, and black poplar showed superior drought tolerance, with a slight, non-significant growth reduction under drought, whereas European beech showed a significant decrease in growth. The variables that influenced growth during and after the drought were species-specific. Annual precipitation and growth variables were key predictors of post-drought growth for Scots pine, black poplar, and European beech. Scots pine and silver birch grew better with increasing latitude, i.e., in Northern Europe than in Central Europe, while European beech and black poplar showed more growth at sites with high precipitation during the vegetation and dormant period, respectively. This study provides insights into the drought tolerance of early-successional species and highlights their ability to promote ecological succession and facilitate the transition to drought-resistant, late-successional forest ecosystems.
Collapse
Affiliation(s)
- Mirela Beloiu Schwenke
- Forest Resources Management, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | - Christof Bigler
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Any Mary Petritan
- Department of Forest Ecology, National Institute for Research and Development in Forestry "Marin Dracea", Closca 13, 500040 Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Transylvania University of Braşov, Braşov, Romania
| | - Gioele Madonna
- Forest Resources Management, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Verena C Griess
- Forest Resources Management, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
7
|
Machacova K, Schindler T, Bréchet L, Mander Ü, Grams TEE. Substantial uptake of nitrous oxide (N 2O) by shoots of mature European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173122. [PMID: 38734086 DOI: 10.1016/j.scitotenv.2024.173122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Similar to soils, tree stems emit and consume nitrous oxide (N2O) from the atmosphere. Although tree leaves dominate tree surface area, they have been completely excluded from field N2O flux measurements and therefore their role in forest N2O exchange remains unknown. We explored the contribution of leaf fluxes to forest N2O exchange. We determined the N2O exchange of mature European beech (Fagus sylvatica) stems and shoots (i.e., terminal branches) and of adjacent forest floor, in a typical temperate upland forest in Germany. The beech stems, and particularly the shoots, acted as net N2O sinks (-0.254 ± 0.827 μg N2O m-2 stem area h-1 and -4.54 ± 1.53 μg N2O m-2 leaf area h-1, respectively), while the forest floor was a net source (2.41 ± 1.08 μg N2O m-2 soil area h-1). The unstudied tree shoots were identified as a significant contributor to the net ecosystem N2O exchange. Moreover, we revealed for the first time that tree leaves act as substantial N2O sinks. Although this is the first study of its kind, it is of global importance for the proper design of future flux studies in forest ecosystems worldwide. Our results demonstrate that excluding tree leaves from forest N2O flux measurements can lead to misinterpretation of tree and forest N2O exchange, and thus global forest greenhouse gas flux inventories.
Collapse
Affiliation(s)
- Katerina Machacova
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic.
| | - Thomas Schindler
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic; Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Laëtitia Bréchet
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, FR-97310 Kourou, France
| | - Ülo Mander
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic; Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Thorsten E E Grams
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Von-Carlowitz-Platz 2, DE-85354 Freising, Germany
| |
Collapse
|
8
|
Guo H, Wang Y, Li G, Du S. Effects of Rainfall Exclusion Treatment on Photosynthetic Characteristics of Black Locust in the Sub-Humid Region of the Loess Plateau, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:704. [PMID: 38475549 DOI: 10.3390/plants13050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The mesic-origin species Robinia pseudoacacia L. (black locust) is widely planted in the semiarid and sub-humid areas of the Loess Plateau for the reforestation of vegetation-degraded land. Under the scenario of changing precipitation patterns, exploring the response of photosynthesis to drought allows us to assess the risk to sustainable development of these plantations. In this study, paired plots were established including the control and a treatment of 30% exclusion of throughfall (since 2018). The photosynthetic characteristics were investigated using a portable photosynthesis system for four periods in the full-leaf growing season of 2021-2022, the fourth and fifth years, on both treated and controlled sampling trees. Leaf gas exchange parameters derived from diurnal changing patterns, light response curves, and CO2 response curves showed significant differences except for period II (9-11 September 2021) between the two plots. The photosynthetic midday depression was observed in 2022 in the treated plot. Meanwhile, the decline of net photosynthetic rate in the treated plot was converted from stomatal limitation to non-stomatal limitation. Furthermore, we observed that black locust adapted to long-term water deficiency by reducing stomatal conductance, increasing water use efficiency and intrinsic water use efficiency. The results demonstrate that reduction in precipitation would cause photosynthesis decrease, weaken the response sensitivity to light and CO2, and potentially impair photosynthetic resilience of the plantations. They also provide insights into the changes in photosynthetic functions under global climate change and a reference for management of plantations.
Collapse
Affiliation(s)
- Haining Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiran Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guoqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
10
|
Pretzsch H, Del Río M, Arcangeli C, Bielak K, Dudzinska M, Forrester DI, Klädtke J, Kohnle U, Ledermann T, Matthews R, Nagel J, Nagel R, Ningre F, Nord-Larsen T, Biber P. Forest growth in Europe shows diverging large regional trends. Sci Rep 2023; 13:15373. [PMID: 37716997 PMCID: PMC10505178 DOI: 10.1038/s41598-023-41077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023] Open
Abstract
Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.
Collapse
Affiliation(s)
- Hans Pretzsch
- Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain
| | - Miren Del Río
- ICIFOR-INIA, CSIC, Ctra a Coruña km 7.5, 28040, Madrid, Spain
| | | | - Kamil Bielak
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Dudzinska
- Department of Forest Management, Forest Research Institute, Sekocin Stary, Poland
| | - David Ian Forrester
- CSIRO Environment, Canberra, ACT, 2601, Australia
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Joachim Klädtke
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Abteilung Waldwachstum, Freiburg, Germany
| | - Ulrich Kohnle
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Abteilung Waldwachstum, Freiburg, Germany
| | - Thomas Ledermann
- Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Vienna, Austria
| | | | - Jürgen Nagel
- Nordwestdeutsche Forstliche Versuchsanstalt Sachgebiet Ertragskunde, Göttingen, Germany
| | - Ralf Nagel
- Nordwestdeutsche Forstliche Versuchsanstalt Sachgebiet Ertragskunde, Göttingen, Germany
| | - François Ningre
- Université de Lorraine, AgroParisTech, INRAE, SILVA, 54000, Nancy, France
| | - Thomas Nord-Larsen
- Section for Forest and Bioresources, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Peter Biber
- Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354, Freising, Germany.
| |
Collapse
|
11
|
Wilhelm RC, Muñoz-Ucros J, Weikl F, Pritsch K, Goebel M, Buckley DH, Bauerle TL. The effects of mixed-species root zones on the resistance of soil bacteria and fungi to long-term experimental and natural reductions in soil moisture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162266. [PMID: 36822431 DOI: 10.1016/j.scitotenv.2023.162266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA; Agronomy Department, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, 47904, USA
| | - Juana Muñoz-Ucros
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Fabian Weikl
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany; Technical University of Munich, Professorship of Land Surface Atmosphere Interactions, Freising, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marc Goebel
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
13
|
Hikino K, Danzberger J, Riedel VP, Hesse BD, Hafner BD, Gebhardt T, Rehschuh R, Ruehr NK, Brunn M, Bauerle TL, Landhäusser SM, Lehmann MM, Rötzer T, Pretzsch H, Buegger F, Weikl F, Pritsch K, Grams TEE. Dynamics of initial carbon allocation after drought release in mature Norway spruce-Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth. GLOBAL CHANGE BIOLOGY 2022; 28:6889-6905. [PMID: 36039835 DOI: 10.1111/gcb.16388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.
Collapse
Affiliation(s)
- Kyohsuke Hikino
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jasmin Danzberger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vincent P Riedel
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hesse
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Timo Gebhardt
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Romy Rehschuh
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Pienner Str. 7, Tharandt, 01737, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Melanie Brunn
- Institute for Environmental Sciences, University Koblenz-Landau, Landau, Germany
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Forest Dynamics, Birmensdorf, Switzerland
| | - Thomas Rötzer
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fabian Weikl
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Thorsten E E Grams
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
14
|
Knüver T, Bär A, Ganthaler A, Gebhardt T, Grams TEE, Häberle K, Hesse BD, Losso A, Tomedi I, Mayr S, Beikircher B. Recovery after long-term summer drought: Hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1240-1253. [PMID: 35611757 PMCID: PMC10084041 DOI: 10.1111/plb.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to increase the frequency and intensity of summer droughts. Sufficient drought resistance, the ability to acclimate to and/or recover after drought, is thus crucial for forest tree species. However, studies on the hydraulics of mature trees during and after drought in natura are scarce. In this study, we analysed trunk water content (electrical resistivity: ER) and further hydraulic (water potential, sap flow density, specific hydraulic conductivity, vulnerability to embolism) as well as wood anatomical traits (tree ring width, conduit diameter, conduit wall reinforcement) of drought-stressed (artificially induced summer drought via throughfall-exclusion) and unstressed Picea abies and Fagus sylvatica trees. In P. abies, ER indicated a strong reduction in trunk water content after 5 years of summer drought, corresponding to significantly lower pre-dawn leaf water potential and xylem sap flow density. Vulnerability to embolism tended to be higher in drought-stressed trees. In F. sylvatica, only small differences between drought-stressed and control trees were observed. Re-watering led to a rapid increase in water potentials and xylem sap flow of both drought-stressed trees, and to increased growth rates in the next growing season. ER analyses revealed lower trunk water content in P. abies trees growing on throughfall-exclusion plots even 1 year after re-watering, indicating a limited capacity to restore internal water reserves. Results demonstrated that P. abies is more susceptible to recurrent summer drought than F. sylvatica, and can exhibit long-lasting and pronounced legacy effects in trunk water reserves.
Collapse
Affiliation(s)
- T. Knüver
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Bär
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Ganthaler
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - T. Gebhardt
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - T. E. E. Grams
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - K.‐H. Häberle
- Technical University of MunichSchool of Life SciencesChair of Restoration EcologyFreisingGermany
| | - B. D. Hesse
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - A. Losso
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondAustralia
| | - I. Tomedi
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - S. Mayr
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - B. Beikircher
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
15
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Petit G, Zambonini D, Hesse BD, Häberle K. No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. GLOBAL CHANGE BIOLOGY 2022; 28:4668-4683. [PMID: 35555836 PMCID: PMC9325500 DOI: 10.1111/gcb.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Forest trees are experiencing increasing frequency and intensity of drought events with climate change. We investigated xylem and phloem traits from mature Fagus sylvatica and Picea abies trees after 5 years of complete exclusion of throughfall precipitation during the growing season. Xylem and phloem anatomy, leaf and branch biomass were analysed along top branches of ~1.5 m lenght in 5 throughfall precipitation excluded (TE) and 5 control (CO) trees of both beech and spruce. Xylem traits were analysed on wood cores extracted from the stem at breast height. In the top branches of both species, the lumen diameter (or area) of xylem and phloem conduits did not differ between TE and CO trees. At breast height, TE trees of both species produced narrower xylem rings and conduits. While allocation to branch (BM) and needle biomass (LM) did not change between TE and CO in P. abies, TE F. sylvatica trees allocated proportionally more biomass to leaves (LM) than BM compared with CO. Despite artificial drought increased the mortality in the TE plots, our results revealed no changes in both xylem and phloem anatomies, undermining the hypothesis that successful acclimation to drought would primarily involve increased resistance against air embolism.
Collapse
Affiliation(s)
- Giai Petit
- Dipartimento Territorio e Sistemi Agro‐Forestali (TESAF)University of PadovaPadovaItaly
| | - Dario Zambonini
- Dipartimento Territorio e Sistemi Agro‐Forestali (TESAF)University of PadovaPadovaItaly
| | - Benjamin D. Hesse
- Land Surface‐Atmosphere InteractionsTechnical University of Munich, School of Life SciencesFreisingGermany
| | - Karl‐Heinz Häberle
- Chair of Restoration EcologyTechnical University of Munich, School of Life SciencesFreisingGermany
| |
Collapse
|
17
|
Brunn M, Hafner BD, Zwetsloot MJ, Weikl F, Pritsch K, Hikino K, Ruehr NK, Sayer EJ, Bauerle TL. Carbon allocation to root exudates is maintained in mature temperate tree species under drought. THE NEW PHYTOLOGIST 2022; 235:965-977. [PMID: 35403713 DOI: 10.1111/nph.18157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level. We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area. Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third. Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience.
Collapse
Affiliation(s)
- Melanie Brunn
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, 76829, Landau, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marie J Zwetsloot
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Fabian Weikl
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kyohsuke Hikino
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467, Garmisch-Partenkirchen, Germany
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Hikino K, Danzberger J, Riedel VP, Rehschuh R, Ruehr NK, Hesse BD, Lehmann MM, Buegger F, Weikl F, Pritsch K, Grams TEE. High resilience of carbon transport in long-term drought-stressed mature Norway spruce trees within 2 weeks after drought release. GLOBAL CHANGE BIOLOGY 2022; 28:2095-2110. [PMID: 34927319 DOI: 10.1111/gcb.16051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree's survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, CTR below ground, that is, from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity.
Collapse
Affiliation(s)
- Kyohsuke Hikino
- Technical University of Munich (TUM), TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Freising, Germany
| | - Jasmin Danzberger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Vincent P Riedel
- Technical University of Munich (TUM), TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Freising, Germany
| | - Romy Rehschuh
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Benjamin D Hesse
- Technical University of Munich (TUM), TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Freising, Germany
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Forest Dynamics, Birmensdorf, Switzerland
| | - Franz Buegger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Fabian Weikl
- Technical University of Munich (TUM), TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Freising, Germany
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Karin Pritsch
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Thorsten E E Grams
- Technical University of Munich (TUM), TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Freising, Germany
| |
Collapse
|
19
|
Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modeling and forest management. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Bose AK, Rigling A, Gessler A, Hagedorn F, Brunner I, Feichtinger L, Bigler C, Egli S, Etzold S, Gossner MM, Guidi C, Lévesque M, Meusburger K, Peter M, Saurer M, Scherrer D, Schleppi P, Schönbeck L, Vogel ME, Arx G, Wermelinger B, Wohlgemuth T, Zweifel R, Schaub M. Lessons learned from a long‐term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K. Bose
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Forestry and Wood Technology Discipline Khulna University Khulna Bangladesh
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Linda Feichtinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Simon Egli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Sophia Etzold
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martin M. Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Claudia Guidi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Mathieu Lévesque
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Katrin Meusburger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Daniel Scherrer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Patrick Schleppi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne EPFL, Station 2 Lausanne Switzerland
| | - Michael E. Vogel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Georg Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Beat Wermelinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| |
Collapse
|
21
|
Effects of Throughfall Exclusion on Photosynthetic Traits in Mature Japanese Cedar (Cryptomeria japonica (L. f.) D. Don.). FORESTS 2021. [DOI: 10.3390/f12080971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As climate change progresses, it is becoming more crucial to understand how timber species respond to increased drought frequency and severity. Photosynthetic traits in a 40-year-old clonal Japanese cedar (Cryptomeria japonica) plantation were assessed under artificial drought stress using a roof to exclude rainfall and a control with no exclusion. C. japonica is a commercial tree that is native to Japan and has high growth on mesic sites. The maximum carboxylation rate (Vcmax), maximum electron transfer rate (Jmax), and dark respiration rate (Rd) in current-year shoots in the upper canopy were determined from spring to autumn over two growing seasons. In addition, the photosynthetic rate at light saturation (Pmax), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) were measured in the morning and afternoon during the same period. Leaf mass per unit area (LMA) and nitrogen concentration (N) were also measured. The values of Vcmax, Jmax, Rd, N, and LMA did not differ between the two plots. By contrast, significantly lower Pmax and gs and higher WUEi were found in the drought plot, and the reduction in Pmax was accompanied by low gs values. Midday depressions in Pmax and gs were more pronounced in the drought plot relative to the control and were related to higher WUEi. Under drought conditions, mature Japanese cedar experienced little change in photosynthetic capacity, foliar N, or LMA, but they did tend to close the stomata to regulate transpiration, thus avoiding drought-induced damage to the photosynthetic machinery and improving WUEi.
Collapse
|
22
|
From Acid Rain to Low Precipitation: The Role Reversal of Norway Spruce, Silver Fir, and European Beech in a Selection Mountain Forest and Its Implications for Forest Management. FORESTS 2021. [DOI: 10.3390/f12070894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: We make use of long term observation data from a selection forest in Bavaria. Despite the changing environmental conditions, stand level productivity remains constant over time. Maintaining species and structural diversity by forest management can contribute to resilient forest ecosystems. Background and Objectives: Forests in mountains are similarly affected by environmental changes like those in northern latitudes as species are closer to the edge of their ecological niche. There are recent studies that report species-specific responses to climate change in unmanaged, mono-layered mountain mixed forests. We analyze how environmental changes modify the growth of multi-layered, managed selection forest, which are often targeted for stabilization and risk prevention. We pose the central hypothesis that different species-specific susceptibility to disturbances and structural diversity contribute to ecosystem stability. Materials and Methods: Based on the long-term experiment Freyung 129 in the montane zone of the Bavarian Forest, Germany we analyze long term chronologies of periodic single tree and stand growth of Norway Spruce, silver fir, and European beech in dependence of environmental factors and forest management. Results: First, we show that despite environmental changes in terms of air pollution and drought stress, productivity at stand level persists constantly because of structural diversity and species traits. Second, we show that the species-specific contribution to total stand growth and growth distribution among stem diameter classes may change over time; the species interactions balance total growth. Third, we reveal a role reversal of tree species growth pattern. N. spruce was superior in growth in the first half and was replaced by s. fir in the second half of the survey period. Fourth, we identify the interplay of different stress factors on species-specific growth as the main cause for species-specific asynchronous but growth stabilizing reaction pattern. Finally, we show that density regulation was limited in its impacts to mitigate prevailing stress factors. Conclusions: We discuss the reasons for the observed stability of productivity. We interpret results, where especially the diversity of species and structure typical for selection forests result in stable productivity and wider plateau of the density-productivity relationship, and the suitability of the selection forest concept for risk prevention and stress resilience. We conclude that species composition and stand structure of selection forestry in mixed mountain contribute to climate smart forestry.
Collapse
|