1
|
Zhang Y, Anthony MA, Yuan Q, Wang Y, Zhao P, Chen E, Peng S. Capacity to form common mycorrhizal networks reduces the positive impact of clonal integration between plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70149. [PMID: 40084491 DOI: 10.1111/ppl.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Both clonal plant capabilities for physiological integration and common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) can influence the distribution of nutrients and growth among interconnected individuals. Using a microcosm model system, we aimed to disentangle how CMNs interact with clonal integration to influence plant growth and development. We grew Sphagneticola trilobata clones with isolated root systems in individual, adjacent containers while preventing, disrupting, or allowing clonal integration aboveground via spacers and belowground CMNs to form. We assessed multiple metrics of plant development (e.g., growth, specific leaf area, soluble sugar content), 15N transfer from donor (mother) to receiver (daughter) plants, and variation in AMF communities. We show that spacer formation between ramets and the capacity to form CMNs promoted and inhibited the growth of smaller daughter plants, respectively. In contrast to the independent effects of CMNs and spacers, CMNs, in combination with spacers, significantly weakened the promotion of daughter plants by clonal integration. AMF species richness was also negatively correlated with overall plant growth. Our results demonstrate that two common modes of plant interconnection interact in non-additive ways to affect clonal plant integration and growth. These findings, based on Sphagneticola trilobata, question the underlying assumptions of the positive effects of both AMF CMNs and species richness in comparison to direct plant interconnections.
Collapse
Affiliation(s)
- Yuanhao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Mark A Anthony
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Qianfeng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Enjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Wang H, Kohler A, Martin FM. Biology, genetics, and ecology of the cosmopolitan ectomycorrhizal ascomycete Cenococcum geophilum. Front Microbiol 2025; 16:1502977. [PMID: 39916863 PMCID: PMC11799279 DOI: 10.3389/fmicb.2025.1502977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The ascomycete Cenococcum geophilum is a cosmopolitan and ecologically significant ectomycorrhizal (ECM) fungus that forms symbiotic associations with diverse host plants worldwide. As the only known ECM species within the large class Dothideomycetes, C. geophilum exhibits several characteristics that distinguish it from other ECM fungi. This fungus significantly contributes to ecosystem stability and development as an early colonizer of primary forest succession. The capacity of this symbiont to rapidly colonize disturbed or newly formed environments promotes the development of conditions that support the growth of other plant species, thus playing a crucial role in the ecological progression and restoration of ecosystems. Several C. geophilum isolates are known to enhance the drought resistance of host plants, a trait that is becoming increasingly important in the context of climate change and frequent drought events. In this review, we examined genetic studies that have assessed the phylogenetic structure of C. geophilum populations and identified the genes associated with adaptation to environmental stress and symbiosis. The high genetic diversity of C. geophilum is particularly noteworthy, considering its putative asexual reproductive mode. Population genomic analyses have suggested that C. geophilum is not a single species but rather a species complex comprising multiple cryptic lineages. This genetic variability may contribute to its adaptability and extensive distribution across habitats from circumpolar to tropical biomes. These lineages exhibit potential host preferences, suggesting a degree of specialization within the complex. The nuclear genome of C. geophilum has been sequenced, providing valuable insights into the symbiont genetic traits. Notably, this genome encodes a large set of repeated sequences and effector-like small secreted proteins. Transcriptomics has been used to identify candidate genes related to symbiosis and adaptation to environmental stress. Additionally, we briefly discuss how C. geophilum offers potential for sustainable forestry practices by improving resilience to stress.
Collapse
Affiliation(s)
- Huayong Wang
- Université de Lorraine, INRAE, UMR Interactions Arbre/Micro-organismes, Centre INRAE Grand-Est Nancy, Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbre/Micro-organismes, Centre INRAE Grand-Est Nancy, Champenoux, France
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbre/Micro-organismes, Centre INRAE Grand-Est Nancy, Champenoux, France
- The National Key Laboratory of Ecological Security and Sustainable Development in the Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Ma S, Chen G, Cai Q, Ji C, Zhu B, Tang Z, Hu S, Fang J. Mycorrhizal dominance influences tree species richness and richness-biomass relationship in China's forests. Ecology 2025; 106:e4501. [PMID: 39690731 DOI: 10.1002/ecy.4501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
Mycorrhizal associations drive plant community diversity and ecosystem functions. Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are two widespread mycorrhizal types and are thought to differentially affect plant diversity and productivity by nutrient acquisition and plant-soil feedback. However, it remains unclear how the mixture of two mycorrhizal types influences tree diversity, forest biomass, and their relationship at large spatial scales. Here, we explored these issues using data from 1247 plots (600 m2 for each) across China's natural forests located mostly in temperate and subtropical regions. Both AM-dominated and EcM-dominated forests show relatively lower tree species richness and stand biomass, whereas forests with the mixture of mycorrhizal strategies sustain more tree species and higher biomass. Interestingly, the positive effect of tree diversity on biomass is stronger in forests with low (≤50%) than high AM tree proportion (>50%), reflecting a shift from the complementarity effect to functional redundancy with increasing AM trees. Our findings suggest that mycorrhizal dominance influences tree diversity and richness-biomass relationship in forest ecosystems.
Collapse
Affiliation(s)
- Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Guoping Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qiong Cai
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
4
|
Nieves DJ, Reich PB, Stefanski A, Bermudez R, Beidler KV, Kennedy PG. Ectomycorrhizal fungal community response to warming and rainfall reduction differs between co-occurring temperate-boreal ecotonal Pinus saplings. MYCORRHIZA 2024; 34:403-416. [PMID: 39382647 DOI: 10.1007/s00572-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Understanding the responses of ectomycorrhizal (ECM) fungi and their tree hosts to warming and reduced soil water availability under realistic future climate scenarios is essential, yet few studies have investigated how combined global change stressors impact ECM fungal community richness and composition as well as host performance. In this study, we leveraged a long-term factorial warming (ambient, + 1.7 ºC, + 3.2 ºC) and rainfall reduction (ambient, 30% reduced rainfall) experiment in northern Minnesota, USA to investigate the responses of two congeneric hosts with varying drought tolerances and their associated ECM fungal communities to a gradient of soil moisture induced by a combination of warming and rainfall reduction. Soil drying had host-specific effects; the less drought tolerant Pinus strobus had decreased stem growth and lower ECM fungal community richness (fewer ECM fungal Operational Taxonomic Units, OTUs), while the more drought tolerant Pinus banksiana experienced no decline in stem growth but had an altered ECM fungal community composition under drier, warmer soils. Taken together, the results of this study suggest that the combined effects of warming and decreased precipitation will largely be additive in terms of their impact on host performance and ECM fungal community richness, but that drier and warmer soil conditions may also differentially impact specific ECM fungal genera independently of host performance.
Collapse
Affiliation(s)
- Dyonishia J Nieves
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Katilyn V Beidler
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - Peter G Kennedy
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
5
|
Mishra S, Srivastava A, Singh A, Pandey GC, Srivastava G. An overview of symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1363460. [PMID: 39524061 PMCID: PMC11544544 DOI: 10.3389/ffunb.2024.1363460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
The complex and dynamic interactions between fungi and plants constitute a critical arena in ecological science. In this comprehensive review paper, we explore the multifaceted relationships at the fungi-plant interface, encompassing both mutualistic and antagonistic interactions, and the environmental factors influencing these associations. Mutualistic associations, notably mycorrhizal relationships, play a pivotal role in enhancing plant health and ecological balance. On the contrary, fungal diseases pose a significant threat to plant health, agriculture, and natural ecosystems, such as rusts, smuts, powdery mildews, downy mildews, and wilts, which can cause extensive damage and lead to substantial economic losses. Environmental constraints encompassing abiotic and biotic factors are elucidated to understand their role in shaping the fungi-plant interface. Temperature, moisture, and soil conditions, along with the presence of other microbes, herbivores, and competing plants, significantly influence the outcome of these interactions. The interplay between mutualism and antagonism is emphasised as a key determinant of ecosystem health and stability. The implications of these interactions extend to overall ecosystem productivity, agriculture, and conservation efforts. The potential applications of this knowledge in bioremediation, biotechnology, and biocontrol strategies emphasise the importance of adapting to climate change. However, challenges and future directions in this field include the impacts of climate change, emerging fungal pathogens, genomic insights, and the role of the fungi-plant interface in restoration ecology. Hence, this review paper provides a comprehensive overview of fungi-plant interactions, their environmental influences, and their applications in agriculture, conservation, and ecological restoration.
Collapse
Affiliation(s)
- Sunishtha Mishra
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Anukriti Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Ajeet Singh
- Department of Botany, Government Adarsh Girls College Sheopur, Madhya Pradesh, India
| | | | - Garima Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
6
|
Hu Y, Chen J, Olesen JE, van Groenigen KJ, Hui D, He X, Chen G, Deng Q. Mycorrhizal association controls soil carbon-degrading enzyme activities and soil carbon dynamics under nitrogen addition: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:175008. [PMID: 39053526 DOI: 10.1016/j.scitotenv.2024.175008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Recent evidence suggests that changes in carbon-degrading extracellular enzyme activities (C-EEAs) can help explain soil organic carbon (SOC) dynamics under nitrogen (N) addition. However, the factors controlling C-EEAs remain unclear, impeding the inclusion of microbial mechanisms in global C cycle models. Using meta-analysis, we show that the responses of C-EEAs to N addition were best explained by mycorrhizal association across a wide range of environmental and experimental factors. In ectomycorrhizal (ECM) dominated ecosystems, N addition suppressed C-EEAs targeting the decomposition of structurally complex macromolecules by 13.1 %, and increased SOC stocks by 5.2 %. In contrast, N addition did not affect C-EEAs and SOC stocks in arbuscular mycorrhizal (AM) dominated ecosystems. Our results indicate that earlier studies may have overestimated SOC changes under N addition in AM-dominated ecosystems and underestimated SOC changes in ECM-dominated ecosystems. Incorporating this mycorrhizal-dependent impact of EEAs on SOC dynamics into Earth system models could improve predictions of SOC dynamics under environmental changes.
Collapse
Affiliation(s)
- Yuanliu Hu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China; Department of Agroecology, Aarhus University, 8830 Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, 8830 Tjele, Denmark; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710001 Xi'an, China; Institute of Global Environmental Change, Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Jørgen E Olesen
- Department of Agroecology, Aarhus University, 8830 Tjele, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Xinhua He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Guoyin Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China.
| |
Collapse
|
7
|
Truong C, Gabbarini LA, Moretto A, Escobar JM, Smith ME. Ectomycorrhizal fungi and the nitrogen economy of Nothofagus in southern Patagonia. Ecol Evol 2024; 14:e70299. [PMID: 39355103 PMCID: PMC11439510 DOI: 10.1002/ece3.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Subantarctic Nothofagus forests are the southernmost forests in the world, with negligible atmospheric nitrogen (N) deposition. Most paradigms about the role of ectomycorrhizal (ECM) fungi in N cycling and plant N uptake at high latitudes have been tested in boreal coniferous forests, while in the southern hemisphere, ECM hosts are primarily angiosperms. Using ITS1 meta-barcoding, we characterized ECM and saprotrophic fungal communities in evergreen and deciduous Nothofagus forests forming monodominant and mixed stands in the archipelago of Tierra del Fuego (Chile and Argentina). We assessed the N economy of Nothofagus by correlating host species with fungal relative abundances, edaphic variables, net N mineralization, microbial biomass N and the activity of eight extracellular soil enzymes activities. The N economy of deciduous N. pumilio forests was strikingly similar to boreal coniferous forests, with the lowest inorganic N availability and net N mineralization, in correlation to higher relative abundances of ECM fungi with enzymatic capacity for organic N mobilization (genus Cortinarius). In contrast, the N economy of evergreen N. betuloides forests was predominantly inorganic and correlated with ECM lineages from the family Clavulinaceae, in acidic soils with poor drainage. Grassy understory vegetation in deciduous N. antarctica forests likely promoted saprotrophic fungi (i.e., genus Mortierella) in correlation with higher activities of carbon-degrading enzymes. Differences between Nothofagus hosts did not persist in mixed forests, illustrating the range of soil fertility of these ECM angiosperms and the underlying effects of soil and climate on Nothofagus distribution and N cycling in southern Patagonia.
Collapse
Affiliation(s)
- Camille Truong
- Royal Botanic Gardens Victoria Melbourne Victoria Australia
| | - Luciano A Gabbarini
- Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología de Suelos Universidad Nacional de Quilmes Bernal Argentina
| | - Alicia Moretto
- Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Recursos Naturales y Ambiente Ushuaia Argentina
- Centro Austral de Investigaciones Científicas (CONICET) Ushuaia Argentina
| | - Julio M Escobar
- Centro Austral de Investigaciones Científicas (CONICET) Ushuaia Argentina
| | - Matthew E Smith
- Department of Plant Pathology University of Florida Gainesville Florida USA
| |
Collapse
|
8
|
Alomar N, Bodensteiner BL, Hernández-Rodríguez I, Landestoy MA, Domínguez-Guerrero SF, Muñoz MM. Comparison of Hydric and Thermal Physiology in an Environmentally Diverse Clade of Caribbean Anoles. Integr Comp Biol 2024; 64:377-389. [PMID: 38702856 DOI: 10.1093/icb/icae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the "cybotoid" anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.
Collapse
Affiliation(s)
- Nathalie Alomar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | - Miguel A Landestoy
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic
| | | | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Song W. Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems. MLIFE 2024; 3:387-390. [PMID: 39359683 PMCID: PMC11442127 DOI: 10.1002/mlf2.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Wenchen Song
- College of Life and Environmental Sciences Minzu University of China Beijing China
| |
Collapse
|
10
|
Mo X, Huang Q, Chen C, Xia H, Riaz M, Liang X, Li J, Chen Y, Tan Q, Wu S, Hu C. Characteristics of Rhizosphere Microbiome, Soil Chemical Properties, and Plant Biomass and Nutrients in Citrus reticulata cv. Shatangju Exposed to Increasing Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:2344. [PMID: 39273828 PMCID: PMC11397084 DOI: 10.3390/plants13172344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
The prolonged utilization of copper (Cu)-containing fungicides results in Cu accumulation and affects soil ecological health. Thus, a pot experiment was conducted using Citrus reticulata cv. Shatangju with five Cu levels (38, 108, 178, 318, and 388 mg kg-1) to evaluate the impacts of the soil microbial processes, chemistry properties, and citrus growth. These results revealed that, with the soil Cu levels increased, the soil total Cu (TCu), available Cu (ACu), organic matter (SOM), available potassium (AK), and pH increased while the soil available phosphorus (AP) and alkali-hydrolyzable nitrogen (AN) decreased. Moreover, the soil extracellular enzyme activities related to C and P metabolism decreased while the enzymes related to N metabolism increased, and the expression of soil genes involved in C, N, and P cycling was regulated. Moreover, it was observed that tolerant microorganisms (e.g., p_Proteobacteria, p_Actinobacteria, g_Lysobacter, g_Sphingobium, f_Aspergillaceae, and g_Penicillium) were enriched but sensitive taxa (p_Myxococcota) were suppressed in the citrus rhizosphere. The citrus biomass was mainly positively correlated with soil AN and AP; plant N and P were mainly positively correlated with soil AP, AN, and acid phosphatase (ACP); and plant K was mainly negatively related with soil β-glucosidase (βG) and positively related with the soil fungal Shannon index. The dominant bacterial taxa p_Actinobacteriota presented positively correlated with the plant biomass and plant N, P, and K and was negatively correlated with plant Cu. The dominant fungal taxa p_Ascomycota was positively related to plant Cu but negatively with the plant biomass and plant N, P, and K. Notably, arbuscular mycorrhizal fungi (p_Glomeromycota) were positively related with plant P below soil Cu 108 mg kg-1, and pathogenic fungi (p_Mortierellomycota) was negatively correlated with plant K above soil Cu 178 mg kg-1. These findings provided a new perspective on soil microbes and chemistry properties and the healthy development of the citrus industry at increasing soil Cu levels.
Collapse
Affiliation(s)
- Xiaorong Mo
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qichun Huang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hao Xia
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei 230001, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaomin Liang
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinye Li
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilin Chen
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Yan G, Fan C, Zheng J, Liu G, Yu J, Guo Z, Cao W, Wang L, Wang W, Meng Q, Zhang J, Li Y, Zheng J, Cui X, Wang X, Xu L, Sun Y, Zhang Z, Lü XT, Zhang Y, Shi R, Hao G, Feng Y, He J, Wang Q, Xing Y, Han S. Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests. Nat Commun 2024; 15:5959. [PMID: 39009629 PMCID: PMC11251171 DOI: 10.1038/s41467-024-50423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding the mechanisms controlling forest carbon accumulation is crucial for predicting and mitigating future climate change. Yet, it remains unclear whether the dominance of ectomycorrhizal (EcM) trees influences the carbon accumulation of entire forests. In this study, we analyzed forest inventory data from over 4000 forest plots across Northeast China. We find that EcM tree dominance consistently exerts a positive effect on tree, soil, and forest carbon stocks. Moreover, we observe that these positive effects are more pronounced during unfavorable climate conditions, at lower tree species richness, and during early successional stages. This underscores the potential of increasing the dominance of native EcM tree species not only to enhance carbon stocks but also to bolster resilience against climate change in high-latitude forests. Here we show that forest managers can make informed decisions to optimize carbon accumulation by considering various factors such as mycorrhizal types, climate, successional stages, and species richness.
Collapse
Affiliation(s)
- Guoyong Yan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Chunnan Fan
- School of Forestry, Beihua University, Jilin, 132013, China
| | - Junqiang Zheng
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guancheng Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jinghua Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhongling Guo
- School of Forestry, Beihua University, Jilin, 132013, China
| | - Wei Cao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lihua Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenjie Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Qingfan Meng
- School of Forestry, Beihua University, Jilin, 132013, China
| | - Junhui Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yan Li
- School of Forestry, Beihua University, Jilin, 132013, China
| | - Jinping Zheng
- School of Forestry, Beihua University, Jilin, 132013, China
| | - Xiaoyang Cui
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xiaochun Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lijian Xu
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yan Sun
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Zhi Zhang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Tao Lü
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Rongjiu Shi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guangyou Hao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yue Feng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jinsheng He
- College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Yajuan Xing
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Shijie Han
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
12
|
Jiang Y, Mo XY, Liu LT, Lai GZ, Qiu GW. Changes in the Arbuscular Mycorrhizal Fungal Community in the Roots of Eucalyptus grandis Plantations at Different Ages in Southern Jiangxi, China. J Fungi (Basel) 2024; 10:404. [PMID: 38921389 PMCID: PMC11204516 DOI: 10.3390/jof10060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Eucalyptus roots form symbiotic relationships with arbuscular mycorrhizal (AM) fungi in soil to enhance adaptation in challenging environments. However, the evolution of the AM fungal community along a chronosequence of eucalypt plantations and its relationship with soil properties remain unclear. In this study, we evaluated the tree growth, soil properties, and root AM fungal colonization of Eucalyptus grandis W. Hill ex Maiden plantations at different ages, identified the AM fungal community composition by high-throughput sequencing, and developed a structural equation model among trees, soil, and AM fungi. Key findings include the following: (1) The total phosphorus (P) and total potassium (K) in the soil underwent an initial reduction followed by a rise with different stand ages. (2) The rate of AM colonization decreased first and then increased. (3) The composition of the AM fungal community changed significantly with different stand ages, but there was no significant change in diversity. (4) Paraglomus and Glomus were the dominant genera, accounting for 70.1% and 21.8% of the relative abundance, respectively. (5) The dominant genera were mainly influenced by soil P, the N content, and bulk density, but the main factors were different with stand ages. The results can provide a reference for fertilizer management and microbial formulation manufacture for eucalyptus plantations.
Collapse
Affiliation(s)
- Yao Jiang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (X.-Y.M.)
| | - Xiao-Yong Mo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (X.-Y.M.)
| | - Li-Ting Liu
- Jiangxi Academy of Forestry, Nanchang 330000, China;
| | - Guo-Zhen Lai
- Jiangxi Academy of Forestry, Nanchang 330000, China;
| | - Guo-Wei Qiu
- Jinpenshan Forest Farm, Xinfeng 341600, China;
| |
Collapse
|
13
|
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore JAM, Childs J, Hanson PJ, Iversen CM, Kostka JE. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO 2 in northern peatlands. THE NEW PHYTOLOGIST 2024; 242:1333-1347. [PMID: 38515239 DOI: 10.1111/nph.19690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Duchesneau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Camille E Defrenne
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Caitlin Petro
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Avni Malhotra
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jessica A M Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joanne Childs
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Paul J Hanson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Colleen M Iversen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
14
|
Carteron A, Cantera I, Guerrieri A, Marta S, Bonin A, Ambrosini R, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Cauvy-Fraunié S, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague JJ, Cochachín Rapre JA, Compostella C, Cruz Encarnación R, Dangles O, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Khedim N, Meneses RI, Peyre G, Pittino F, Rabatel A, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Taberlet P, Diolaiuti GA, Poulenard J, Thuiller W, Caccianiga M, Ficetola GF. Dynamics and drivers of mycorrhizal fungi after glacier retreat. THE NEW PHYTOLOGIST 2024; 242:1739-1752. [PMID: 38581206 DOI: 10.1111/nph.19682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/17/2023] [Indexed: 04/08/2024]
Abstract
The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.
Collapse
Affiliation(s)
- Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Université de Toulouse, Ecole d'Ingénieurs de PURPAN, UMR INRAE-INPT DYNAFOR, Toulouse, 31076, France
| | - Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800, Sainte-Hélène-du-Lac, France
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800, Sainte-Hélène-du-Lac, France
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Fabien Anthelme
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, 34398, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, CW76+76, Osorno, Chile
| | | | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, Punjab, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development - School of Social Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India
| | - John J Clague
- Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | | | - Chiara Compostella
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | | | - Olivier Dangles
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 34090, Montpellier, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, 54 Gerald St., Lincoln, 7608, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Frunze, 533, 720033, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126, Milano, Italy
| | - Ludovic Gielly
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, 9006, Norway
| | - Norine Khedim
- Université Savoie Mont Blanc, Université Grenoble Alpes, EDYTEM, F-73000, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, FW6J+RP2, La Paz, Bolivia
- Universidad Católica del Norte, 8HCR+94, Antofagasta, Chile
| | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, 111711, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126, Milano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Antoine Rabatel
- Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), F-38000, Grenoble, France
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Frunze, 533, 720033, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Vitalii Zaginaev
- Mountain Societies Research Institute, University of Central Asia, Toktogula 125/1, 720001, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, 78712, USA
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, 9006, Norway
| | - Guglielmina Adele Diolaiuti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Jerome Poulenard
- Université Savoie Mont Blanc, Université Grenoble Alpes, EDYTEM, F-73000, Chambéry, France
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Universitá degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| |
Collapse
|
15
|
Edwards JD, Krichels AH, Seyfried GS, Dalling J, Kent AD, Yang WH. Soil microbial community response to ectomycorrhizal dominance in diverse neotropical montane forests. MYCORRHIZA 2024; 34:95-105. [PMID: 38183463 PMCID: PMC10998807 DOI: 10.1007/s00572-023-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associated Oreomunnea mexicana (Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of the ITS2 (fungi) and 16S rRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.
Collapse
Affiliation(s)
- Joseph D Edwards
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
| | - Alexander H Krichels
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM, 87102, USA
| | - Georgia S Seyfried
- Department of Forest Ecology and Resource Management, Oregon State University, Corvallis, OR, 97331, USA
| | - James Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Angela D Kent
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Dyshko V, Hilszczańska D, Davydenko K, Matić S, Moser WK, Borowik P, Oszako T. An Overview of Mycorrhiza in Pines: Research, Species, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:506. [PMID: 38498468 PMCID: PMC10891885 DOI: 10.3390/plants13040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
In the latest literature, climate models show that the conditions for pines, spruces, larches, and birches will deteriorate significantly. In Poland, as well as in other European countries, there are already signs of the decline of these species. This review article deals with the symbiotic relationships between fungi and plants, which can hardly be overestimated, using the example of pine trees. These are the oldest known symbiotic relationships, which are of great benefit to both components and can help plants, in particular, survive periods of severe drought and the attack of pathogens on the roots. This article describes symbioses and their causal conditions, as well as the mycorrhizal components of pine trees and their properties; characterizes ectomycorrhizal fungi and their mushroom-forming properties; and provides examples of the cultivation of pure fungal cultures, with particular attention to the specificity of the mycorrhizal structure and its effects on the growth and development of Pinus species. Finally, the role of mycorrhiza in plant protection and pathogen control is described.
Collapse
Affiliation(s)
- Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland;
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Slavica Matić
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - W. Keith Moser
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ 86001, USA;
| | - Piotr Borowik
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| | - Tomasz Oszako
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| |
Collapse
|
17
|
Crockett JL, Hurteau MD. Ability of seedlings to survive heat and drought portends future demographic challenges for five southwestern US conifers. TREE PHYSIOLOGY 2024; 44:tpad136. [PMID: 37935402 DOI: 10.1093/treephys/tpad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. and Picea engelmannii Parry ex Engelm.) changed in response to low moisture availability, high temperatures and high vapor pressure deficit in incubators. We used a Bayesian framework to construct discrete-time proportional hazard models that explained 55-75% of the species-specific survival variability. We applied these to the recent climate (1980-2019) of the southwestern USA as well as 1980-2099 CMIP5 climate projections with the RCP8.5 emissions pathway. We found that the more mesic species (i.e., P. menziesii, A. concolor and P. engelmannii) were more susceptible to the effects of hot and dry periods. However, their existing ranges are not projected to experience the conditions we tested as early in the 21st century as the more xeric P. edulis and P. ponderosa, leading to lower percentages of their existing ranges predicted to experience seedling-killing conditions. By late-century, extensive areas of each species southwestern range could experience climate conditions that increase the likelihood of seedling mortality. These results demonstrate that empirically derived physiological limitations can be used to inform where species composition or vegetation type change are likely to occur in the southwestern USA.
Collapse
Affiliation(s)
- Joseph L Crockett
- Department of Biology, MSC03-20201, University of New Mexico, Albuquerque, NM 87131-0001
| | - Matthew D Hurteau
- Department of Biology, MSC03-20201, University of New Mexico, Albuquerque, NM 87131-0001
| |
Collapse
|
18
|
Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM, Verdú M. Plant canopies promote climatic disequilibrium in Mediterranean recruit communities. Ecol Lett 2024; 27:e14391. [PMID: 38400769 DOI: 10.1111/ele.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2 , across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favour warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
Collapse
Affiliation(s)
- Maria A Perez-Navarro
- CREAF, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Geography, King's College London, London, UK
| | - Francisco Lloret
- CREAF, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Ecology Unit, Universitat Autonoma Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Rafael Molina-Venegas
- Department of Ecology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
- Biodiversity and Global Change Research Center (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio M Alcántara
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Jaén, Jaén, Spain
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Moncada, Spain
| |
Collapse
|
19
|
Hupperts SF, Islam KS, Gundale MJ, Kardol P, Sundqvist MK. Warming influences carbon and nitrogen assimilation between a widespread Ericaceous shrub and root-associated fungi. THE NEW PHYTOLOGIST 2024; 241:1062-1073. [PMID: 37950517 DOI: 10.1111/nph.19384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.
Collapse
Affiliation(s)
- Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Kazi Samiul Islam
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Maja K Sundqvist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| |
Collapse
|
20
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
21
|
Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol Evol 2023; 13:e10565. [PMID: 37753310 PMCID: PMC10518754 DOI: 10.1002/ece3.10565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
Collapse
Affiliation(s)
- Yexu Zheng
- College of ForestryShandong Agricultural UniversityTai'anChina
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Yuan
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| | - Qifang Geng
- College of ForestryShandong Agricultural UniversityTai'anChina
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| |
Collapse
|
22
|
Sun Y, Gao L, Meng X, Huang J, Guo J, Zhou X, Fu G, Xu Y, Firbank LG, Wang M, Ling N, Feng X, Shen Q, Guo S. Large-scale exploration of nitrogen utilization efficiency in Asia region for rice crop: Variation patterns and determinants. GLOBAL CHANGE BIOLOGY 2023; 29:5367-5378. [PMID: 37431724 DOI: 10.1111/gcb.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Improving rice nitrogen utilization efficiency (NUtE) is imperative to maximizing future food productivity while minimizing environmental threats, yet knowledge of its variation and the underlying regulatory factors is still lacking. Here, we integrated a dataset with 21,571 data compiled by available data from peer-reviewed literature and a large-scale field survey to address this knowledge gap. The overall results revealed great variations in rice NUtE, which were mainly associated with human activities, climate conditions, and rice variety. Specifically, N supply rate, temperature, and precipitation were the foremost determinants of rice NUtE, and NUtE responses to climatic change differed among rice varieties. Further prediction highlighted the improved rice NUtE with the increasing latitude or longitude. The indica and hybrid rice exhibited higher NUtE in low latitude regions compared to japonica and inbred rice, respectively. Collectively, our results evaluated the primary drivers of rice NUtE variations and predicted the geographic responses of NUtE in different varieties. Linking the global variations in rice NUtE with environmental factors and geographic adaptability provides valuable agronomic and ecological insights into the regulation of rice NUtE.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing, China
| | - Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xuan Zhou
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Guohai Fu
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Yang Xu
- National Agro-Tech Extension and Service Center, Beijing, China
| | | | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xumeng Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
24
|
Priyashantha AKH, Dai DQ, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. Plant-Fungi Interactions: Where It Goes? BIOLOGY 2023; 12:809. [PMID: 37372094 PMCID: PMC10295453 DOI: 10.3390/biology12060809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Fungi live different lifestyles-including pathogenic and symbiotic-by interacting with living plants. Recently, there has been a substantial increase in the study of phytopathogenic fungi and their interactions with plants. Symbiotic relationships with plants appear to be lagging behind, although progressive. Phytopathogenic fungi cause diseases in plants and put pressure on survival. Plants fight back against such pathogens through complicated self-defense mechanisms. However, phytopathogenic fungi develop virulent responses to overcome plant defense reactions, thus continuing their deteriorative impacts. Symbiotic relationships positively influence both plants and fungi. More interestingly, they also help plants protect themselves from pathogens. In light of the nonstop discovery of novel fungi and their strains, it is imperative to pay more attention to plant-fungi interactions. Both plants and fungi are responsive to environmental changes, therefore construction of their interaction effects has emerged as a new field of study. In this review, we first attempt to highlight the evolutionary aspect of plant-fungi interactions, then the mechanism of plants to avoid the negative impact of pathogenic fungi, and fungal strategies to overcome the plant defensive responses once they have been invaded, and finally the changes of such interactions under the different environmental conditions.
Collapse
Affiliation(s)
- A. K. Hasith Priyashantha
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Biology Division, Vishnugupta Vishwavidyapeetam, Gokarna 581326, India
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
25
|
Mafune KK, Vogt DJ, Vogt KA, Cline EC, Godfrey BJ, Bunn RA, Meade AJS. Old-growth Acer macrophyllum trees host a unique suite of arbuscular mycorrhizal fungi and other root-associated fungal taxa in their canopy soil environment. Mycologia 2023:1-14. [PMID: 37262388 DOI: 10.1080/00275514.2023.2206930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Canopy soils occur on tree branches throughout the temperate rainforests of the Pacific Northwest Coast and are recognized as a defining characteristic of these ecosystems. Certain tree species extend adventitious roots into these canopy soil environments. Yet, research on adventitious root-associated fungi remains limited. Our study used microscopy to compare fungal colonization intensity between canopy and forest floor roots of old-growth bigleaf maple (Acer macrophyllum) trees. Subsequently, two high-throughput sequencing platforms were used to explore the spatial and seasonal variation of root-associated fungi between the two soil environments over one year. We found that canopy and forest floor roots had similar colonization intensity and were associating with a diversity of arbuscular mycorrhizal fungi and other potential symbionts, many of which were resolved to species level. Soil environment and seasonality affected root-associated fungal community composition, and several fungal species were indicative of the canopy soil environment. In Washington State's (USA) temperate old-growth rainforests, these canopy soil environments host a unique suite of root-associated fungi. The presence of arbuscular mycorrhizae provides further evidence that adventitious roots form fungal associations to exploit canopy soils for resources, and there may be novel relationships forming with other fungi. These soils may be providing a redundancy compartment (i.e., "nutrient reserve"), imparting a resiliency to disturbances for certain old-growth trees.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98105
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98105
| | - Daniel J Vogt
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98105
| | - Kristiina A Vogt
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98105
| | - E C Cline
- Division of Sciences and Mathematics, University of Washington, Tacoma, Washington, 98402
| | - Bruce J Godfrey
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98105
| | - Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, Bellingham, Washington, 98225
| | - Alec J S Meade
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98105
| |
Collapse
|
26
|
Wu SW, Shi ZY, Huang M, Yang S, Yang WY, Li YJ. Influence of Mycorrhiza on C:N:P Stoichiometry in Senesced Leaves. J Fungi (Basel) 2023; 9:jof9050588. [PMID: 37233299 DOI: 10.3390/jof9050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Senesced leaves play a vital role in nutrient cycles in the terrestrial ecosystem. The carbon (C), nitrogen (N) and phosphorus (P) stoichiometries in senesced leaves have been reported, which are influenced by biotic and abiotic factors, such as climate variables and plant functional groups. It is well known that mycorrhizal types are one of the most important functional characteristics of plants that affect leaf C:N:P stoichiometry. While green leaves' traits have been widely reported based on the different mycorrhiza types, the senesced leaves' C:N:P stoichiometries among mycorrhizal types are rarely investigated. Here, the patterns in senesced leaves' C:N:P stoichiometry among plants associated with arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), or AM + ECM fungi were explored. Overall, the senesced leaves' C, with 446.8 mg/g in AM plants, was significantly lower than that in AM + ECM and ECM species, being 493.1 and 501.4 mg/g, respectively, which was mainly caused by boreal biomes. The 8.9 mg/g senesced leaves' N in ECM plants was significantly lower than in AM (10.4 mg/g) or AM + ECM taxa (10.9 mg/g). Meanwhile, the senesced leaves' P presented no difference in plant associations with AM, AM + ECM and ECM. The senesced leaves' C and N presented contrary trends with the changes in mean annual temperature (MAT) and mean annual precipitation (MAP) in ECM or AM + ECM plants. The differences in senesced leaves' C and N may be more easily influenced by the plant mycorrhizal types, but not P and stoichiometric ratios of C, N and P. Our results suggest that senesced leaves' C:N:P stoichiometries depend on mycorrhizal types, which supports the hypothesis that mycorrhizal type is linked to the evolution of carbon-nutrient cycle interactions in the ecosystem.
Collapse
Affiliation(s)
- Shan-Wei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Zhao-Yong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Ming Huang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Wen-Ya Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - You-Jun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
27
|
McNichol BH, Russo SE. Plant Species' Capacity for Range Shifts at the Habitat and Geographic Scales: A Trade-Off-Based Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:1248. [PMID: 36986935 PMCID: PMC10056461 DOI: 10.3390/plants12061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Climate change is causing rapid shifts in the abiotic and biotic environmental conditions experienced by plant populations, but we lack generalizable frameworks for predicting the consequences for species. These changes may cause individuals to become poorly matched to their environments, potentially inducing shifts in the distributions of populations and altering species' habitat and geographic ranges. We present a trade-off-based framework for understanding and predicting whether plant species may undergo range shifts, based on ecological strategies defined by functional trait variation. We define a species' capacity for undergoing range shifts as the product of its colonization ability and the ability to express a phenotype well-suited to the environment across life stages (phenotype-environment matching), which are both strongly influenced by a species' ecological strategy and unavoidable trade-offs in function. While numerous strategies may be successful in an environment, severe phenotype-environment mismatches result in habitat filtering: propagules reach a site but cannot establish there. Operating within individuals and populations, these processes will affect species' habitat ranges at small scales, and aggregated across populations, will determine whether species track climatic changes and undergo geographic range shifts. This trade-off-based framework can provide a conceptual basis for species distribution models that are generalizable across plant species, aiding in the prediction of shifts in plant species' ranges in response to climate change.
Collapse
Affiliation(s)
- Bailey H. McNichol
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
- Center for Plant Science Innovation, University of Nebraska–Lincoln, 1901 Vine Street, N300 Beadle Center, Lincoln, NE 68588-0118, USA
| |
Collapse
|
28
|
Lawrence A, Beierkuhnlein C. Detecting low fragmented sites surrounding European protected areas - implications for expansion of the Natura 2000 network. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Magnoli SM, Keller KR, Lau JA. Mutualisms in a warming world: How increased temperatures affect the outcomes of multi-mutualist interactions. Ecology 2023; 104:e3955. [PMID: 36509698 DOI: 10.1002/ecy.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
In nature, plant species simultaneously interact with many different mutualistic partners. These mutualists may influence one another through direct interference or indirectly by competing for shared reward resources or through alteration of plant traits. Together, these mutualists also may combine to affect plant hosts in ways that may not be predictable based on pairwise interactions. Given that the outcome of mutualistic interactions often depends on environmental conditions, multi-mutualist effects on one another, and their plant hosts may be affected by global changes. Here, we grew focal plants under simulated global warming conditions and manipulated the presence of partner mutualists to test how warming affects the outcome of interactions between focal plants and their partners (nitrogen-fixing rhizobia, ant defenders, and pollinators) and interactions among these partner mutualists. We find that warming alters the fitness benefits plants receive from rhizobium resource mutualists but not ant mutualists and that warming altered plant investment in all mutualists. We also find that mutualist partners interact, often by altering the availability of plant-produced rewards that facilitate interactions with other partners. Our work illustrates that global changes may affect some but not all mutualisms, often asymmetrically (e.g., affecting investment in the mutualist partner but not plant host benefits) and also highlights the ubiquity of interactions between the multiple mutualists associating with a shared host.
Collapse
Affiliation(s)
- Susan M Magnoli
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Kane R Keller
- Department of Biology, California State University Bakersfield, Bakersfield, California, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
30
|
Duarte AG, Maherali H. Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present. Symbiosis 2023. [DOI: 10.1007/s13199-023-00906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Jia X, Wang Y, Zhao J, Gao Y, Zhang C, Feng X, Ding X. Effect of Glomus mosseae, cadmium, and elevated air temperature on main flavonoids and phenolic acids contents in alfalfa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44819-44832. [PMID: 36697987 DOI: 10.1007/s11356-023-25506-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Global warming and heavy metal-contaminated soils co-occur in natural ecosystems. Flavonoids and phenolic acids in plants have significant antioxidant activity and free radical scavenging ability, which can quickly increase under adverse environments. Arbuscular mycorrhizal fungi (AMF) colonization can affect the synthesis of flavonoids and phenolic acids in host plants. This study focused on the main effect of Glomus mosseae, cadmium (Cd, 8 mg kg-1 dry soils), and elevated temperature (ET, + 3 °C) on main flavonoids and phenolic acids in 120-d Medicago sativa L. (alfalfa). Elevated temperature decreased G. mosseae colonization ratio by 49.5% under Cd exposure. Except for p-hydroxybenzoic acid, flavonoids and phenolic acids content in shoots increased (p < 0.05) under G. mosseae + Cd relative to Cd only. G. mosseae and Cd showed significant effects on rutin, quercetin, apigenin, liquiritigenin, gallic acid, p-hydroxybenzoic acid, p-coumaric acid, and ferulic acid, and G. mosseae colonization led to increases in these compounds by 41.7%, 35.4%, 32.2%, 267.8%, 84.7%, 33.5%, 102.8%, and 89.4%, respectively, under ET + Cd. Carbon, N, and Cd in alfalfa and G. mosseae colonization rate were significant factors on flavonoids and phenolic acids accumulation. Additionally, P content in shoots significantly influenced flavonoids content. G. mosseae inoculation significantly stimulated the synthesis of main flavonoids and phenolic acids in alfalfa shoots under ET + Cd, which was helpful to understand the regulation of AMF on non-enzyme antioxidant system of plants grown in heavy metal-contaminated soils under global change scenarios.
Collapse
Affiliation(s)
- Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China.
| | - Yunjie Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Jiamin Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Yunfeng Gao
- School of Land Engineering, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Chunyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Xiaojuan Feng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Xiaoyi Ding
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| |
Collapse
|
32
|
Carrell AA, Hicks BB, Sidelinger E, Johnston ER, Jawdy SS, Clark MM, Klingeman DM, Cregger MA. Nitrogen addition alters soil fungal communities, but root fungal communities are resistant to change. Front Microbiol 2023; 13:1033631. [PMID: 36762095 PMCID: PMC9905728 DOI: 10.3389/fmicb.2022.1033631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Plants are colonized by numerous microorganisms serving important symbiotic functions that are vital to plant growth and success. Understanding and harnessing these interactions will be useful in both managed and natural ecosystems faced with global change, but it is still unclear how variation in environmental conditions and soils influence the trajectory of these interactions. In this study, we examine how nitrogen addition alters plant-fungal interactions within two species of Populus - Populus deltoides and P. trichocarpa. In this experiment, we manipulated plant host, starting soil (native vs. away for each tree species), and nitrogen addition in a fully factorial replicated design. After ~10 weeks of growth, we destructively harvested the plants and characterized plant growth factors and the soil and root endosphere fungal communities using targeted amplicon sequencing of the ITS2 gene region. Overall, we found nitrogen addition altered plant growth factors, e.g., plant height, chlorophyll density, and plant N content. Interestingly, nitrogen addition resulted in a lower fungal alpha diversity in soils but not plant roots. Further, there was an interactive effect of tree species, soil origin, and nitrogen addition on soil fungal community composition. Starting soils collected from Oregon and West Virginia were dominated by the ectomycorrhizal fungi Inocybe (55.8% relative abundance), but interestingly when P. deltoides was grown in its native West Virginia soil, the roots selected for a high abundance of the arbuscular mycorrhizal fungi, Rhizophagus. These results highlight the importance of soil origin and plant species on establishing plant-fungal interactions.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brittany B. Hicks
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emilie Sidelinger
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Eric R. Johnston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miranda M. Clark
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States,*Correspondence: Melissa A. Cregger ✉
| |
Collapse
|
33
|
Jiang Q, Lin C, Guo R, Xiong D, Yao X, Wang X, Chen T, Jia L, Wu D, Fan A, Chen G, Yang Y. Root nitrogen uptake capacity of Chinese fir enhanced by warming and nitrogen addition. TREE PHYSIOLOGY 2023; 43:31-46. [PMID: 36049081 DOI: 10.1093/treephys/tpac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
There is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C) × N addition (ambient, +40 kg N ha-1 yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100 μmol (V100,20 °C-NO3-) in spring. (ii) The analysis of covariance showed that Vmax,20 °C-NH4+ was positively correlated with root mycorrhizal colonization rate (MCR) and V100,20 °C-NO3- was positively correlated with specific root respiration rate (SRR), whereas no N uptake kinetic parameter was correlated with specific root length, root N and non-structural carbon concentrations. Thus, our results demonstrate that warming-increased root NH4+ uptake might be related to warming-increased MCR, whereas warming-increased root NO3- uptake might be related to warming-increased SRR. We conclude that root NH4+ and NO3- uptake capacity of subtropical Chinese fir can be elevated under warming and N deposition, which could improve plantation productivity and mitigate N leaching loss and soil acidification.
Collapse
Affiliation(s)
- Qi Jiang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chengfang Lin
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Runquan Guo
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Decheng Xiong
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiaodong Yao
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiaohong Wang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Tingting Chen
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Linqiao Jia
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Dongmei Wu
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ailian Fan
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Guangshui Chen
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yusheng Yang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
34
|
Lee JE, Eom AH. Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla. MYCOBIOLOGY 2023; 50:448-456. [PMID: 36721785 PMCID: PMC9848229 DOI: 10.1080/12298093.2022.2161974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
In this study, the roots and rhizosphere soil of Abies koreana and Taxus cuspidata were collected from sites at two different altitudes on Mt. Halla. Ectomycorrhizal fungi (EMF) were identified by Illumina MiSeq sequencing. The proportion of EMF from the roots was 89% in A. koreana and 69% in T. cuspidata. Among EMF in rhizosphere soils, the genus Russula was the most abundant in roots of A. koreana (p < 0.05). The altitude did not affect the biodiversity of EMF communities but influenced fungal community composition. However, the host plants had the most significant effect on EMF communities. The result of the EMF community analysis showed that even if the EMF were isolated from the same altitudes, the EMF communities differed according to the host plant. The community similarity index of EMF in the roots of A. koreana was higher than that of T. cuspidata (p < 0.05). The results show that both altitude and host plants influenced the structure of EMF communities. Conifers inhabiting harsh sub-alpine environments rely strongly on symbiotic relationships with EMF. A. koreana is an endangered species with a higher host specificity of EMF and climate change vulnerability than T. cuspidata. This study provides insights into the EMF communities, which are symbionts of A. koreana, and our critical findings may be used to restore A. koreana.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biology Education, Korea National University of Education, Cheongju, South Korea
| | - Ahn-Heum Eom
- Department of Biology Education, Korea National University of Education, Cheongju, South Korea
| |
Collapse
|
35
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
36
|
Changes of Arbuscular Mycorrhizal Fungal Community and Glomalin in the Rhizosphere along the Distribution Gradient of Zonal Stipa Populations across the Arid and Semiarid Steppe. Microbiol Spectr 2022; 10:e0148922. [PMID: 36214678 PMCID: PMC9602637 DOI: 10.1128/spectrum.01489-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been reported to have a wide distribution in terrestrial ecosystems and to play a vital role in ecosystem functioning and symbiosis with Stipa grasses. However, exactly how AMF communities in the rhizosphere change and are distributed along different Stipa population with substituted distribution and their relationships remain unclear. Here, the changes and distribution of the rhizosphere AMF communities and their associations between hosts and the dynamic differences in the glomalin-related soil protein (GRSP) in the rhizosphere soil of seven Stipa species with spatial substitution distribution characteristics in arid and semiarid grasslands were investigated. Along with the substituted distribution of the Stipa populations, the community structures, taxa, species numbers, and alpha diversity index values of AMF in the rhizosphere changed. Some AMF taxa appeared only in certain Stipa species, but there was no obvious AMF taxon turnover. When the Stipa baicalensis population was replaced by the Stipa gobica population, the GRSP tended to decline, whereas the carbon contribution of the GRSP tended to increase. Stipa grandis and Stipa krylovii had a great degree of network modularity of the rhizosphere AMF community and exhibited a simple and unstable network structure, while the networks of Stipa breviflora were complex, compact, and highly stable. Furthermore, with the succession of zonal populations, the plant species, vegetation coverage, and climate gradient facilitated the differentiation of AMF community structures and quantities in the rhizospheres of different Stipa species. These findings present novel insights into ecosystem functioning and dynamics correlated with changing environments. IMPORTANCE This study fills a gap in our understanding of the soil arbuscular mycorrhizal fungal community distribution, community composition changes, and diversity of Stipa species along different Stipa population substitution distributions and of their adaptive relationships; furthermore, the differences in the glomalin-related soil protein (GRSP) contents in the rhizospheres of different Stipa species and GRSP's contribution to the grassland organic carbon pool were investigated. These findings provide a theoretical basis for the protection and utilization of regional biodiversity resources and sustainable ecosystem development.
Collapse
|
37
|
Marčiulynienė D, Marčiulynas A, Mishcherikova V, Lynikienė J, Gedminas A, Franic I, Menkis A. Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. J Fungi (Basel) 2022; 8:1112. [PMID: 36294677 PMCID: PMC9604598 DOI: 10.3390/jof8101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
The plant- and soil-associated microbial communities are critical to plant health and their resilience to stressors, such as drought, pathogens, and pest outbreaks. A better understanding of the structure of microbial communities and how they are affected by different environmental factors is needed to predict and manage ecosystem responses to climate change. In this study, we carried out a country-wide analysis of fungal communities associated with Pinus sylvestris growing under different environmental conditions. Needle, shoot, root, mineral, and organic soil samples were collected at 30 sites. By interconnecting the high-throughput sequencing data, environmental variables, and soil chemical properties, we were able to identify key factors that drive the diversity and composition of fungal communities associated with P. sylvestris. The fungal species richness and community composition were also found to be highly dependent on the site and the substrate they colonize. The results demonstrated that different functional tissues and the rhizosphere soil of P. sylvestris are associated with diverse fungal communities, which are driven by a combination of climatic (temperature and precipitation) and edaphic factors (soil pH), and stand characteristics.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Iva Franic
- Department of Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden;
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
38
|
Merino‐Martín L, Hernández‐Cáceres D, Reverchon F, Angeles‐Alvarez G, Zhang G, Dunoyer de Segonzac D, Dezette D, Stokes A. Habitat partitioning of soil microbial communities along an elevation gradient: from plant root to landscape scale. OIKOS 2022. [DOI: 10.1111/oik.09034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis Merino‐Martín
- Depto de Biología y Geología, Física y Química inorgánica, ESCET, Univ. Rey Juan Carlos Madrid Spain
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3 Montpellier France
| | | | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Inst. de Ecología, A.C. Pátzcuaro Michoacán México
| | | | - Guangqi Zhang
- Univ. Montpellier, AMAP, INRAE, CIRAD, CNRS, IRD Montpellier France
| | | | - Damien Dezette
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro Montpellier France
| | - Alexia Stokes
- Univ. Montpellier, AMAP, INRAE, CIRAD, CNRS, IRD Montpellier France
| |
Collapse
|
39
|
Ward EB, Duguid MC, Kuebbing SE, Lendemer JC, Bradford MA. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. THE NEW PHYTOLOGIST 2022; 235:1701-1718. [PMID: 35704030 DOI: 10.1111/nph.18307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- The New York Botanical Garden, The Bronx, NY, 10458, USA
| | - Marlyse C Duguid
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sara E Kuebbing
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
40
|
Arbuscular mycorrhizal fungi community in soils under desertification and restoration in the Brazilian semiarid. Microbiol Res 2022; 264:127161. [DOI: 10.1016/j.micres.2022.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|
41
|
Allsup CM, Lankau RA, Paige KN. Herbivory and Soil Water Availability Induce Changes in Arbuscular Mycorrhizal Fungal Abundance and Composition. MICROBIAL ECOLOGY 2022; 84:141-152. [PMID: 34432103 DOI: 10.1007/s00248-021-01835-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
We tested the prediction that abundance and composition of arbuscular mycorrhizal fungi (AMF) in Ipomopsis aggregata roots and soils are influenced by ungulate herbivory and drought conditions by examining the effects in a field setting over two years. We used a multi-metric approach to quantify AMF root colonization, AMF reproduction, and AMF community composition in roots and soils. We incorporated complimentary community characterization assays by morphologically identifying spores from trap cultures and the use of terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Herbivory caused a twofold increase in spore production, an increase in AMF taxa diversity in roots, and a shift in AMF species composition in rhizosphere soils. The impact of herbivory was dependent on water availability, which differed in the two contrasting years. This study demonstrates that both soil water availability and herbivory shape arbuscular mycorrhizal fungi communities. The changes to mycorrhizal communities may help in understanding mycorrhizal function in changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Ecology, Evolution and Conservation Biology, School of Integrative Biology, University of Illinois, Urbana, IL, 61801, USA.
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ken N Paige
- Program in Ecology, Evolution and Conservation Biology, School of Integrative Biology, University of Illinois, Urbana, IL, 61801, USA
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
42
|
Bennett AE, Groten K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:649-672. [PMID: 35216519 DOI: 10.1146/annurev-arplant-102820-124504] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant-AM fungal interaction across disciplines.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA;
| | - Karin Groten
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
43
|
Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. GLOBAL CHANGE BIOLOGY 2022; 28:3441-3458. [PMID: 35253326 DOI: 10.1111/gcb.16155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0-10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10-20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.
Collapse
Affiliation(s)
- Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | - Derek Peršoh
- Department of Geobotany, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
44
|
Yan G, Wang Q, Han S, Guo Z, Yu J, Wang W, Fan C, Cao W, Wang L, Xing Y, Zhang Z. Beneficial effects of warming on temperate tree carbon storage depend on precipitation and mycorrhizal types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153086. [PMID: 35038543 DOI: 10.1016/j.scitotenv.2022.153086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Despite evidence from multiple observation data sets and numerical model simulations that interactions between biotic and abiotic factors control tree carbon (C) storage in the Northern Hemisphere, it remains unclear whether the effect of one factor will be altered by other factors. Here, we used forest inventory data consisting of more than 500,000 trees from 1910 plots to explore the relative importance of these drivers of plant C storage in northeast China. We found that tree C storage was significantly positively associated with mean annual temperature (MAT). After controlling for the role of mean annual precipitation (MAP), directionality in the tree C storage-MAT relationship reversed, indicating that the direction of MAT affecting tree C storage depends on MAP. Accounting for the effects of tree-fungal symbioses on plant resistance to drought and warming, we found that warming increased AM tree C storage even after controlling the role of MAP, but decreased EcM tree C storage after controlling the role of MAP. Our analysis also shows that species richness, especially the relative richness of AM tree species, had a significantly positive relationship with all types of tree C storage. Our findings have implications for improving temperate forest C sink and afforestation strategies: the increasing richness of AM trees has the potential to enhance the tree C sink and reduce the sensitivity of warming-induced tree growth benefits to changes in precipitation.
Collapse
Affiliation(s)
- Guoyong Yan
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Shijie Han
- School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhongling Guo
- School of Forestry, Beihua University, Jilin 132013, China
| | - Jinghua Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenjie Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chunnan Fan
- School of Forestry, Beihua University, Jilin 132013, China
| | - Wei Cao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lihua Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yajuan Xing
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Zhi Zhang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
45
|
Xing L, Zhi Q, Hu X, Liu L, Xu H, Zhou T, Yin H, Yi Z, Li J. Influence of Association Network Properties and Ecological Assembly of the Foliar Fugal Community on Crop Quality. Front Microbiol 2022; 13:783923. [PMID: 35479639 PMCID: PMC9037085 DOI: 10.3389/fmicb.2022.783923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Revealing community assembly and their impacts on ecosystem service is a core issue in microbial ecology. However, what ecological factors play dominant roles in phyllosphere fungal community assembly and how they link to crop quality are largely unknown. Here, we applied internal transcriptional spacer high-throughput sequencing to investigate foliar fungal community assembly across three cultivars of a Solanaceae crop (tobacco) and two planting regions with different climatic conditions. Network analyses were used to reveal the pattern in foliar fungal co-occurrence, and phylogenetic null model analysis was used to elucidate the ecological assembly of foliar fungal communities. We found that the sensory quality of crop leaves and the composition of foliar fungal community varied significantly across planting regions and cultivars. In Guangcun (GC), a region with relatively high humidity and low precipitation, there was a higher diversity and more unique fungal species than the region of Wuzhishan (WZS). Further, we found that the association network of foliar fungal communities in GC was more complex than that in WZS, and the network properties were closely related to the sensory quality of crop. Finally, the results of the phylogenetic analyses show that the stochastic processes played important roles in the foliar fungal community assembly, and their relative importance was significantly correlated with the sensory quality of crop leaves, which implies that ecological assembly processes could affect crop quality. Taken together, our results highlight that climatic conditions, and plant cultivars play key roles in the assembly of foliar fungal communities and crop quality, which enhances our understanding of the connections between the phyllosphere microbiome and ecosystem services, especially in agricultural production.
Collapse
Affiliation(s)
- Lei Xing
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xi Hu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Lulu Liu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Heng Xu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Ting Zhou
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
46
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
47
|
Delavaux CS, Ramos RJ, Sturmer SL, Bever JD. Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. MYCORRHIZA 2022; 32:145-153. [PMID: 35099622 PMCID: PMC8907093 DOI: 10.1007/s00572-022-01068-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, and Acaulospora sp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade.
Collapse
Affiliation(s)
- Camille S Delavaux
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA.
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Robert J Ramos
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Sidney L Sturmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, R. Antônio da Veiga 140Santa Catarina, Blumenau, 89030-903, Brazil
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
48
|
Khan NF, Reshi ZA. Diversity of root-associated mycobiome of Betula utilis D. Don: a treeline species in Kashmir Himalaya. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Xu X, Qiu Y, Zhang K, Yang F, Chen M, Luo X, Yan X, Wang P, Zhang Y, Chen H, Guo H, Jiang L, Hu S. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. GLOBAL CHANGE BIOLOGY 2022; 28:1147-1161. [PMID: 34668627 DOI: 10.1111/gcb.15945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) significantly contribute to plant resource acquisition and play important roles in mediating plant interactions and soil carbon (C) dynamics. However, it remains unclear how AMF communities respond to climate change. We assessed impacts of warming and precipitation alterations (30% increase or decrease) on soil AMF communities, and examined major ecological processes shaping the AMF community assemblage in a Tibetan alpine meadow. Our results showed that warming significantly increased root biomass, and available nitrogen (N) and phosphorus (P) in soil. While precipitation alterations increased AMF abundances, they did not significantly affect the composition or diversity of AMF communities. In contrast, warming altered the composition of AMF communities and reduced their Shannon-Wiener index and Pielou's evenness. In particular, warming shifted the AMF community composition in favor of Diversisporaceae over Glomeraceae, likely through its impact on soil N and P availability. In addition, AMF communities were phylogenetically random in the unwarmed control but clustered in warming plots, implying more deterministic community assembly under climate warming. Warming enhancement of root growth, N and P availability likely reduced plant C-allocation to AMF, imposing stronger environmental filtering on AMF communities. We further proposed a conceptual framework that integrates biological and geochemical processes into a mechanistic understanding of warming and precipitation changes' effects on AMF. Taken together, these results suggest that soil AMF communities may be more sensitive to warming than expected, highlighting the need to monitor their community structure and associated functional consequences on plant communities and soil C dynamics under the future warmer climate.
Collapse
Affiliation(s)
- Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fei Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xi Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
50
|
Wang L, Jia X, Zhao Y, Zhang C, Zhao J. Effect of arbuscular mycorrhizal fungi in roots on antioxidant enzyme activity in leaves of Robinia pseudoacacia L. seedlings under elevated CO 2 and Cd exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118652. [PMID: 34890743 DOI: 10.1016/j.envpol.2021.118652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are easily influenced by increasing atmospheric CO2 concentration and heavy metals including cadmium (Cd), which can regulate antioxidant enzyme in host plants. Although the effect of AMF under individual conditions such as elevated CO2 (ECO2) and Cd on antioxidant enzyme in host plants has been reported widely, the effect of AMF under ECO2 + Cd receives little attention. In this study, a pot experiment was conducted to study the effect of AMF community in roots on superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities in leaves of 135-d Robinia pseudoacacia L. seedlings under ECO2 + Cd. The activities of SOD and CAT increased and POD activity and the richness and diversity of AMF community decreased under ECO2 + Cd relative to Cd alone. The richness and diversity of AMF were negatively related to Cd content in roots and leaves. The richness and OTUs of AMF community positively and AMF gene abundance negatively affected POD activity under the combined treatments. Superoxide dismutase and POD activities were negatively and positively related to Archaeospora and Scutellospora, respectively, under ECO2 + Cd. Cadmium in roots and leaves was negatively and significantly related to Glomus, Scutellospora, and Claroideoglomus abundance under ECO2 + Cd. Overall, AMF diversity and Archaeospora and Scutellospora in roots significantly influenced SOD, POD, and CAT activities. The response of AM symbiosis to ECO2 might regulate antioxidant capacity in host plants upon Cd exposure. Glomus, Scutellospora, and Claroideoglomus might be applied to phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Yonghua Zhao
- School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - ChunYan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Jiamin Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|