1
|
Liu Y, Li W, Chen Y, Wang X. Anti-CD3 monoclonal antibodies in treatment of type 1 diabetes: a systematic review and meta-analysis. Endocrine 2024; 83:322-329. [PMID: 37658243 DOI: 10.1007/s12020-023-03499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
PURPOSE This meta-analysis aimed to assess the efficacy and safety of anti-CD3 monoclonal antibodies (mAbs) for type 1 diabetes. METHODS We searched PubMed, Embase and Cochrane until 23 February 2023 for randomized controlled trials that compared anti-CD3 mAbs with placebo in type 1 diabetes. The primary outcome was the area under the curve (AUC) of C-peptide, daily insulin dose or HbA1c. RESULTS Totally 12 trials that included 1870 participants were eligible for inclusion in the review. Compared with the control group, anti-CD3 mAbs increased AUC of C-peptide at 1 year (P = 0.0005, MD 0.14, 95% CI [0.06, 0.22], I2 = 94%), and 2 years (P = 0.0003, MD 0.20, 95% CI [0.09, 0.30], I2 = 88%). The use of anti-CD3 mAbs decreased insulin use at 1 year (P = 0.001, MD -0.09, 95% CI [-0.15, -0.04], I2 = 90%), and 2 years (P < 0.00001, MD -0.18, 95% CI [-0.25, -0.12], I2 = 86%). But there was no statistically significant effect on HbA1c levels. Vomiting, nausea, rash, pyrexia and headache were reported more frequently with anti-CD3 mAbs than with placebo. However, incidence of total adverse events and serious adverse events was similar when comparing anti-CD3 mAbs with placebo. CONCLUSIONS Our results suggest that anti-CD3 mAbs were a potential therapy for improving AUC of C-peptide and insulin use in type 1 diabetes.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixia Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Wang
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Ashraf MT, Ahmed Rizvi SH, Kashif MAB, Shakeel Khan MK, Ahmed SH, Asghar MS. Efficacy of anti-CD3 monoclonal antibodies in delaying the progression of recent-onset type 1 diabetes mellitus: A systematic review, meta-analyses and meta-regression. Diabetes Obes Metab 2023; 25:3377-3389. [PMID: 37580969 DOI: 10.1111/dom.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/16/2023]
Abstract
AIM Type 1 diabetes mellitus is widely recognized as a chronic autoimmune disease characterized by the pathogenic destruction of beta cells, resulting in the loss of endogenous insulin production. Insulin administration remains the primary therapy for symptomatic treatment. Recent studies showed that disease-modifying agents, such as anti-CD3 monoclonal antibodies, have shown promising outcomes in improving the management of the disease. In late 2022, teplizumab received approval from the US Food and Drug Administration (FDA) as the first disease-modifying agent for the treatment of type 1 diabetes. This review aims to evaluate the clinical evidence regarding the efficacy of anti-CD3 monoclonal antibodies in the prevention and treatment of type 1 diabetes. METHODS A comprehensive search of PubMed, Google Scholar, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) was conducted up to December 2022 to identify relevant randomized controlled trials. Meta-analysis was performed using a random-effects model, and odds ratios with 95% confidence intervals (CIs) were calculated to quantify the effects. The Cochrane risk of bias tool was employed for quality assessment. RESULTS In total, 11 randomized controlled trials involving 1397 participants (908 participants in the intervention arm, 489 participants in the control arm) were included in this review. The mean age of participants was 15 years, and the mean follow-up time was 2.04 years. Teplizumab was the most commonly studied intervention. Compared with placebo, anti-CD3 monoclonal antibody treatment significantly increased the C-peptide concentration in the area under the curve at shorter timeframes (mean difference = 0.114, 95% CI: 0.069 to 0.159, p = .000). Furthermore, anti-CD3 monoclonal antibodies significantly reduced the patients' insulin intake across all timeframes (mean difference = -0.123, 95% CI: -0.151 to -0.094, p < .001). However, no significant effect on glycated haemoglobin concentration was observed. CONCLUSION The findings of this review suggest that anti-CD3 monoclonal antibody treatment increases endogenous insulin production and improves the lifestyle of patients by reducing insulin dosage. Future studies should consider the limitations, including sample size, heterogeneity and duration of follow-up, to validate the generalizability of these findings further.
Collapse
Affiliation(s)
- Muhammad Talal Ashraf
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | - Syed Hassan Ahmed
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
3
|
Morita M, Mizui M, Masuyama S, Tsokos GC, Isaka Y. Reduction of Cell Surface T-Cell Receptor by Non-Mitogenic CD3 Antibody to Mitigate Murine Lupus. Front Immunol 2022; 13:855812. [PMID: 35419004 PMCID: PMC8995471 DOI: 10.3389/fimmu.2022.855812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
T-cells are critically involved in the pathogenesis of systemic lupus erythematosus. Although treatment with the anti-CD3 antibody has been reported to be effective in several autoimmune disease animal models including lupus, the immunosuppressive mechanisms remain obscure because of its pleiotropic in vivo kinetics. In this study, a conventional anti-CD3 (2C11C) and a non-mitogenic anti-CD3 with a manipulated Fc region (2C11S) were compared to elucidate the underlying mechanism of action. The efficacy and safety of 2C11S in vivo were demonstrated by sustained TCR reduction for a longer period as compared to 2C11C and no induction of cytokine release or T-cell depletion. Anti-CD3s were administered to NZB/W F1 (BWF1) mice at different time points for individual periods. The short-term treatment with 2C11S in the early phase of lupus suppressed the autoantibody associated with the reduction of germinal center B-cells. Treatment in the late phase attenuated lupus nephritis without affecting autoantibodies or differentiation of effector T-cells. The effect of reduced TCR in the development of autoimmunity was examined by CD3ζ heterozygous-deficient mice, in which T-cells had reduced TCR intensity but showed normal TCR signaling response. Autoantibody and lupus nephritis were attenuated significantly in CD3ζ heterozygous-deficient lupus-prone mice. Collectively, the reduction of surface TCR by non-mitogenic anti-CD3 could sufficiently suppress the development of lupus.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
4
|
Mignogna C, Maddaloni E, D'Onofrio L, Buzzetti R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin Investig Drugs 2021; 30:1209-1219. [PMID: 34936848 DOI: 10.1080/13543784.2022.2022119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Immunotherapies for type 1 diabetes mellitus (T1D) have been the focus of intense research over the past few decades; nevertheless, the results of clinical trials have not matched expectations. However, thanks to the recent and promising results on T1D prevention, among all the different immune-intervention tested strategies, clinical evidence on anti-CD3 monoclonal antibodies (mAb) deserve particular attention and in-depth evaluation. AREAS COVERED In this narrative review, we introduce the role of T-cells and their co-receptor CD3 in the pathogenesis of T1D and examine the potential of anti-CD3 mAbs as a treatment for preventing or curing T1D. We discuss pre-clinical studies, phase II/III clinical trials, testing the anti-CD3 mAb teplizumab in subjects at T1D high risk, and testing teplizumab and otelixizumab in T1D recent onset patients. In this work we discuss the current evidence gathered on anti-CD3 therapy to offer insights on the treatment strengths, limitations and unmet needs. EXPERT OPINION Recent phase II clinical trials with teplizumab in recent-onset T1D seem encouraging, but benefits associated with the use of anti-CD3 mAb in recent-onset T1D are still controversial. A better patient selection, based on immunological profiles and specific biomarkers, is crucial to improve clinical outcomes in T1D immunotherapies.
Collapse
Affiliation(s)
- Carmen Mignogna
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | |
Collapse
|
5
|
Yong KSM, Her Z, Tan SY, Tan WWS, Liu M, Lai F, Heng SM, Fan Y, Chang KTE, Wang CI, Chan JKY, Chen J, Chen Q. Humanized Mouse as a Tool to Predict Immunotoxicity of Human Biologics. Front Immunol 2020; 11:553362. [PMID: 33193321 PMCID: PMC7604536 DOI: 10.3389/fimmu.2020.553362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
Advancements in science enable researchers to constantly innovate and create novel biologics. However, the use of non-human animal models during the development of biologics impedes identification of precise in vivo interactions between the human immune system and treatments. Due to lack of this understanding, adverse effects are frequently observed in healthy volunteers and patients exposed to potential biologics during clinical trials. In this study, we evaluated and compared the effects of known immunotoxic biologics, Proleukin®/IL-2 and OKT3 in humanized mice (reconstituted with human fetal cells) to published clinical outcomes. We demonstrated that humanized mice were able to recapitulate in vivo pathological changes and human-specific immune responses, such as elevated cytokine levels and modulated lymphocytes and myeloid subsets. Given the high similarities of immunological side effects observed between humanized mice and clinical studies, this model could be used to assess immunotoxicity of biologics at a pre-clinical stage, without placing research participants and/or patients at risk.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Shi Min Heng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Pathology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore.,The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
7
|
Mooi WJ, Krausz T, Kirkland SC, Cross A, Epenetos AA. Accessibility of Antigenic Sites Recognized by AUA1, HMFG1 and HMFG2 Monoclonal Antibodies: Its Influence on Antibody Binding of Live Cells. Int J Biol Markers 2018; 2:57-63. [PMID: 2454274 DOI: 10.1177/172460088700200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We assessed the immunoreactivity of live and alcohol-fixed monolayers of HRA-19, a rectal adenocarcinoma cell line, to the monoclonal antibodies AUA1, HMFG1 and HMFG2. Differences in staining patterns between live and alcohol-fixed colonies were found. The well-polarized cells forming the centers of the monolayer colonies showed strong membrane staining when the cells were alcohol-fixed prior to AUA1 incubation, but showed no staining when the cells were alive during the incubation. When AUA1 incubation was done both before and after alcohol fixation, membrane staining was again seen, ruling out the possibility of antigenic modulation. Incubation of live cells with AUA1 together with EDTA showed strong staining of dissociating cells. It is concluded that AUA1 antigenic sites, which on polarized cells are basolateral in location, are inaccessible to the antibody-containing culture fluid, which bathes the apical aspects of the cells, but they become accessible after alcohol fixation, or treatment with EDTA. HMFG1 antigenic sites are located on the apical cell membrane, and accordingly, no differences were seen between incubation of live and alcohol-fixed cells when incubated with HMFG1. The antigenic sites of HMFG2 are partly intracellular, and in our monolayer model, the staining of live cells was weaker and more scarce than on alcohol-fixed cells. It is concluded that immunostaining of cytological and histological material of tumours may not adequately predict antibody binding on live cells, and thus, these findings are of importance in the context of selection of monoclonal antibodies for clinical radio-immunotargeting.
Collapse
Affiliation(s)
- W J Mooi
- Department of Histopathology, Royal Postgraduate Medical School, Hammersmith Hospital, England
| | | | | | | | | |
Collapse
|
8
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
9
|
Nicosia M, Valujskikh A. Total Recall: Can We Reshape T Cell Memory by Lymphoablation? Am J Transplant 2017; 17:1713-1718. [PMID: 27888576 DOI: 10.1111/ajt.14144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 01/25/2023]
Abstract
Despite recent advances in immunosuppression, donor-reactive memory T cells remain a serious threat to successful organ transplantation. To alleviate damaging effects of preexisting immunologic memory, lymphoablative induction therapies are used as part of standard care in sensitized recipients. However, accumulating evidence suggests that memory T cells have advantages over their naive counterparts in surviving depletion and expanding under lymphopenic conditions. This may at least partially explain the inability of existing lymphoablative strategies to improve long-term allograft outcome in sensitized recipients, despite the well-documented decrease in the frequency of early acute rejection episodes. This minireview summarizes the insights gained from both experimental and clinical transplantation as to the effects of existing lymphoablative strategies on memory T cells and discusses the latest research developments aimed at improving the efficacy and safety of lymphoablation.
Collapse
Affiliation(s)
- M Nicosia
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, OH
| | - A Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
10
|
Buszko M, Cardini B, Oberhuber R, Oberhuber L, Jakic B, Beierfuss A, Wick G, Cappellano G. Differential depletion of total T cells and regulatory T cells and prolonged allotransplant survival in CD3Ɛ humanized mice treated with polyclonal anti human thymocyte globulin. PLoS One 2017; 12:e0173088. [PMID: 28257450 PMCID: PMC5336254 DOI: 10.1371/journal.pone.0173088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/15/2017] [Indexed: 01/13/2023] Open
Abstract
Thymoglobulin (ATG) is a polyclonal rabbit antibody against human thymocytes used as a T cell-depleting agent to prevent or treat allotransplant rejection. The aim of the present study was to investigate the effect of low dose ATG treatment exclusively on T cells using a humanized BALB/c human CD3Ɛ transgenic mouse model expressing both human and murine T cell receptors (TCR). Mice received a single intravenous (i.v.) injection of ATG. Blood and peripheral lymphoid organs were obtained after different time points. We found a significant T cell depletion in this mouse model. In addition, regulatory T cells (Tregs) proved to be less sensitive to depletion than the rest of T cells and the Treg:non-Treg ratio was therefore increased. Finally, we also investigated the effect of ATG in a heterotopic allogenic murine model of heart transplantation. Survival and transplant function were significantly prolonged in ATG-treated mice. In conclusion, we showed (a) an immunosuppressive effect of ATG in this humanized mouse model which is exclusively mediated by reactivity against human CD3Ɛ; (b) provided evidence for a relative resistance of Tregs against this regimen; and
Collapse
Affiliation(s)
- Maja Buszko
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative M edicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative M edicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative M edicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja Beierfuss
- Central Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
11
|
Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy 2016; 8:889-906. [DOI: 10.2217/imt-2016-0049] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of tolerance is a major goal of immunotherapy. Investigations over the last 20 years have shown that anti-CD3 monoclonal antibodies (mAbs) effectively treat autoimmune disease in animal models and have also shown promise in clinical trials. Tolerance induction by anti-CD3 mAbs is related to the induction of Tregs that control pathogenic autoimmune responses. Here, we review preclinical and clinical studies in which intravenous or mucosal administration of anti-CD3 mAbs has been employed and provide an outlook on future developments to enhance the efficacy of this promising therapeutic approach.
Collapse
Affiliation(s)
- Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
TGN1412 Induces Lymphopenia and Human Cytokine Release in a Humanized Mouse Model. PLoS One 2016; 11:e0149093. [PMID: 26959227 PMCID: PMC4784892 DOI: 10.1371/journal.pone.0149093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/27/2016] [Indexed: 12/16/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as the superagonistic, CD28-specific antibody TGN1412, or OKT3, an anti-CD3 mAb, can cause severe adverse events including cytokine release syndrome. A predictive model for mAb-mediated adverse effects, for which no previous knowledge on severe adverse events to be expected or on molecular mechanisms underlying is prerequisite, is not available yet. We used a humanized mouse model of human peripheral blood mononuclear cell-reconstituted NOD-RAG1-/-Aβ-/-HLADQ(tg+ or tg-)IL-2Rγc-/- mice to evaluate its predictive value for preclinical testing of mAbs. 2–6 hours after TGN1412 treatment, mice showed a loss of human CD45+ cells from the peripheral blood and loss of only human T cells after OKT3 injection, reminiscent of effects observed in mAb-treated humans. Moreover, upon OKT3 injection we detected selective CD3 downmodulation on T cells, a typical effect of OKT3. Importantly, we detected release of human cytokines in humanized mice upon both OKT3 and TGN1412 application. Finally, humanized mice showed severe signs of illness, a rapid drop of body temperature, and succumbed to antibody application 2–6 hours after administration. Hence, the humanized mouse model used here reproduces several effects and adverse events induced in humans upon application of the therapeutic mAbs OKT3 and TGN1412.
Collapse
|
13
|
König M, Rharbaoui F, Aigner S, Dälken B, Schüttrumpf J. Tregalizumab - A Monoclonal Antibody to Target Regulatory T Cells. Front Immunol 2016; 7:11. [PMID: 26834751 PMCID: PMC4724712 DOI: 10.3389/fimmu.2016.00011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells, which are essential for the maintenance of immunological tolerance. The absence or dysfunction of Tregs can lead to autoimmunity and allergies. The restoration of functional Tregs and/or Treg cell numbers represents a novel and attractive approach for the treatment of autoimmune diseases, e.g., rheumatoid arthritis (RA). The CD4 cell surface receptor is a target for modulation of T cell function. Monoclonal antibodies (mAbs) against CD4 have previously been tested for the treatment of autoimmune diseases, including RA. Furthermore, in model systems, anti-CD4 antibodies are able to induce tolerance and mediate immunomodulatory effects through a variety of mechanisms. Despite the availability of innovative and effective therapies for RA, many patients still have persistently active disease or experience adverse events that can limit use. A growing body of evidence suggests that Treg modulation could offer a new therapeutic strategy in RA and other autoimmune disorders. Here, we describe tregalizumab (BT-061), which is a novel, non-depleting IgG1 mAb that binds to a unique epitope of CD4. Tregalizumab represents the first humanized anti-CD4 mAb that selectively induces Treg activation.
Collapse
|
14
|
Page KR, Mezzalana E, MacDonald AJ, Zamuner S, De Nicolao G, van Maurik A. Temporal pharmacokinetic/pharmacodynamic interaction between human CD3ε antigen-targeted monoclonal antibody otelixizumab and CD3ε binding and expression in human peripheral blood mononuclear cell static culture. J Pharmacol Exp Ther 2015; 355:199-205. [PMID: 26341624 DOI: 10.1124/jpet.115.224899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Abstract
Otelixizumab is a monoclonal antibody (mAb) directed to human CD3ε, a protein forming part of the CD3/T-cell receptor (TCR) complex on T lymphocytes. This study investigated the temporal interaction between varying concentrations of otelixizumab, binding to human CD3 antigen, and expression of CD3/TCR complexes on lymphocytes in vitro, free from the confounding influence of changing lymphocyte frequencies observed in vivo. A static in vitro culture system was established in which primary human peripheral blood mononuclear cells (PBMCs) were incubated over an extended time course with titrated concentrations of otelixizumab. At each time point, free, bound, and total CD3/TCR expression on both CD4+ and CD8+ T cells and the amount of free otelixizumab antibody in the supernatant were measured. The pharmacokinetics of free otelixizumab in the culture supernatants was saturable, with a shorter apparent half-life at low concentration. Correspondingly, a rapid, otelixizumab concentration-, and time-dependent reduction in CD3/TCR expression was observed. These combined observations were consistent with the phenomenon known as target-mediated drug disposition (TMDD). A mechanistic, mathematical pharmacokinetic/pharmacodynamic (PK/PD) model was then used to characterize the free otelixizumab-CD3 expression-time relationship. CD3/TCR modulation induced by otelixizumab was found to be relatively fast compared with the re-expression rate of CD3/TCR complexes following otelixizumab removal from supernatants. In summary, the CD3/TCR receptor has been shown to have a major role in determining otelixizumab disposition. A mechanistic PK/PD model successfully captured the PK and PD in vitro data, confirming TMDD by otelixizumab.
Collapse
Affiliation(s)
- Kevin R Page
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Enrica Mezzalana
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Alexander J MacDonald
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Stefano Zamuner
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Giuseppe De Nicolao
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Andre van Maurik
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| |
Collapse
|
15
|
Yossef R, Gur C, Shemesh A, Guttman O, Hadad U, Nedvetzki S, Miletić A, Nalbandyan K, Cerwenka A, Jonjic S, Mandelboim O, Porgador A. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes. PLoS One 2015; 10:e0118936. [PMID: 25719382 PMCID: PMC4342013 DOI: 10.1371/journal.pone.0118936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.
Collapse
Affiliation(s)
- Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Nedvetzki
- BioLineRx Ltd., 19 Hartum Street, P.O. Box 45158. Jerusalem 91450, Israel
| | - Antonija Miletić
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg 69120, Germany
| | - Stipan Jonjic
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
16
|
Byng-Maddick R, Ehrenstein MR. The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology (Oxford) 2015; 54:768-75. [PMID: 25667434 DOI: 10.1093/rheumatology/keu487] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 12/31/2022] Open
Abstract
Regulatory T cells (Treg) are functionally defective in patients with RA. Restoring their function may not only control inflammation but also restore tolerance in these patients. Biologic therapies have been tremendously successful in treating RA. Here we review numerous reports suggesting that these immunomodulatory therapies have an impact on Treg and that this may contribute to their beneficial effects. Better understanding of their mode of action may not only lead to improvements in therapies and sustained remission but also enable the development of biomarkers of response, which would be the first steps towards personalized medicine.
Collapse
|
17
|
Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments. Blood 2014; 125:762-6. [PMID: 25498911 DOI: 10.1182/blood-2014-10-569244] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A specialized form of trogocytosis occurs when Fcγ receptors on acceptor cells take up and internalize donor cell-associated immune complexes composed of specific monoclonal antibodies (mAbs) bound to target antigens on donor cells. This trogocytosis reaction, an example of antigenic modulation, has been described in recent clinical correlative studies and in vitro investigations for several mAbs used in cancer immunotherapy, including rituximab and ofatumumab. We discuss the impact of Fcγ-receptor-mediated trogocytosis on the efficacy of cancer immunotherapy and other mAb-based therapies.
Collapse
|
18
|
Robert S, Steidler L. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the Type 1 Diabetes case. Microb Cell Fact 2014; 13 Suppl 1:S11. [PMID: 25185797 PMCID: PMC4155828 DOI: 10.1186/1475-2859-13-s1-s11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Especially in western civilizations, immune diseases that are driven by innocuous (auto- or allo-) antigens are gradually evolving to become pandemic threats. A particularly poignant example is type 1 diabetes, where young children are confronted with the perspective and consequences of total pancreatic β-cell destruction. Along these disquieting observations we find ourselves equipped with impressively accumulating molecular immunological knowledge on the ins and outs of these pathologies. Often, however, it is difficult to translate this wealth into efficacious medicines. The molecular understanding, the concept of oral tolerance induction, the benefit of using recombinant Lactococcus lactis therein and recent openings towards their clinical use may well enable turning all colors to their appropriate fields on this Rubik's cube.
Collapse
Affiliation(s)
- Sofie Robert
- Clinical and Experimental Endocrinology (CEE), KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
19
|
Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ. Pharmacokinetics and Pharmacodynamics of a Chimeric/Humanized Anti-CD3 Monoclonal Antibody, Otelixizumab (TRX4), in Subjects With Psoriasis and With Type 1 Diabetes Mellitus. J Clin Pharmacol 2013; 50:494-506. [DOI: 10.1177/0091270009349376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Robert S, Korf H, Gysemans C, Mathieu C. Antigen-based vs. systemic immunomodulation in type 1 diabetes: the pros and cons. Islets 2013; 5:53-66. [PMID: 23648893 PMCID: PMC4204023 DOI: 10.4161/isl.24785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In type 1 diabetic patients insulin-producing pancreatic β-cells are destroyed by an orchestrated immune process involving self-reactive auto-antigen-specific CD4⁺ and CD8⁺ T cells. Efforts to reverse or prevent this destructive immunological cascade have led to promising results in animal models, however, the transition to the clinic has yet been unsuccessful. In addition, current clinical studies lack reliable biomarkers to circumscribe end-point parameters and define therapeutic success. Here, we give a current overview of both antigen-specific and non-specific systemic immunomodulatory approaches with a focus on the therapies verified or under evaluation in a clinical setting. While both approaches have their advantages and disadvantages, rationally designed combination therapies may yield the highest therapeutic efficacy. In order for future strategies to be effective, new well-defined biomarkers need to be developed and the extrapolation process of dose, timing and frequency from in vivo models to patients needs to be carefully reconsidered.
Collapse
|
21
|
Gastrointestinal Tract and Endocrine System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Kornete M, Mason ES, Piccirillo CA. Immune Regulation in T1D and T2D: Prospective Role of Foxp3+ Treg Cells in Disease Pathogenesis and Treatment. Front Endocrinol (Lausanne) 2013; 4:76. [PMID: 23805128 PMCID: PMC3691561 DOI: 10.3389/fendo.2013.00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/08/2013] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Edward S. Mason
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- FOCIS Center of Excellence, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Ciriaco A. Piccirillo, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Room L11.132, Montreal, QC H3G 1A4, Canada e-mail:
| |
Collapse
|
23
|
Chatenoud L, Waldmann H. CD3 monoclonal antibodies: a first step towards operational immune tolerance in the clinic. Rev Diabet Stud 2012; 9:372-81. [PMID: 23804274 DOI: 10.1900/rds.2012.9.372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a prototypic organ-specific autoimmune disease resulting from the selective destruction of insulin-secreting β-cells within the pancreatic islets of Langerhans. It is caused by an immune-mediated inflammation, involving autoreactive CD4⁺ and CD8⁺ T lymphocytes that infiltrate the islets and initiate insulitis. The use of exogenous insulin is the current standard treatment. However, in spite of significant advances, this therapy is still associated with major constraints, including risk of hypoglycemia and severe degenerative complications. As T1D mainly affects children and young adults, any candidate immune therapy must be safe, and it must avoid a sustained depression of immune responses with all its attendant problems of recurrent infection and drug toxicity. In this context, inducing or restoring immune tolerance to target autoantigens would be the ideal approach. We refer to immune tolerance here as the selective damping of the damaging autoimmune response following a short treatment, while keeping intact the capacity of the host to respond normally to exogenous antigens. The therapeutic approach we discuss in this article originates from attempts to induce tolerance both to soluble antigens and tissue antigens (i.e. alloantigens and autoantigens) by using biological agents that selectively interfere with lymphocyte activation, namely polyclonal and monoclonal anti-T cell antibodies. The challenged dogma was that, in an adult-primed immune system, it was not possible to restore self-tolerance therapeutically without the use of exogenous autoantigen administration. The reality has been that, in diabetes, endogenous host autoantigen can fulfill this role because a significant amount of functioning β-cells remains, even at the time of established hyperglycemia. Experimental results obtained in the 1990s showed that a short-term CD3 antibody treatment in recently diagnosed diabetic non-obese diabetic (NOD) mice induced permanent remission of the disease by restoring self-tolerance. Based on these findings, phase I, II, and III trials were conducted using two distinct humanized Fc-mutated antibodies to human CD3, namely ChAglyCD3 (otelixizumab) and OKT3γ1 Ala-Ala (teplizumab). Overall, when dosing was adequate, the results demonstrated that CD3 antibodies preserved β-cell function very efficiently, maintaining significantly high levels of endogenous insulin secretion in treated patients for up to 24 months after treatment. These data provided the first proof of concept for a long-term therapeutic effect in T1D following a short course administration of a therapeutic agent. Our aim is to review these data and to discuss them in the context of the pitfalls linked to pharmaceutical development, especially in the context of pediatric patients, as in autoimmune diabetes.
Collapse
|
24
|
Kater L, Gmelig-Meyling FHJ, Derksen RHWM, Faille HB. Immunopathogenesis and Therapy of Systemic Lupus Erythematosus. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Racadot E, Wendling D, Rumbach L, Wijdenes J, Herve P. Current Concepts in the Treatment of Autoimmune Diseases with Monoclonal Antibodies. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
A humanised mouse model of cytokine release: comparison of CD3-specific antibody fragments. J Immunol Methods 2012; 384:33-42. [PMID: 22796190 DOI: 10.1016/j.jim.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023]
Abstract
CD3-specific antibodies have shown clinical efficacy in both transplantation and autoimmunity. However, targeting CD3 in this way can lead to T-cell activation and a serious cytokine release syndrome mediated by Fcγ receptor binding. An in vivo mouse model has been developed using severe combined immunodeficient (SCID) mice to detect human T-cell depletion and cytokine release into the circulation after administration of OKT3. This system has been used to evaluate OKT3 antibody fragments lacking the entire Fc region alongside whole antibody constructs. These data clearly show that cytokine release is detected with all OKT3 antibody constructs and fragments tested and these can be ranked from highest to lowest as follows: mIgG2a>hIgG1 (Ala-Ala)>hIgG1 diFab' maleimide (DFM)>hIgG1 F(ab')₂>mIgG2a F(ab')₂>hIgG1 Fab'. Furthermore, the monovalent hIgG1 Fab' fragment gives the least cytokine release but it does not deplete human T-cells in this assay format. This suggests that T-cell activation may be playing a role in the mechanism of action of anti-CD3 antibodies and consequently the unwanted cytokine release is potentially unavoidable for this class of molecules. This model system provides a useful tool to aid in understanding and reducing the potential risks of cytokine release following antibody therapy.
Collapse
|
27
|
Gallagher MP, Goland RS, Greenbaum CJ. Making progress: preserving beta cells in type 1 diabetes. Ann N Y Acad Sci 2012; 1243:119-34. [PMID: 22211897 DOI: 10.1111/j.1749-6632.2011.06321.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The clinical care of patients with type 1 diabetes (T1D) has greatly improved over the past few decades; however, it remains impossible to completely normalize blood sugar utilizing currently available tools. Research is underway with a goal to improve the care and, ultimately, to cure T1D by preserving beta cells. This review will outline the progress that has been made in trials aimed at preserving insulin secretion in T1D by modifying the immune assault on the pancreatic beta cell. Although not yet ready for clinical use, successful trials have been conducted in new-onset T1D that demonstrated utility of three experimental agents with disparate modes of action (anti-T cell, anti-B cell, and costimulation blockade) to preserve insulin secretion. In contrast, prevention studies have so far failed to produce positive results but have shown that such studies are feasible and have identified new promising agents for study.
Collapse
Affiliation(s)
- Mary Pat Gallagher
- Naomi Berrie Diabetes Center, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | |
Collapse
|
28
|
Sprangers B, Van der Schueren B, Gillard P, Mathieu C. Otelixizumab in the treatment of Type 1 diabetes mellitus. Immunotherapy 2011; 3:1303-16. [DOI: 10.2217/imt.11.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Anti-CD3 antibodies have been demonstrated in both animal and human studies to be able to reverse autoimmune diseases; for example Type 1 diabetes. Not only does treatment with anti-CD3 antibodies result in the removal of pathogenic T cells but evidence suggests that a state of operational tolerance can be induced through the effects on regulatory T cells. The clinical use of anti-CD3 antibodies has been hampered by their safety profile. However, the introduction of humanized, nonmitogenic, aglycosylated anti-CD3 antibodies, such as otelixizumab, and promising results reported in newly-diagnosed patients with Type 1 diabetes, have renewed the interest for these antibodies in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ben Sprangers
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49 bus 811, B-3000 Leuven, Belgium
| | - Bart Van der Schueren
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
29
|
Wright GP, Stauss HJ, Ehrenstein MR. Therapeutic potential of Tregs to treat rheumatoid arthritis. Semin Immunol 2011; 23:195-201. [PMID: 21880506 DOI: 10.1016/j.smim.2011.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/10/2011] [Indexed: 01/12/2023]
Abstract
There is accumulating evidence for regulatory T cell defects in rheumatoid arthritis and that some biologic interventions, in particular anti-TNF, can target this population. Despite the challenges in defining regulatory T cells in patients, there are a number of approaches currently being developed to utilise their potent immunosuppressive properties. Through genetic manipulation Tregs can be generated ex vivo or in vivo that target antigens present in the inflamed joint. Here we discuss these approaches, their refinement to restore tolerance in patients with rheumatoid arthritis, and strategies to prevent their conversion towards a Th17 phenotype.
Collapse
Affiliation(s)
- Graham P Wright
- Centre for Rheumatology Research, University College London, Rayne Building, 5 University Street, London WC1E 6JF, United Kingdom.
| | | | | |
Collapse
|
30
|
Abstract
Strategies for inducing immune tolerance are fundamentally similar across a spectrum of immune-mediated disorders, including allergic disease, autoimmunity, and rejection of allografts. In each case, the objective of establishing an immunoregulatory balance is challenged by variable upswings in effector cell populations and proinflammatory mediators of immunity, requiring careful, and innovative therapeutic intervention to restore stability. The Immune Tolerance Network, an international consortium sponsored by the National Institutes of Health, seeks to advance both the scientific understanding and the clinical success of immune therapies for these disorders, through an innovative and collaborative effort involving clinical trials and mechanistic studies. Over the last decade, scientists have evaluated cell-based ablation and deviation strategies in trials using lymphocyte-specific targeting, induction of host-donor hematopoietic chimerism, induction of antigen-specific immune regulation, and a variety of antigen desensitization approaches. In this article, we review some of the highlights of this experience and discuss the potential for progress, utilizing new insights into regulatory mechanisms and biomarker signatures of tolerance.
Collapse
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute, Seattle, WA 98101-2795, USA.
| | | | | |
Collapse
|
31
|
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol Rev 2011; 91:79-118. [DOI: 10.1152/physrev.00003.2010] [Citation(s) in RCA: 673] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.
Collapse
Affiliation(s)
- Tom L. Van Belle
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Ken T. Coppieters
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias G. Von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
32
|
Abstract
Type 1 diabetes mellitus (T1DM) is a prototypic organ-specific autoimmune disease that results from selective destruction of insulin-secreting beta-cells by immune-mediated inflammation (insulitis), that is, the infiltration of pancreatic islets by autoreactive CD4(+) and CD8(+) T lymphocytes. Current treatment is substitutive-chronic use of exogenous insulin-which, in spite of considerable advances, is still associated with constraints and lack of effectiveness over the long-term in relation to the prevention of vascular and neurological complications. Finding a cure for T1DM is an important medical health challenge, as the disease's incidence is steadily increasing in industrialized countries and projections of future prevalence are alarming. Crucially, as T1DM mainly affects children and young adults, any candidate immune therapy must be safe and avoid chronic use of immunosuppressants that promote sustained depression of immune responses. The ideal approach would, therefore, involve induction or, in the case of established T1DM, restoration of immune tolerance to target autoantigens. This Review presents, in particular, two strategies that are still in clinical development but hold great promise. These strategies are focused on the use of candidate autoantigens and anti-CD3 monoclonal antibodies.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, INSERM U1013, Hôpital Necker Enfants Malades, 161 Rue de Sèvres, Paris 75015, France.
| |
Collapse
|
33
|
Watier H. [From the ancient serotherapy to naked antibodies: a century of successful targeted therapies]. Med Sci (Paris) 2009; 25:999-1009. [PMID: 20035670 DOI: 10.1051/medsci/20092512999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies and molecular engineering have renewed the ancient serotherapy, multiplying the possibilities of therapeutic interventions and providing many new clinical successes! Standing back about this history allows us to better understand the evolution of concepts underlying the therapeutic use of antibodies, as well as the maturation of the tool itself. The different principles of therapeutic targeting will be successively tackled, from their sometimes hundred year-old conception until the most recent clinical developments: antibodies neutralizing toxins and soluble antigens, anti-microbial antibodies, cytotoxic antibodies, tumour-specific antibodies, cell function -modifying antibodies, etc. This overview will finally offer the opportunity to introduce a new pharmacological classification of the entire class of unconjugated -therapeutic antibodies.
Collapse
Affiliation(s)
- Hervé Watier
- Université François Rabelais de Tours, Laboratoire d'immunologie, Faculté de médecine, 10, boulevard Tonnellé, 37032 Tours Cedex, France.
| |
Collapse
|
34
|
Abstract
Here we report a unique situation in which an early and synchronized Epstein-Barr virus (EBV) reactivation was induced by a 6-day course of treatment with a humanized CD3-specific monoclonal antibody in patients with recent onset of type 1 diabetes. The virologic and immunologic analysis demonstrated that this reactivation was transient, self-limited, and isolated, associated with the rapid advent of an EBV-specific T-cell response. The anti-CD3 antibody administration induced short-lasting immunosuppression and minor yet clear-cut signs of T-cell activation that preceded viral reactivation. Early posttransplant monitoring of renal and islet allograft recipients showed that no comparable phenomenon was observed after the administration of full-dose immunosuppressive therapy. This EBV reactivation remains of no apparent clinical concern over the long term and should not preclude further development of therapeutic anti-CD3 antibodies. This phenomenon may also direct new research avenues to understand the still ill-defined nature of stimuli triggering EBV reactivation in vivo.
Collapse
|
35
|
Progress towards the clinical use of CD3 monoclonal antibodies in the treatment of autoimmunity. Curr Opin Organ Transplant 2009; 14:351-6. [PMID: 19610168 DOI: 10.1097/mot.0b013e32832ce95a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW A major problem in the field of clinical transplantation, as well as in autoimmunity, is that conventional treatments rely on chronic immunosuppression that is not specific for the antigens involved and that increases the risk of infections and tumours. A major need and challenge is, therefore, to achieve 'operational tolerance', namely an inhibition of pathogenic responses in the absence of chronic immunosuppression. RECENT FINDINGS Here we review data showing that monoclonal antibodies to the CD3 complex, the signal transducing element of the T cell receptor, promote immune tolerance. This strategy has been the matter of extensive experimental studies in models of autoimmunity and has recently led to a successful clinical translation. SUMMARY Results from controlled trials in autoimmune insulin-dependent diabetes showed that CD3 monoclonal antibodies afford long-term effects following a short administration. The present challenge is to build on these results, first, to set the use of CD3 monoclonal antibodies as an established therapy in well selected subsets of patients with autoimmunity, and second, given the similarities of immune mechanisms underlying T cell-mediated autoimmune diseases and allograft rejection, to address if and how this therapeutic strategy could be extended to organ transplantation in the not-too-distant future.
Collapse
|
36
|
Antitumor Activity of an EpCAM/CD3-bispecific BiTE Antibody During Long-term Treatment of Mice in the Absence of T-cell Anergy and Sustained Cytokine Release. J Immunother 2009; 32:452-64. [DOI: 10.1097/cji.0b013e3181a1c097] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Waldron-Lynch F, Herold KC. Advances in Type 1 diabetes therapeutics: immunomodulation and beta-cell salvage. Endocrinol Metab Clin North Am 2009; 38:303-17, viii. [PMID: 19328413 DOI: 10.1016/j.ecl.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Refinements in our understanding of the pathogenic mechanisms of Type 1 diabetes from studies of animal models and clinical observation have led to new clinical trials to prevent disease progression and restore the loss of beta-cells that defines the disease. Antigen-specific agents have shown initial promise and non-antigen-specific agents now have improved safety compared with older agents. In addition, preclinical studies with other agents have shown efficacy. Ultimately, a combination of immunologic and cellular therapies may be needed to restore metabolic control. Agents that augment recovery of dysfunctional beta-cells, and other compounds that may be able to induce beta-cell replication, are logical additions once immune tolerance is achieved.
Collapse
|
38
|
Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP. Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:8120-32. [PMID: 19018005 DOI: 10.4049/jimmunol.181.11.8120] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
More than 20 years ago clinical investigations in the immunotherapy of cancer revealed that infusion of certain immunotherapeutic mAbs directed to tumor cells induced loss of targeted epitopes. This phenomenon, called antigenic modulation, can compromise mAb-based therapies. Recently we reported that rituximab (RTX) treatment of chronic lymphocytic leukemia patients induced substantial loss of targeted CD20 on B cells found in the circulation after RTX infusion; this "shaving" of RTX-CD20 complexes from B cells is also promoted in vitro by THP-1 monocytes and by PBMC in a reaction mediated by Fcgamma receptors. The mechanism responsible for shaving appears to be trogocytosis, a process in which receptors on effector cells remove and internalize cognate ligands and cell membrane fragments from target cells. We now report that three therapeutic mAbs approved by the U.S. Food and Drug Administration for the treatment of cancer, RTX, cetuximab, and trastuzumab, as well as mAb T101, which has been shown to induce antigenic modulation in the clinic, promote trogocytosis in vitro upon binding to their respective target cells. Trogocytosis of the mAb-opsonized cells is mediated by THP-1 monocytes and by primary monocytes isolated from PBMC. In view of these results, it is likely that these mAbs and possibly other anticancer mAbs now used in the clinic may promote trogocytic removal of the therapeutic mAbs and their cognate Ags from tumor cells in vivo. Our findings may have important implications with respect to the use of mAbs in cancer immunotherapy.
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
39
|
Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso A, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL. New immunosuppressive approaches: oral administration of CD3-specific antibody to treat autoimmunity. J Neurol Sci 2008; 274:9-12. [PMID: 18804221 DOI: 10.1016/j.jns.2008.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/10/2008] [Accepted: 07/24/2008] [Indexed: 01/12/2023]
Abstract
One of the major goals for the immunotherapy of autoimmune diseases is the induction of regulatory T cells that mediate immunologic tolerance. Parenteral administration of anti-CD3 monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We have found that oral administration of anti-CD3 monoclonal antibody is biologically active in the gut and suppresses experimental autoimmune encephalomyelitis both prior to disease induction and at the height of disease. Oral anti-CD3 antibody acts by inducing a unique type of regulatory T cell characterized by latency-associated peptide (LAP) on its cell surface that functions in vivo and in vitro via TGF-beta dependent mechanism. Orally delivered antibody would not have side effects including cytokine release syndromes, thus oral anti-CD3 antibody is clinically applicable for chronic therapy. These findings identify a novel and powerful immunologic approach that is widely applicable for the treatment of human autoimmune conditions.
Collapse
Affiliation(s)
- Hirofumi Ochi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chatenoud L. The use of CD3-specific antibodies in autoimmune diabetes: a step toward the induction of immune tolerance in the clinic. Handb Exp Pharmacol 2008:221-36. [PMID: 18071948 DOI: 10.1007/978-3-540-73259-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD3-specific monoclonal antibodies were the first rodent monoclonals introduced in clinical practice in the mid 1980s as approved immunosuppressants to prevent and treat organ allograft rejection. Since then compelling evidence has been accumulated to suggest that in addition to their immunosuppressive properties, CD3-specific antibodies can also afford inducing immune tolerance especially in the context of ongoing immune responses. Thus, they are highly effective at restoring self-tolerance in overt autoimmunity, a capacity first demonstrated in the experimental setting, which was recently transferred to the clinic with success.
Collapse
|
41
|
You S, Candon S, Kuhn C, Bach JF, Chatenoud L. Chapter 2 CD3 Antibodies as Unique Tools to Restore Self-Tolerance in Established Autoimmunity. Adv Immunol 2008; 100:13-37. [DOI: 10.1016/s0065-2776(08)00802-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 2007; 7:622-32. [PMID: 17641665 DOI: 10.1038/nri2134] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted immunotherapies hold great promise for the treatment and cure of autoimmune diseases. The efficacy of CD3-specific monoclonal antibody therapy in mice and humans stems from its ability to re-establish immune homeostasis in treated individuals. This occurs through modulation of the T-cell receptor (TCR)-CD3 complex (also termed antigenic modulation) and/or induction of apoptosis of activated autoreactive T cells, which leaves behind 'space' for homeostatic reconstitution that favours selective induction, survival and expansion of adaptive regulatory T cells, which establishes long-term tolerance. This Review summarizes the pre-clinical and clinical studies of CD3-specific monoclonal antibody therapy and highlights future opportunities to enhance the efficacy of this potent immunotherapeutic.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université René Descartes, Paris 5, Institut National de la Santé et de la Recherche Médicale, Unité 580, Hôpital Necker - Enfants Malades, 161 rue de Sèvres 75743 Paris CEDEX 15, France.
| | | |
Collapse
|
43
|
You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L. Transforming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 2006; 212:185-202. [PMID: 16903915 DOI: 10.1111/j.0105-2896.2006.00410.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is now well-established that CD4+ regulatory T cells are instrumental in controlling immune responses both to self-antigens and to non-self-antigens. However, the precise modalities involved in their differentiation and survival, their mode of action and their antigen specificity are only partially understood. We have been particularly interested in the study of regulatory T cells controlling autoimmune insulin-dependent diabetes. Here, we provide evidence to support the phenotypic and functional diversity of regulatory T cells mediating transferable 'active' or 'dominant' peripheral tolerance in the non-obese diabetic mouse model (NOD). They include natural and adaptive regulatory T cells that are operational both in unmanipulated NOD mice and in animals undergoing treatments aimed at inducing/restoring tolerance to self-beta-cell antigens. At least in our hands, the differential cytokine-dependency appears as a major distinctive feature of regulatory T cells subsets. Among immunoregulatory cytokines, transforming growth factor-beta(TGF-beta) appeared to play a key role. Herein we discuss these results and the working hypothesis they evoke in the context of the present literature, where the role of TGF-beta-dependent T-cell-mediated immunoregulation is still debated.
Collapse
Affiliation(s)
- Sylvaine You
- Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Médicale U580 and Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Chatenoud L. CD3-specific antibodies as promising tools to aim at immune tolerance in the clinic. Int Rev Immunol 2006; 25:215-33. [PMID: 16818372 DOI: 10.1080/08830180600743032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Currently, therapies applied in transplantation and autoimmunity are essentially based on the use of immunosuppressants. These agents depress all immune responses and expose individuals to the recurrence of the pathogenic immune process once they are withdrawn, thus necessitating a chronic administration leading to the risk of recurrent infections and increased frequency of tumors. At variance, CD3 monoclonal antibodies appear unique in their capacity to induce immunological tolerance that is an antigen-specific unresponsiveness in the absence of chronic immunosuppression. This has been well-established in experimental models, and recent data show successful clinical translation using humanized anti-CD3 antibodies. The aim of this brief review is to discuss the main characteristics of these very promising tools and to present the experimental and clinical results arguing for their unique tolerogenic ability.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université René Descartes Paris 5, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
45
|
Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat Med 2006; 12:627-35. [PMID: 16715091 DOI: 10.1038/nm1408] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/24/2006] [Indexed: 12/13/2022]
Abstract
A major goal of immunotherapy for autoimmune diseases and transplantation is induction of regulatory T cells that mediate immunologic tolerance. The mucosal immune system is unique, as tolerance is preferentially induced after exposure to antigen, and induction of regulatory T cells is a primary mechanism of oral tolerance. Parenteral administration of CD3-specific monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We found that orally administered CD3-specific antibody is biologically active in the gut and suppresses autoimmune encephalomyelitis both before induction of disease and at the height of disease. Orally administered CD3-specific antibody induces CD4+ CD25- LAP+ regulatory T cells that contain latency-associated peptide (LAP) on their surface and that function in vitro and in vivo through a TGF-beta-dependent mechanism. These findings identify a new immunologic approach that is widely applicable for the treatment of human autoimmune conditions.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cricetinae
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptides/genetics
- Peptides/immunology
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Hirofumi Ochi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:2600-9. [PMID: 16456022 DOI: 10.4049/jimmunol.176.4.2600] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical investigations have revealed that infusion of immunotherapeutic mAbs directed to normal or tumor cells can lead to loss of targeted epitopes, a phenomenon called antigenic modulation. Recently, we reported that rituximab treatment of chronic lymphocytic leukemia patients induced substantial loss of CD20 on B cells found in the circulation after rituximab infusion, when rituximab plasma concentrations were high. Such antigenic modulation can severely compromise therapeutic efficacy, and we postulated that B cells had been stripped (shaved) of the rituximab/CD20 complex by monocytes or macrophages in a reaction mediated by FcgammaR. We developed an in vitro model to replicate this in vivo shaving process, based on reacting rituximab-opsonized CD20(+) cells with acceptor THP-1 monocytes. After 45 min at 37 degrees C, rituximab and CD20 are removed from opsonized cells, and both are demonstrable on acceptor THP-1 cells. The reaction occurs equally well in the presence and absence of normal human serum, and monocytes isolated from peripheral blood also promote shaving of CD20 from rituximab-opsonized cells. Tests with inhibitors and use of F(ab')(2) of rituximab indicate transfer of rituximab/CD20 complexes to THP-1 cells is mediated by FcgammaR. Antigenic modulation described in previous reports may have been mediated by such shaving, and our findings may have profound implications for the use of mAbs in the immunotherapy of cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Murine-Derived
- Antigens, CD20/immunology
- Cell Line
- Cell Survival
- Humans
- Immunotherapy/adverse effects
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Monocytes/immunology
- Rituximab
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
47
|
Chatenoud L. CD3-specific antibodies restore self-tolerance: mechanisms and clinical applications. Curr Opin Immunol 2005; 17:632-7. [PMID: 16214320 DOI: 10.1016/j.coi.2005.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 09/21/2005] [Indexed: 01/06/2023]
Abstract
The treatment of autoimmune diseases using conventional chemical immunosuppressants has short-term effects, imposing the need for chronic treatment with its risks of over-immunosuppression. CD3-specific monoclonal antibodies can restore self-tolerance in a durable fashion after a single short-term treatment, as demonstrated in several experimental models and clinically in recent-onset insulin-dependent diabetes. Disease remission involves first an immediate 'freezing' of the autoimmune response, which is linked to CD3-specific antibody-induced antigenic modulation of CD3-TCR complex at the T lymphocyte surface, followed by 'resetting' of TGF-beta-dependent T-cell mediated immunoregulation. Tolerance induction is demonstrated by persisting disease protection in spite of recovery of full immunocompetence to unrelated antigens.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université René Descartes Paris 5, INSERM U580, Hôpital Necker Enfants Malades, 161 Rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
48
|
Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005; 352:2598-608. [PMID: 15972866 DOI: 10.1056/nejmoa043980] [Citation(s) in RCA: 822] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus is a T-cell-mediated autoimmune disease that leads to a major loss of insulin-secreting beta cells. The further decline of beta-cell function after clinical onset might be prevented by treatment with CD3 monoclonal antibodies, as suggested by the results of a phase 1 study. To provide proof of this therapeutic principle at the metabolic level, we initiated a phase 2 placebo-controlled trial with a humanized antibody, an aglycosylated human IgG1 antibody directed against CD3 (ChAglyCD3). METHODS In a multicenter study, 80 patients with new-onset type 1 diabetes were randomly assigned to receive placebo or ChAglyCD3 for six consecutive days. Patients were followed for 18 months, during which their daily insulin needs and residual beta-cell function were assessed according to glucose-clamp-induced C-peptide release before and after the administration of glucagon. RESULTS At 6, 12, and 18 months, residual beta-cell function was better maintained with ChAglyCD3 than with placebo. The insulin dose increased in the placebo group but not in the ChAglyCD3 group. This effect of ChAglyCD3 was most pronounced among patients with initial residual beta-cell function at or above the 50th percentile of the 80 patients. In this subgroup, the mean insulin dose at 18 months was 0.22 IU per kilogram of body weight per day with ChAglyCD3, as compared with 0.61 IU per kilogram with placebo (P<0.001). In this subgroup, 12 of 16 patients who received ChAglyCD3 (75 percent) received minimal doses of insulin (< or =0.25 IU per kilogram per day) as compared with none of the 21 patients who received placebo. Administration of ChAglyCD3 was associated with a moderate "flu-like" syndrome and transient symptoms of Epstein-Barr viral mononucleosis. CONCLUSIONS Short-term treatment with CD3 antibody preserves residual beta-cell function for at least 18 months in patients with recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Bart Keymeulen
- Academic Hospital and Diabetes Research Center, Brussels Free University-VUB, Brussels.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The concept of induction immunosuppression is evolving. Once used to buttress the inadequacies of past maintenance immunosuppressive regimens, it is now being used to permit effective maintenance immunosuppression using ever decreasing amounts of modern agents. In addition to lymphocyte depletion, with which it was once synonymous, it is now recognized that induction immunosuppression is associated with a host of non-depletional effects such as receptor modulation and blockade, which profoundly alter the lymphocyte's capacity to mount an effective response. Additionally, the recent focus on the effect of induction agents on antigen presenting cells and on regulatory factors controlling homeostatic repopulation may ultimately permit a safer, more refined and more effective approach to induction immunosuppression.
Collapse
Affiliation(s)
- Douglas A Hale
- National Institute of Diabetes and Digestive and Kidney Diseases, Room 11S219, Building 10, 10 Center Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
50
|
Galante NZ, Câmara NOS, Kallás EG, Salomão R, Pacheco-Silva A. Modulation of peripheral blood T-lymphocytes in kidney transplant recipients treated with low dose OKT3 therapy. Immunol Lett 2004; 91:75-7. [PMID: 14757373 DOI: 10.1016/j.imlet.2003.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immunosuppressive effect of OKT3 depends upon both T cell depletion and antigenic modulation of CD3 complex. To establish the effect of low doses of OKT3 on peripheral T lymphocytes, we analyzed 47 kidney transplant recipients receiving OKT3 for the first time. OKT3 was used as rescue therapy in 39 patients and as part of induction protocols in 8. The mean age of patients was 39+/-10 years, 30 were females and 9 were re-transplants. Half of them (51.1%) received kidney from cadaver donors. Among those receiving OKT3 as rescue therapy, 82% recovered graft function, including patients with severe BANFF-graded rejections. After the first dose of OKT3, it a pronounced T cell depletion was observed followed by an increase in CD4 and CD8 expression in CD3 negative T cells, supporting the idea that T cell modulation was present. In conclusion, low dose OKT3 was effective in treating severe allograft rejection by inducing a sustained TCR/CD3 down modulation without long-lasting T cell depletion.
Collapse
Affiliation(s)
- Nelson Zocoler Galante
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | | | | | | | | |
Collapse
|