1
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
3
|
Wang S, Hu D, Li YQ, Lei Q, Liu L, He X, Han M, Pei G, Zeng R, Xu G. High Renal Mast Cell Density Is Associated with Poor Prognosis in Patients with Immunoglobulin A Nephropathy. Am J Nephrol 2023; 54:106-116. [PMID: 37245508 PMCID: PMC10777718 DOI: 10.1159/000531243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION This observational cohort study evaluated the prognostic value of mast cells in the pathogenesis and progression of IgA nephropathy. METHODS A total of 76 adult IgAN patients were enrolled into this study from Jan 2007 and June 2010. Immunohistochemistry and immunofluorescence were used to identify tryptase-positive mast cells in renal biopsy samples. Patients were classified into Tryptasehigh and Tryptaselow groups. Depending on an average of 96-month follow-up, the predictive value of tryptase-positive mast cells in IgAN progression was analyzed. RESULTS Tryptase-positive mast cells were found frequently in IgAN kidneys while rarely observed in normal kidneys. We also found IgAN patients in Tryptasehigh group presented both severe clinical and pathological renal manifestations. Furthermore, Tryptasehigh group contained more interstitial macrophages and lymphocytes infiltration than Tryptaselow group. Higher tryptase-positive cells density is associated with poor prognosis in patients with IgAN. CONCLUSIONS High renal mast cells density is associated with severe renal lesions and poor prognosis in patients with Immunoglobulin A nephropathy. High renal mast cells density might be used as a predictor of poor prognosis in patients with IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sakita JY, Elias-Oliveira J, Carlos D, de Souza Santos E, Almeida LY, Malta TM, Brunaldi MO, Albuquerque S, Araújo Silva CL, Andrade MV, Bonato VLD, Garcia SB, Cunha FQ, Cebinelli GCM, Martins RB, Matthews J, Colli L, Martin FL, Uyemura SA, Kannen V. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer 2022; 10:jitc-2022-004653. [PMID: 36220303 PMCID: PMC9557261 DOI: 10.1136/jitc-2022-004653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models. Methods We analyzed human patient matched samples of healthy colon vs CRC tissue alongside conducting a The Cancer Genome Atlas-based immunogenomic analysis and multiple experiments employing genetically engineered mouse (GEM) models. Results Analyzing human CRC samples revealed that MCs can be active or inactive in this disease. An activated MC population decreased the number of tumor-residing CD8 T cells. In mice, MC deficiency decreased the development of CA-CRC lesions, while it increased the density of tumor-based CD8 infiltration. Furthermore, co-culture experiments revealed that tumor-primed MCs promote apoptosis in CRC cells. In MC-deficient mice, we found that MCs inhibited the development of sCRC lesions. Further exploration of this with several GEM models confirmed that different immune responses alter and are altered by MC activity, which directly alters colon tumorigenesis. Since rescuing MC activity with bone marrow transplantation in MC-deficient mice or pharmacologically inhibiting MC effects impacts the development of sCRC lesions, we explored its therapeutic potential against CRC. MC activity promoted CRC cell engraftment by inhibiting CD8+ cell infiltration in tumors, pharmacologically blocking it inhibits the ability of allograft tumors to develop. This therapeutic strategy potentiated the cytotoxic activity of fluorouracil chemotherapy. Conclusion Therefore, we suggest that MCs have a dual role throughout CRC development and are potential druggable targets against this disease.
Collapse
Affiliation(s)
- Juliana Y Sakita
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Carlos
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Emerson de Souza Santos
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tathiane M Malta
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariângela O Brunaldi
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Albuquerque
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vania L D Bonato
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Britto Garcia
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Ronaldo B Martins
- Department of Cell and Molecular Biology, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Nutrition, University of Oslo, Oslo, Norway
| | - Leandro Colli
- Medical Imaging, Hematology, and Oncology, University of Sao Paulo, Sao Paulo, Brazil
| | - Francis L Martin
- Biocel Ltd, Hull, UK,Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Kannen
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil,Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
6
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Olivera A, Rivera J. Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods Mol Biol 2020; 2163:3-31. [PMID: 32766962 DOI: 10.1007/978-1-0716-0696-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter, we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities toward the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Juan Rivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Schuijs MJ, Hammad H, Lambrecht BN. Professional and 'Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol 2018; 40:22-34. [PMID: 30502024 DOI: 10.1016/j.it.2018.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) are critical for the activation of naïve CD4+ T cells and are considered professional antigen-presenting cells (APCs), as are macrophages and B cells. Recently, several innate type 2 immune cells, such as basophils, mast cells (MCs), eosinophils, and innate type 2 lymphocytes (ILC2), have also emerged as harboring APC behavior. Through surface expression or transfer of peptide-loaded MHCII, expression of costimulatory and co-inhibitory molecules, as well as the secretion of polarizing cytokines, these innate cells can extensively communicate with effector and regulatory CD4+ T cells. An exciting new concept is that the complementary tasks of these 'amateur' APCs contribute to shaping and regulating adaptive immunity to allergens and helminths, often in collaboration with professional APCs.
Collapse
Affiliation(s)
- Martijn J Schuijs
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Schubert N, Lisenko K, Auerbach C, Weitzmann A, Ghouse SM, Muhandes L, Haase C, Häring T, Schulze L, Voehringer D, Gunzer F, Müller W, Feyerabend TB, Rodewald HR, Dudeck A, Roers A. Unimpaired Responses to Vaccination With Protein Antigen Plus Adjuvant in Mice With Kit-Independent Mast Cell Deficiency. Front Immunol 2018; 9:1870. [PMID: 30210490 PMCID: PMC6123530 DOI: 10.3389/fimmu.2018.01870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund’s adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.
Collapse
Affiliation(s)
- Nadja Schubert
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Katharina Lisenko
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christian Auerbach
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Anke Weitzmann
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Shanawaz Mohammed Ghouse
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Lina Muhandes
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christa Haase
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Tobias Häring
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Livia Schulze
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Florian Gunzer
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Anne Dudeck
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany.,Medical Faculty, Institute for Molecular and Clinical Immunology, Otto von Guericke University, Magdeburg, Germany
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| |
Collapse
|
11
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
12
|
Abstract
Skin is the largest organ of the body with a complex network of multitude of cell types that perform plastic and dynamic cellular communication to maintain several vital processes such as inflammation, immune response including induction of tolerance and disease prevention, wound healing, and angiogenesis. Of paramount importance are immunological functions of the skin that protect from harmful exposure coming from external and internal environments. Awareness of skin immunity can provide a better comprehension of inflammation, autoimmunity, cancer, graft-versus-host disease, vaccination, and immunotherapy approaches. This paper will update on what we currently know about immune sentinels contributing to skin immunity.
Collapse
Affiliation(s)
- Agata Matejuk
- Faculty of Health Science, Wroclaw Medical University, Wrocław, Poland. .,Faculty of Science and Technology, Karkonosze College, Jelenia Góra, Poland.
| |
Collapse
|
13
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Mekori YA, Hershko AY, Frossi B, Mion F, Pucillo CE. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. Eur J Pharmacol 2016; 778:84-9. [DOI: 10.1016/j.ejphar.2015.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
|
15
|
NOD1 and NOD2 Interact with the Phagosome Cargo in Mast Cells: A Detailed Morphological Evidence. Inflammation 2016; 38:1113-25. [PMID: 25502289 DOI: 10.1007/s10753-014-0077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mast cells (MC) play a key role in triggering the inflammatory process and share some functions with professional phagocytes. It is not clear whether or not the phagocytic process in MC follows the same route and has the same meaning of that of professional phagocytes. Herein we analyze in detail the structure of the phagosome in rat peritoneal mast cells (RPMC). The ultrastructural analysis of the phagosome, containing either model particles or bacteria, reveals that these vacuoles are very tight, and in several areas, their membrane seems to have dissolved. RPMC express NOD1 and NOD2 proteins whose role is to recognize intracellular foreign components and induce the production of pro-inflammatory mediators. Following Escherichia coli ingestion, both these molecules are found on the phagosome membrane and on ingested pathogens, together with phagosome maturation markers. These findings suggest that in RPMC the ingested cargo can, through interruptions of the phagosome membrane, interact directly with NODs, which act as switches in the process of cytokine production.
Collapse
|
16
|
Bulfone-Paus S, Bahri R. Mast Cells as Regulators of T Cell Responses. Front Immunol 2015; 6:394. [PMID: 26300882 PMCID: PMC4528181 DOI: 10.3389/fimmu.2015.00394] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/19/2015] [Indexed: 01/05/2023] Open
Abstract
Mast cells (MCs) are recognized to participate in the regulation of innate and adaptive immune responses. Owing to their strategic location at the host–environment interface, they control tissue homeostasis and are key cells for starting early host defense against intruders. Upon degranulation induced, e.g., by immunoglobulin E (IgE) and allergen-mediated engagement of the high-affinity IgE receptor, complement or certain neuropeptide receptors, MCs release a wide variety of preformed and newly synthesized products including proteases, lipid mediators, and many cytokines, chemokines, and growth factors. Interestingly, increasing evidence suggests a regulatory role for MCs in inflammatory diseases via the regulation of T cell activities. Furthermore, rather than only serving as effector cells, MCs are now recognized to induce T cell activation, recruitment, proliferation, and cytokine secretion in an antigen-dependent manner and to impact on regulatory T cells. This review synthesizes recent developments in MC–T cell interactions, discusses their biological and clinical relevance, and explores recent controversies in this field of MC research.
Collapse
Affiliation(s)
- Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| | - Rajia Bahri
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| |
Collapse
|
17
|
Paradigm shifts in mast cell and basophil biology and function: an emerging view of immune regulation in health and disease. Methods Mol Biol 2015; 1192:3-31. [PMID: 25149480 DOI: 10.1007/978-1-4939-1173-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
|
18
|
Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 2015; 63:104-12. [PMID: 24766823 PMCID: PMC4226394 DOI: 10.1016/j.molimm.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Mast cells (MC) are found in all vascularized tissues at homeostasis and, until recently, were viewed only as effector cells of allergic reactions via degranulation, the canonical process through which MC release mediators, including histamine and pre-formed proteases and cytokines such as TNF. Cross-linking of IgE bound to surface high affinity receptors for IgE (FcɛRI) by a specific antigen (Ag) triggers signaling events leading to degranulation. We and others have reported the concomitant production and export of an influential multifaceted sphingolipid mediator, sphingosine-1-phosphate (S1P) transported outside of MC by ATP-binding cassettes (ABC) transporters, i.e., independently of degranulation. Indeed, the MC horizon expanded by the discovery of their unique ability to selectively release mediators depending upon the stimulus and receptors involved. Aside from degranulation and transporter usage, MC are also endowed with piecemeal degranulation, a slower process during which mediator release occurs with minor morphological changes. The broad spectrum of pro- and anti-inflammatory bioactive substances MC produce and release, their amounts and delivery pace render these cells bona fide fine-tuners of the immune response. In this viewpoint article, MC developmental, phenotypic and functional plasticity, its modulation by microRNAs and its relevance to immunity, inflammation and cancer will be discussed.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
19
|
Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 2014; 14:719-30. [PMID: 25324123 DOI: 10.1038/nri3754] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells, macrophages and B cells are regarded as the classical antigen-presenting cells of the immune system. However, in recent years, there has been a rapid increase in the number of cell types that are suggested to present antigens on MHC class II molecules to CD4(+) T cells. In this Review, we describe the key characteristics that define an antigen-presenting cell by examining the functions of dendritic cells. We then examine the functions of the haematopoietic cells and non-haematopoietic cells that can express MHC class II molecules and that have been suggested to represent 'atypical' antigen-presenting cells. We consider whether any of these cell populations can prime naive CD4(+) T cells and, if not, question the effects that they do have on the development of immune responses.
Collapse
Affiliation(s)
- Taku Kambayashi
- Department of Pathology and Laboratory Medicine and Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Terri M Laufer
- Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
CD1d expressed in mast cell surface enhances IgE production in B cells by up-regulating CD40L expression and mediator release in allergic asthma in mice. Cell Signal 2014; 26:1105-17. [PMID: 24509414 DOI: 10.1016/j.cellsig.2014.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/28/2014] [Indexed: 11/23/2022]
Abstract
Mast cells play important roles via FcεRI-mediated activation in allergic asthma. A nonpolymorphic MHC I-like molecule CD1d, which is mainly expressed in APCs, presents glycolipid Ag to iTCR on iNKT cells and modulates allergic responses. This study aimed to investigate the role of CD1d on IgE production and mast cell activation related to allergic asthma. Bone marrow-derived mast cells (BMMCs) from C57BL/6 Wild type (WT) or KO (CD1d(-/-)) mice were activated with Ag/Ab (refer to WT-act-BMMCs and KO-act-BMMCs, respectively) or α-Galactosylceramide (WT-αGal-BMMCs, KO-αGal-BMMCs) in the presence of iNKT cells. WT, KO or BMMC-transferred KO mice were sensitized and/or challenged by OVA or α-Gal to induce asthma. KO-act-BMMCs reduced intracellular Ca(2+) levels, expression of signaling molecules (Ras, Rac1/2, PLA2, COX-2, NF-κB/AP-1), mediator release (histamines, leukotrienes and cytokines/chemokines), and total IgE levels versus the corresponding WT-BMMCs. KO mice reduced total and OVA-specific serum IgE levels, number of mast cells, recruiting molecules (CCR2/CCL2, VCAM-1, PECAM-1), expression of tryptase, c-kit, CD40L and cytokine mRNA, co-localization of c-kit and CD1d or iNKT cells in BAL cells or lung tissues, and PCA responses, compared with the corresponding WT mice. BMMC-transferred KO-both mice showed the restoration of all allergic responses versus KO-both mice (Ag/Ab reaction plus α-Gal). KO-αGal-BMMCs or KO-αGal mice did not show any responses. Our data suggest that CD1d-expressed mast cells may function as APC cells for iNKT cells and exacerbate airway inflammation and remodeling through up-regulating IgE production via B cell Ig class switching and mediator release in mast cells of OVA-challenged mice.
Collapse
|
21
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
22
|
Brown MA, Hatfield JK. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy? Front Immunol 2012; 3:147. [PMID: 22701454 PMCID: PMC3369183 DOI: 10.3389/fimmu.2012.00147] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/19/2012] [Indexed: 12/14/2022] Open
Abstract
There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
23
|
Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C. Mast cell: an emerging partner in immune interaction. Front Immunol 2012; 3:120. [PMID: 22654879 PMCID: PMC3360165 DOI: 10.3389/fimmu.2012.00120] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Collapse
Affiliation(s)
- Giorgia Gri
- Immunology Laboratory, Department of Medical and Biological Science, University of Udine Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pullen NA, Falanga YT, Morales JK, Ryan JJ. The Fyn-STAT5 Pathway: A New Frontier in IgE- and IgG-Mediated Mast Cell Signaling. Front Immunol 2012; 3:117. [PMID: 22593761 PMCID: PMC3350083 DOI: 10.3389/fimmu.2012.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mast cells are central players in immune surveillance and activation, positioned at the host–environment interface. Understanding the signaling events controlling mast cell function, especially those that maintain host homeostasis, is an important and still less understood area of mast cell-mediated disease. With respect to allergic disease, it is well established that IgE and its high affinity receptor FcεRI are major mediators of mast cell activation. However, IgG-mediated signals can also modulate mast cell activities. Signals elicited by IgG binding to its cognate receptors (FcγR) are the basis for autoimmune disorders such as lupus and rheumatoid arthritis. Using knowledge of IgE-mediated mast cell signaling, recent work has begun to illuminate potential overlap between FcεRI and FcγR signal transduction. Herein we review the importance of Src family kinases in FcεRI and FcγR signaling, the role of the transcription factor STAT5, and impingement of the regulatory cytokines IL-4, IL-10, and TGFβ1 upon this network.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, The Asthma and Allergic Disease Cooperative Research Center, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
25
|
Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 2012; 41:298-310. [PMID: 21249468 DOI: 10.1007/s12016-011-8252-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with specific immune and inflammatory mechanisms. Atopy is among the major features of the diagnosis criteria for AD but is not an essential feature. Thus, patients diagnosed with AD can be atopic or non-atopic. This review focuses on the role of IgE, mast cells, and eosinophils in the pathogenesis of AD. The known functions of IgE in allergic inflammation suggest that IgE and IgE-mediated mast cell and eosinophil activation contribute to AD, but direct evidence supporting this is scarce. The level of IgE (thus the degree of allergic sensitization) is associated with severity of AD and contributed by abnormality of skin barrier, a key feature of AD. The function of IgE in development of AD is supported by the beneficial effect of anti-IgE therapy in a number of clinical studies. The role of mast cells in AD is suggested by the increase in the mast cell number and mast cell activation in AD lesions and the association between mast cell activation and AD. It is further suggested by their role in mouse models of AD as well as by the effect of therapeutic agents for AD that can affect mast cells. The role of eosinophils in AD is suggested by the presence of eosinophilia in AD patients and eosinophil infiltrates in AD lesions. It is further supported by information that links AD to cytokines and chemokines associated with production, recruitment, and activation of eosinophils.
Collapse
Affiliation(s)
- Fu-Tong Liu
- Department of Dermatology, University of California-Davis School of Medicine, Sacramento, CA 95816, USA.
| | | | | |
Collapse
|
26
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|
27
|
Crivellato E, Nico B, Ribatti D. The history of the controversial relationship between mast cells and basophils. Immunol Lett 2011; 141:10-7. [PMID: 21756940 DOI: 10.1016/j.imlet.2011.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022]
Abstract
Work on mast cells and basophils began with their identification by Paul Ehrlich at the end of the 19th century. Mast cells and basophils were immediately perceived as closely linked cells and early nomenclature formulated by Ehrlich himself, i.e., tissue "Mastzellen" and blood "Mastzellen", reflected this unifying viewpoint. With time, important functional affinities but also substantial diversities were recognized. This review article focuses on the historical development of the concept of mast cell/basophil specificity, from the initial identification of these cells to current studies.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Udine Medical School, Udine, Italy.
| | | | | |
Collapse
|
28
|
Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:274-82. [PMID: 21646293 PMCID: PMC4201114 DOI: 10.4049/jimmunol.1003603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mast cells (MCs) have been thought to play a pathogenic role in the development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, an immunoregulatory function of these cells has recently been suggested. We investigated the role of MCs in EAE using the W(-sh) mouse strain, which is MC deficient. W(-sh) mice developed earlier and more severe clinical and pathological disease with extensive demyelination and inflammation in the CNS. The inflammatory cells were mainly composed of CD4(+) T cells, monocyte/macrophages, neutrophils, and dendritic cells. Compared with wild-type mice, MC-deficient mice exhibited an increased level of MCP-1/CCR2 and CD44 expression on CD4(+) T cells in addition to decreased production of regulatory T cells, IL-4, IL-5, IL-27, and IL-10. We also found that levels of IL-17, IFN-γ, and GM-CSF were significantly increased in peripheral lymphocytes from immunized W(-sh) mice compared with those in peripheral lymphocytes from wild-type mice. Reconstitution of W(-sh) mice downregulated susceptibility to EAE, which correlated with MC recruitment and regulatory T cell activation in the CNS. These findings indicate that responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS and that, in the absence of MCs, increased MCP-1, CCR2, IL-17, IFN-γ, CD44, and other inflammatory molecules may be responsible for increased severity of EAE.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mast Cells and Immunoregulation/Immunomodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:186-211. [DOI: 10.1007/978-1-4419-9533-9_11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Mast cells: Emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 2010; 48:14-25. [DOI: 10.1016/j.molimm.2010.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 12/31/2022]
|
31
|
Eren U, Kum S, Bozkurt M, Gules O. MHC class II expression by mast cells in the genital tract of cows. Vet Res Commun 2010; 34:405-11. [DOI: 10.1007/s11259-010-9411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
|
32
|
Valitutti S, Espinosa E. Cognate interactions between mast cells and helper T lymphocytes. SELF NONSELF 2010; 1:114-122. [PMID: 21487513 DOI: 10.4161/self.1.2.11795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 02/02/2023]
Abstract
Mast cells are key effectors in allergy and inflammation. Endowed with a large panel of surface receptors and a huge arsenal of bioactive mediators, they readily communicate with various cellular partners during innate and adaptive immune responses. Recent lines of evidence show that mast cells are also able to establish cognate interactions with helper T lymphocytes for antigen presentation and bidirectional cell-cell cooperation. In this short review we focus on the role of mast cells as unconventional antigen presenting cells for helper T lymphocytes. We discuss how looking at mast cell biology from this new angle can help to better understand their pleiotropic role in health and disease.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM; U563; Centre de Physiopathologie de Toulouse Purpan; Section Dynamique moléculaire des interactions lymphocytaires; Toulouse, France; and Université Toulouse III Paul-Sabatier; Toulouse, France
| | | |
Collapse
|
33
|
Abstract
Until recently, basophils and mast cells were considered mainly effector cells with an innate immune response linked to allergy and parasite infection. Only in the past few years they were recognized as important regulators of adaptive immunity. The development of new methods and reagents has enabled detection and functional analysis of these rare cells in patients and murine disease models. Basophils are normally present in the peripheral blood, spleen, and bone marrow, but migrate into lymph nodes and tissues during inflammation. They are rapidly activated by cytokines (e.g., interleukin (IL)-3) and intact antigens that cross-link surface-bound immunoglobulins. Activated basophils change the phenotype of T cells toward Th2 and markedly support humoral memory responses. Mast cells also migrate into lymph nodes and interact with dendritic cells, T cells, and B cells. In this review, we describe how mast cells and basophils affect immune responses and discuss implications for renal diseases and transplant rejection.
Collapse
Affiliation(s)
- Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| | | |
Collapse
|
34
|
Hershko AY, Rivera J. Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 2009; 128:98-104. [PMID: 19900479 DOI: 10.1016/j.imlet.2009.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 12/14/2022]
Abstract
Recent advances in understanding the physiological role of mast cells (MCs) point to an important regulatory role for these cells in adaptive immunity. MCs express a diverse array of molecules that can promote their interaction with T cells as well as with other immune cells. New evidence demonstrates that mast cells can directly and indirectly communicate with T cells. They can control both effector and regulatory T cell responses and their activity can in turn be modulated by these interactions. Here we briefly summarize these advances and discuss some of the major challenges in understanding the communication of MCs and T cells.
Collapse
Affiliation(s)
- Alon Y Hershko
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Kim S, Shen T, Min B. Basophils can directly present or cross-present antigen to CD8 lymphocytes and alter CD8 T cell differentiation into IL-10-producing phenotypes. THE JOURNAL OF IMMUNOLOGY 2009; 183:3033-9. [PMID: 19667092 DOI: 10.4049/jimmunol.0900332] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing evidence suggesting that basophils play a critical role in developing Th2-type immunity both in vitro and in vivo. We previously reported that basophils cocultured with naive CD4 T cells stimulated with Ag promote the differentiation of the T cells into IL-4-producing Th2 cells. In the present study, we examined the roles of basophils during CD8 T cell activation. Although stimulating OVA-specific OT-I CD8 T cells with OVA peptide-pulsed splenic dendritic cells primarily induced the production of IFN-gamma, adding basophils into the coculture induced IL-10 production. Surprisingly, basophils were capable of directly presenting peptide Ag or of cross-presenting protein Ag to CD8 T cells. CD28-mediated costimulation dramatically enhanced T cell IL-10 production, yet neither ICOS nor CD86 was involved in IL-10 production. Basophil-mediated IL-10 induction was greatly diminished without IL-4 or IL-6, indicating that these cytokines are necessary for programming CD8 T cell IL-10 production. Adding IL-4 or IL-6 into CD8/APC coculture was not sufficient to induce IL-10 production; however, the presence of both cytokines significantly induced IL-10 production without basophils. Finally, CD8 T cells producing IL-10 induced by basophils did not display regulatory cell functions. Collectively, these results suggest a novel function of basophils that act as professional APCs to present Ag to CD8 T cells, thus inducing IL-10 production.
Collapse
Affiliation(s)
- Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
36
|
Kambayashi T, Allenspach EJ, Chang JT, Zou T, Shoag JE, Reiner SL, Caton AJ, Koretzky GA. Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4686-95. [PMID: 19342644 PMCID: PMC2922395 DOI: 10.4049/jimmunol.0803180] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In addition to their well-established role as regulators of allergic response, recent evidence supports a role for mast cells in influencing the outcome of physiologic and pathologic T cell responses. One mechanism by which mast cells (MCs) influence T cell function is indirectly through secretion of various cytokines. It remains unclear, however, whether MCs can directly activate T cells through Ag presentation, as the expression of MHC class II by MCs has been controversial. In this report, we demonstrate that in vitro stimulation of mouse MCs with LPS and IFN-gamma induces the expression of MHC class II and costimulatory molecules. Although freshly isolated peritoneal MCs do not express MHC class II, an in vivo inflammatory stimulus increases the number of MHC class II-positive MCs in situ. Expression of MHC class II granted MCs the ability to process and present Ags directly to T cells with preferential expansion of Ag-specific regulatory T cells over naive T cells. These data support the notion that, in the appropriate setting, MCs may regulate T cell responses through the direct presentation of Ag.
Collapse
Affiliation(s)
- Taku Kambayashi
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eric J. Allenspach
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John T. Chang
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Tao Zou
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jonathan E. Shoag
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven L. Reiner
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
37
|
Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 2009; 1143:83-104. [PMID: 19076346 DOI: 10.1196/annals.1443.023] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells were discovered more than 100 years ago and until recently, have been considered renegades of the host with the sole purpose of perpetuating allergy. The discovery of mast cell-deficient mice that could be reconstituted with mast cells (the so called "mast cell knock-in" mice) has allowed the study of the in vivo functions of mast cells and revealed several new facets of these cells. It is now evident that mast cells have a much broader impact on many physiological and pathologic processes. Mast cells, particularly through their dynamic interaction with the nervous system, have been implicated in wound healing, tissue remodeling, and homeostasis. Perhaps the most progress has been made in our understanding of the role of mast cells in immunity outside the realm of allergy, and host defense. Mast cells play critical roles in both innate and adaptive immunity, including immune tolerance. Greater insight into mast cell biology has prompted studies probing the additional consequences of mast cell dysfunction, which reveal a central role for mast cells in the pathogenesis of autoimmune disorders, cardiovascular disorders, and cancer. Here, we review recent developments in the study of mast cells, which present a complex picture of mast cell functions.
Collapse
Affiliation(s)
- Kavitha N Rao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
38
|
Regulation of IL-2 expression by transcription factor BACH2 in umbilical cord blood CD4+ T cells. Leukemia 2008; 22:2201-7. [DOI: 10.1038/leu.2008.234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Harvima IT, Nilsson G, Suttle MM, Naukkarinen A. Is there a role for mast cells in psoriasis? Arch Dermatol Res 2008; 300:461-78. [PMID: 18719932 DOI: 10.1007/s00403-008-0874-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 06/17/2008] [Accepted: 06/20/2008] [Indexed: 12/19/2022]
Abstract
Mast cells have traditionally been considered as effector cells in allergy but during the last decade it has been realized that mast cells are essentially involved in the mechanisms of innate and acquired immunity. Upon activation by anaphylactic, piecemeal degranulation or degranulation-independent mechanisms mast cells can secrete rapidly or slowly a number of soluble mediators, such as serine proteinases, histamine, lipid-derived mediators, cytokines, chemokines and growth factors. Mast cells can express cell surface co-stimulatory receptors and ligands, and they can express MHC class II molecules and thereby present antigens. These soluble factors and cell surface molecules can interact with other cells, such as endothelial cells, keratinocytes, sensory nerves, neutrophils, T cell subsets and antigen presenting cells which are essential effectors in the development of skin inflammation. Besides promoting inflammation, mast cells may attempt in some circumstances to suppress the inflammation and epidermal growth but the regulation between suppressive and proinflammatory mechanisms is unclear. Psoriasis is characterized by epidermal hyperplasia and chronic inflammation where tryptase- and chymase-positive MC(TC) mast cells are activated early in the developing lesion and later the cells increase in number in the upper dermis with concomitant expression of cytokines and TNF superfamily ligands as well as increased contacts with neuropeptide-containing sensory nerves. Due to the intimate involvement of mast cells in immunity and chronic inflammation the role of mast cells in psoriasis is discussed in this review.
Collapse
Affiliation(s)
- Ilkka T Harvima
- Department of Dermatology, Kuopio University Hospital and University of Kuopio, P O. Box 1777, 70211, Kuopio, Finland.
| | | | | | | |
Collapse
|
40
|
Medic N, Vita F, Abbate R, Soranzo MR, Pacor S, Fabbretti E, Borelli V, Zabucchi G. Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 2008; 200:27-40. [PMID: 18657868 DOI: 10.1016/j.jneuroim.2008.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
A role for mast cells (MC) in the pathogenesis of multiple sclerosis (MS) has been suggested, based on the analysis of human lesions and on an animal model of the disease (EAE). What role MC play in the development of MS is not well understood. We hypothesized that the link connecting MC with demyelinating diseases may be represented by their interaction with myelin. Here we show that myelin can activate mast cells. This process could be a key event in the mast cell function required for inducing EAE in mice and possibly in MS in man.
Collapse
Affiliation(s)
- Nevenka Medic
- Department of Physiology and Pathology, University of Trieste, via A. Fleming 22, 34127 Trieste Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 2008; 26:705-39. [PMID: 18370925 DOI: 10.1146/annurev.immunol.26.021607.090320] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are many parallels between allergic and autoimmune responses. Both are considered hypersensitivity responses: pathologies that are elicited by an exuberant reaction to antigens that do not pose any inherent danger to the organism. Although mast cells have long been recognized as central players in allergy, only recently has their role in autoimmunity become apparent. Because of the commonalities of these responses, much of what we have learned about the underlying mast cell-dependent mechanisms of inflammatory damage in allergy and asthma can be used to understand autoimmunity. Here we review mast cell biology in the context of autoimmune disease. We discuss the huge diversity in mast cell responses that can exert either proinflammatory or antiinflammatory activity. We also consider the myriad factors that cause one response to predominate over another in a particular immune setting.
Collapse
Affiliation(s)
- Blayne A Sayed
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
42
|
Kim JK, Sung NY, Srinivasan P, Choi JI, Kim SK, Oh JM, Kim JH, Song BS, Park HJ, Byun MW, Lee JW. Effect of gamma irradiated hyaluronic acid on acetaminophen induced acute hepatotoxicity. Chem Biol Interact 2007; 172:141-53. [PMID: 18237725 DOI: 10.1016/j.cbi.2007.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/26/2007] [Accepted: 11/26/2007] [Indexed: 12/21/2022]
Abstract
The hepatoprotective efficacy of irradiated hyaluronic acid (HA) on acetaminophen (APAP) induced acute hepatotoxicity was investigated. BALB/c mice (4-6 weeks of age) were pretreated with unirradiated HA (UIHA), 5 and 50 kGy gamma irradiated HA (GIHA) for 14 days and were dosed APAP (500 mg/kg b.wt). After 9h of APAP dosing animals were euthanized. The degree of acute hepatotoxicity was measured by aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The expression of interferon-gamma (IFN-gamma) in serum and alpha-and mu-class of gluthathione-S-transferase (GSTs), CYP 2E1 class of cytochrome monooxygenase and glutathione (GSH) in liver were quantified. Histological evaluation was done by Hematoxiylin and Eiosin staining, Periodic acid schiffs staining, Manson trichrome staining and histological scorings were done. The degree of acute hepatotoxicity was markedly lower in UIHA and 5 kGy than in 50 kGy GIHA pretreated group and there was negligible difference between 5 and 50 kGy GIHA pretreated group. The expression of interferon-gamma (IFN-gamma) was significantly (P<0.05) suppressed in 5 and 50 kGy GIHA pretreated group. Histological scorings showed a significant protection of liver in UIHA and 5 kGy GIHA pretreated mice. Expression of alpha class GSTs was significantly increased in 5 and 50 kGy GIHA pretreated group. To conclude suppression of IFN-gamma and increase in alpha-class GSTs expression may exert a protective role in acute hepatotoxicity of APAP and 5 kGy GIHA showed comparable protective effect to that of UIHA.
Collapse
Affiliation(s)
- Jae Kyung Kim
- Radiation Food Science & Biotechnology Team, Advanced Radiation Technology Institute, KAERI, 1266 Sinjeong-dong, Jeongeup 580-185, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy 2007; 38:4-18. [PMID: 18031566 DOI: 10.1111/j.1365-2222.2007.02886.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mast cells have long been recognized for their role in the genesis of allergic inflammation; and more recently for their participation in innate and acquired immune responses. Mast cells reside within tissues including the skin and mucosal membranes, which interface with the external environment; as well as being found within vascularized tissues next to nerves, blood vessels and glandular structures. Mast cells have the capability of reacting both within minutes and over hours to specific stimuli, with local and systemic effects. Mast cells express the high affinity IgE receptor (FcepsilonRI) and upon aggregation of FcepsilonRI by allergen-specific IgE, mast cells release and generate biologically active preformed and newly synthesized mediators which are involved in many aspects of allergic inflammation. While mast cells have been well documented to be essential for acute allergic reactions, more recently the importance of mast cells in reacting through pattern recognition receptors in innate immune responses has become recognized. Moreover, as our molecular understanding of the mast cell has evolved, novel targets for modulation have been identified with promising therapeutic potential.
Collapse
Affiliation(s)
- J M Brown
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
44
|
Navi D, Saegusa J, Liu FT. Mast Cells and Immunological Skin Diseases. Clin Rev Allergy Immunol 2007; 33:144-55. [DOI: 10.1007/s12016-007-0029-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Stelekati E, Orinska Z, Bulfone-Paus S. Mast cells in allergy: Innate instructors of adaptive responses. Immunobiology 2007; 212:505-19. [PMID: 17544835 DOI: 10.1016/j.imbio.2007.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
The function of mast cells as effector cells in allergy has been extensively studied. However, increasing insight into mast cell physiology has revealed new mast cell functions and has introduced mast cells as key players in the regulation of innate as well as adaptive immunity. For example, mast cells have recently been found to express Toll-like receptors (TLRs), which enable them to participate in the innate immune response against pathogens. Furthermore, mast cells have been reported to interact with B cells, dendritic cells and T cells and thereby modulate the direction of an adaptive immune response. Finally, recent documentation that mast cells express functional MHC class II and costimulatory molecules and release immunologically active exosomes, has raised the possibility that mast cells also engage in (as yet) poorly understood antigen presentation functions. In this review, we explore the hypothesis that mast cells serve as central mediators between innate and adaptive immunity, rather as pure effector cells, during allergic innate responses.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany
| | | | | |
Collapse
|
46
|
Paus R, Liu FT. Viewpoint 4. Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00506_5.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Paus R, Schröder JM, Reich K, Kabashima K, Liu FT, Romani N, Metz M, Kerstan A, Lee PHA, Loser K, Schön MP, Maurer M, Stoitzner P, Beissert S, Tokura Y, Gallo RL, Reich K. Who is really in control of skin immunity underphysiologicalcircumstances - lymphocytes, dendritic cells or keratinocytes? Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00506.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast Cells Enhance T Cell Activation: Importance of Mast Cell Costimulatory Molecules and Secreted TNF. THE JOURNAL OF IMMUNOLOGY 2006; 176:2238-48. [PMID: 16455980 DOI: 10.4049/jimmunol.176.4.2238] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that mast cells stimulated via FcepsilonRI aggregation can enhance T cell activation by a TNF-dependent mechanism. However, the molecular mechanisms responsible for such IgE-, Ag- (Ag-), and mast cell-dependent enhancement of T cell activation remain unknown. In this study we showed that mouse bone marrow-derived cultured mast cells express various costimulatory molecules, including members of the B7 family (ICOS ligand (ICOSL), PD-L1, and PD-L2) and the TNF/TNFR families (OX40 ligand (OX40L), CD153, Fas, 4-1BB, and glucocorticoid-induced TNFR). ICOSL, PD-L1, PD-L2, and OX40L also are expressed on APCs such as dendritic cells and can modulate T cell function. We found that IgE- and Ag-dependent mast cell enhancement of T cell activation required secreted TNF; that TNF can increase the surface expression of OX40, ICOS, PD-1, and other costimulatory molecules on CD3(+) T cells; and that a neutralizing Ab to OX40L, but not neutralizing Abs to ICOSL or PD-L1, significantly reduced IgE/Ag-dependent mast cell-mediated enhancement of T cell activation. These results indicate that the secretion of soluble TNF and direct cell-cell interactions between mast cell OX40L and T cell OX40 contribute to the ability of IgE- and Ag-stimulated mouse mast cells to enhance T cell activation.
Collapse
Affiliation(s)
- Susumu Nakae
- Department of Pathology, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
The influence of photodynamic therapy on the immune response. Photodiagnosis Photodyn Ther 2005; 2:283-98. [DOI: 10.1016/s1572-1000(05)00098-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 12/17/2022]
|
50
|
Nishimoto H, Lee SW, Hong H, Potter KG, Maeda-Yamamoto M, Kinoshita T, Kawakami Y, Mittler RS, Kwon BS, Ware CF, Croft M, Kawakami T. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood 2005; 106:4241-8. [PMID: 16123219 PMCID: PMC1416206 DOI: 10.1182/blood-2005-04-1358] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mast cells are the major effector-cell type for immediate hypersensitivity and other forms of allergic reactions. Expression of 4-1BB, a member of the tumor necrosis factor receptor superfamily, is induced at mRNA and protein levels on stimulation through the high-affinity receptor for immunoglobulin E (IgE; FcepsilonRI). In this study, we present evidence that agonistic anti-4-1BB antibodies can enhance FcepsilonRI-induced cytokine production and secretion. Consistent with this, 4-1BB-deficient mast cells exhibit reduced degranulation and cytokine production on FcepsilonRI stimulation. Analysis of 4-1BB ligand (4-1BBL)-deficient cells supported this notion. As a potential mechanism for these defects, we identified a defect in Ca2+ flux induced by FcepsilonRI stimulation. The defective Ca2+ flux could be accounted for by the reduced activity of Lyn/Btk/phospholipase C-gamma2 pathway and constitutive interactions between 4-1BB and Lyn. Therefore, FcepsilonRI-inducible 4-1BB plays a costimulatory function together with FcepsilonRI stimulation.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Calcium/pharmacology
- Cell Proliferation
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Gene Expression Regulation
- Mast Cells/cytology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Mice, Knockout
- Phospholipase C gamma/metabolism
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Hajime Nishimoto
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Dr, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|