1
|
Heimlich JB, Bhat P, Parker AC, Jenkins MT, Vlasschaert C, Ulloa J, Van Amburg JC, Potts CR, Olson S, Silver AJ, Ahmad A, Sharber B, Brown D, Hu N, van Galen P, Savona MR, Bick AG, Ferrell PB. Multiomic profiling of human clonal hematopoiesis reveals genotype and cell-specific inflammatory pathway activation. Blood Adv 2024; 8:3665-3678. [PMID: 38507736 PMCID: PMC11284682 DOI: 10.1182/bloodadvances.2023011445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is an age-associated phenomenon that increases the risk of hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood.1 Here, we profile peripheral blood gene expression in 66 968 single cells from a cohort of 17 patients with CH and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant Tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3A (DNMT3A) cells with nonmutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a proinflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage inhibitory factor. We also found that T cells from patients with CH, although mostly unmutated, had decreased expression of GTPase of the immunity associated protein genes, which are critical to T-cell development, suggesting that CH impairs T-cell function.
Collapse
Affiliation(s)
- J. Brett Heimlich
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Pawan Bhat
- Vanderbilt University School of Medicine, Nashville, TN
| | | | | | | | - Jessica Ulloa
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph C. Van Amburg
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Chad R. Potts
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sydney Olson
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ayesha Ahmad
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Sharber
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Donovan Brown
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ningning Hu
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alexander G. Bick
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
3
|
Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76:1981-1989. [PMID: 33378583 PMCID: PMC8359454 DOI: 10.1111/all.14724] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
IgE, the key molecule in atopy has been shown to bind two receptors, FcεRI, the high‐affinity receptor, and FcεRII (CD23), binding IgE with lower affinity. Whereas cross‐linking of IgE on FcεRI expressed by mast cells and basophils triggers the allergic reaction, binding of IgE to CD23 on B cells plays an important role in both IgE regulation and presentation. Furthermore, IgE‐immune complexes (IgE‐ICs) bound by B cells enhance antibody and T cell responses in mice and humans. However, the mechanisms that regulate the targeting of the two receptors and the respective function of the two pathways in inflammation or homeostasis are still a matter of debate. Here, we focus on CD23 and discuss several mechanisms related to IgE binding, as well as the impact of the IgE/antigen‐binding on different immune cells expressing CD23. One recent paper has shown that free IgE preferentially binds to FcεRI whereas IgE‐ICs are preferentially captured by CD23. Binding of IgE‐ICs to CD23 on B cells can, on one hand, regulate serum IgE and prevent effector cell activation and on the other hand facilitate antigen presentation by delivering the antigen to dendritic cells. These data argue for a multifunctional role of CD23 for modulating IgE serum levels and immune responses.
Collapse
Affiliation(s)
- Paul Engeroff
- INSERM UMR_S 959 Immunology‐Immunopathology‐Immunotherapy (i3) Sorbonne Université Paris France
| | - Monique Vogel
- Center for Clinical Research Region Västmanland/Uppsala University, Västmanland hospital Västerås Sweden
- Department of BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
4
|
Karagiannis SN, Josephs DH, Karagiannis P, Gilbert AE, Saul L, Rudman SM, Dodev T, Koers A, Blower PJ, Corrigan C, Beavil AJ, Spicer JF, Nestle FO, Gould HJ. Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother 2012; 61:1547-64. [PMID: 22139135 PMCID: PMC11028906 DOI: 10.1007/s00262-011-1162-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/11/2011] [Indexed: 01/18/2023]
Abstract
Therapeutic antibodies have revolutionised treatment of some cancers and improved prognosis for many patients. Over half of those available are approved for haematological malignancies, but efficacious antibodies for solid tumours are still urgently needed. Clinically available antibodies belong to the IgG class, the most prevalent antibody class in human blood, while other classes have not been extensively considered. We hypothesised that the unique properties of IgE, a class of tissue-resident antibodies commonly associated with allergies, which can trigger powerful immune responses through strong affinity for their particular receptors on effector cells, could be employed for passive immunotherapy of solid tumours such as ovarian and breast carcinomas. Our laboratory has examined this concept by evaluating two chimaeric antibodies of the same specificity (MOv18) but different isotype, an IgG1 and an IgE against the tumour antigen folate receptor α (FRα). The latter demonstrates the potency of IgE to mount superior immune responses against tumours in disease-relevant models. We identified Fcε receptor-expressing cells, monocytes/macrophages and eosinophils, activated by MOv18 IgE to kill tumour cells by mechanisms such as ADCC and ADCP. We also applied this notion to a marketed therapeutic, the humanised IgG1 antibody trastuzumab and engineered an IgE counterpart, which retained the functions of trastuzumab in restricting proliferation of HER2/neu-expressing tumour cells but also activated effector cells to kill tumour cells by different mechanisms. On-going efficacy, safety evaluations and future first-in-man clinical studies of IgE therapeutics constitute key metrics for this concept, providing new scope for antibody immunotherapies for solid tumours.
Collapse
Affiliation(s)
- Sophia N Karagiannis
- NIHR Biomedical Research Centre at Guy's and St Thomas's Hospitals and King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Edkins AL, Borland G, Acharya M, Cogdell RJ, Ozanne BW, Cushley W. Differential regulation of monocyte cytokine release by αV and β(2) integrins that bind CD23. Immunology 2012; 136:241-51. [PMID: 22348662 DOI: 10.1111/j.1365-2567.2012.03576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine-like activity. Monocytic cells express the sCD23-binding integrins αVβ(3), αVβ(5), αMβ(2) and αXβ(2), but it is unclear which of these four integrins most acutely regulates sCD23-driven cytokine release. The hypothesis that ligation of different sCD23-binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP-1 model cell line. The sCD23-driven cytokine release signature was characterized by elevated amounts of RANTES (CCL5) and a striking increase in interleukin-8 (IL-8; CXCL8) secretion, but little release of macrophage inflammatory protein 1β (MIP-1β; CCL4). Antibodies to αVβ(3) or αXβ(2) both promoted IL-8 release, consistent with the sCD23-driven pattern, but both also evoked strong MIP-1β secretion; simultaneous ligation of these two integrins further increased cytokine secretion but did not alter the pattern of cytokine output. In both model cell lines and primary tissue, integrin-mediated cytokine release was more pronounced in immature monocyte cells than in mature cells. The capacity of anti-integrin monoclonal antibodies to elicit a cytokine release response is epitope-dependent and also reflects the differentiation state of the cell. Although a pattern of cytokine release identical to that provoked by sCD23 could not be elicited with any individual anti-integrin monoclonal antibody, αXβ(2) and αVβ(3) appear to regulate IL-8 release, a hallmark feature of sCD23-driven cytokine secretion, more acutely than αMβ(2) or αVβ(5).
Collapse
Affiliation(s)
- Adrienne L Edkins
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
6
|
Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE receptors--elements of the IgE network. Immunol Lett 2011; 141:36-44. [PMID: 21920387 DOI: 10.1016/j.imlet.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/15/2011] [Accepted: 08/27/2011] [Indexed: 12/22/2022]
Abstract
Soluble isoforms of three human IgE Fc receptors, namely FcεRI, FcεRII, and galectin-3, can be found in serum. These soluble IgE receptors are a diverse family of proteins unified by the characteristic of interacting with IgE in the extracellular matrix. A truncated form of the alpha-chain of FcεRI, the high affinity IgE receptor, has recently been described as a soluble isoform (sFcεRI). Multiple soluble isoforms of CD23 (sCD23), the low affinity IgE receptor also known as FcεRII, are generated via different mechanisms of extracellular and intracellular proteolysis. The second low affinity IgE receptor, galectin-3, only exists as a secretory protein. We here discuss the physiological roles of these three soluble IgE receptors as elements of the human IgE network. Additionally, we review the potential and current use of sFcεRI, sCD23, and galectin-3 as biomarkers in human disease.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
7
|
Steiniger B, Trabandt M, Barth PJ. The follicular dendritic cell network in secondary follicles of human palatine tonsils and spleens. Histochem Cell Biol 2011; 135:327-36. [DOI: 10.1007/s00418-011-0799-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/22/2023]
|
8
|
Acharya M, Borland G, Edkins AL, Maclellan LM, Matheson J, Ozanne BW, Cushley W. CD23/FcεRII: molecular multi-tasking. Clin Exp Immunol 2010; 162:12-23. [PMID: 20831712 PMCID: PMC2990925 DOI: 10.1111/j.1365-2249.2010.04210.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 12/22/2022] Open
Abstract
CD23 is the low-affinity receptor for immunoglobulin (Ig)E and plays important roles in the regulation of IgE responses. CD23 can be cleaved from cell surfaces to yield a range of soluble CD23 (sCD23) proteins that have pleiotropic cytokine-like activities. The regions of CD23 responsible for interaction with many of its known ligands, including IgE, CD21, major histocompatibility complex (MHC) class II and integrins, have been identified and help to explain the structure-function relationships within the CD23 protein. Translational studies of CD23 underline its credibility as a target for therapeutic intervention strategies and illustrate its involvement in mediating therapeutic effects of antibodies directed at other targets.
Collapse
Affiliation(s)
- M Acharya
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, CR-UK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Matsuno O, Ono E, Ueno T, Takenaka R, Nishitake T, Hiroshige S, Miyazaki E, Kumamoto T, Higuchi Y. Increased serum ADAM8 concentration in patients with drug-induced eosinophilic pneumonia-ADAM8 expression depends on a the allergen route of entry. Respir Med 2009; 104:34-9. [PMID: 19625177 DOI: 10.1016/j.rmed.2009.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND ADAM8 (a disintegrin and a metalloprotease 8) has been linked to asthma and eosinophilic pneumonia (EP). ADAM8 cleaves a variety of substrates and is a sheddase for CD23, the low affinity IgE receptor. The concentration of soluble ADAM8 (sADAM8) is increased in bronchoalveolar lavage fluid (BALF) from patients with smoking-induced acute eosinophilic pneumonia (AEP) and chronic eosinophilic pneumonia (CEP), but not drug-induced EP (Drug-EP). In AEP, the BALF sADAM8 concentration significantly correlates with the soluble CD23 concentration (sCD23). METHODS To evaluate the involvement of ADAM8 in the pathogenesis of eosinophilic pneumonia, we measured the concentrations of sADAM8 and its substrate, soluble CD23 (sCD23), in serum from patients with AEP, CEP, and Drug-EP. We also measured the change in the sADAM8 concentration after a provocation test. RESULTS In contrast to the BALF findings, serum sADAM8 concentrations were increased in Drug-EP (mean+/-SEM; 639.6+/-49.15) and serum ADAM8 levels correlated positively with the serum sCD23 levels in patients with Drug-EP (P=0.0080, R(2)=0.8465). Serum sADAM8 concentrations were also increased in AEP (409+/-76.91) and CEP (644.7+/-87.03). Serum ADAM8 concentrations were also elevated after the provocation test. CONCLUSION Serum ADAM8 concentrations were elevated in Drug-EP, although the sADAM8 concentrations were not increased in the BALF in Drug-EP. Thus, the pathogenesis of AEP and Drug-EP may be distinct with regard to allergen exposure; AEP may be caused by the inhalation of antigens, whereas Drug-EP may be caused by bloodstream antigens. These findings indicate that ADAM8 levels reflect the route of eosinophilic inflammation in EP.
Collapse
Affiliation(s)
- Osamu Matsuno
- Division of Respiratory Disease, Osaka Minami Medical Center, Kidohigashimachi 2-1, Kawachinagano city, Osaka 586-8521, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND A proteinase with a disintegrin and a metalloproteinase domain-8 (ADAM8) has been linked to asthma. OBJECTIVE To explore whether ADAM8 is a therapeutic target for asthma. METHODS We reviewed literature on ADAM8's function and expression and activities in lungs of humans and mice with allergic airway inflammation (AAI). We used these data to generate hypotheses about the contributions of ADAM8 to asthma pathogenesis. CONCLUSIONS ADAM8 levels are increased in airway epithelium and airway inflammatory cells in mice with AAI and human asthma patients. Data from murine models of AAI indicate that ADAM8 dampens airway inflammation. It is not clear whether ADAM8 contributes directly to structural remodeling in asthmatic airways. Additional studies are required to validate ADAM8 as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Martin D Knolle
- Brigham and Women's Hospital, Harvard Medical School, Division of Pulmonary and Critical Care Medicine, 905 Thorn Building, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Acharya M, Edkins AL, Ozanne BW, Cushley W. SDF-1 and PDGF enhance alphavbeta5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines. Leukemia 2009; 23:1807-17. [PMID: 19609283 DOI: 10.1038/leu.2009.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD23 acts through the alphavbeta5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. alphavbeta5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by alphavbeta5 and anti-alphavbeta5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of alphavbeta5 with anti-alphavbeta5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both alphavbeta5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the alphavbeta5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways.
Collapse
Affiliation(s)
- M Acharya
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | |
Collapse
|
12
|
Ford JW, Sturgill JL, Conrad DH. 129/SvJ mice have mutated CD23 and hyper IgE. Cell Immunol 2008; 254:124-34. [PMID: 18828998 PMCID: PMC2643045 DOI: 10.1016/j.cellimm.2008.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/21/2008] [Accepted: 08/18/2008] [Indexed: 01/22/2023]
Abstract
CD23, the low affinity IgE receptor, is hypothesized to function as a negative regulator of IgE production. Upon discovering reduced CD23 surface levels in 129/SvJ inbred mice, we sought to further investigate 129/SvJ CD23 and to examine its influence on IgE levels. Five amino acid substitutions were found in 129/SvJ CD23. Identical mutations were also observed in CD23 from New Zealand Black and 129P1/ReJ mice. 129/SvJ B cells proliferated more rapidly than those from BALB/c after stimulation with IL-4 and CD40 ligand trimer. However, in vitro IgE levels in supernatants from stimulated 129/SvJ B cells were significantly reduced. Contrary to the in vitro findings, the 129/SvJ CD23 mutations correlated with a hyper IgE phenotype in vivo and 129/SvJ were able to clear Nippostrongylus brasiliensis infection more rapidly than either BALB/c or C57BL/6. Overall, this study further suggests that CD23 is an important regulatory factor for IgE production.
Collapse
|
13
|
Abstract
The spreading epidemic of allergies and asthma has heightened interest in IgE, the central player in the allergic response. The activity of IgE is associated with a network of proteins; prominent among these are its two principal receptors, FcepsilonRI (high-affinity Fc receptor for IgE) and CD23, as well as galectin-3 and several co-receptors for CD23, notably CD21 and various integrins. Here, we review recent progress in uncovering the structures of these proteins and their complexes, and in our understanding of how IgE exerts its effects and how its expression is regulated. The information that has emerged suggests new therapeutic directions for combating allergic disease.
Collapse
|
14
|
Menard LC, Minns LA, Darche S, Mielcarz DW, Foureau DM, Roos D, Dzierszinski F, Kasper LH, Buzoni-Gatel D. B cells amplify IFN-gamma production by T cells via a TNF-alpha-mediated mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:4857-66. [PMID: 17878385 DOI: 10.4049/jimmunol.179.7.4857] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aside from being the precursors of the Ab-secreting cells, B cells are engaged in other immune functions such as Ag presentation to T cells or cytokine production. These functions may contribute to the pathogenic role of B cells in a wide range of autoimmune diseases. We demonstrate that B cells acquire the capacity to amplify IFN-gamma production by CD4 and CD8 T cells during the course of the Th1 inflammatory response to Toxoplasma gondii infection. Using the two following different strategies, we observed that B cells from T. gondii-infected mice, but not from naive mice, induce higher IFN-gamma expression by splenic host T cells: 1) reconstitution of B cell-deficient mice with B cells expressing an alloantigen different from the recipients, and 2) adoptive transfer of B and T cells into RAG-/- mice. In vitro assays allowing the physical separation of T and B cells demonstrate that Ag-primed B cells enhance IFN-gamma production by T cells in a contact-dependent fashion. Using an OVA-transgenic strain of T. gondii and OVA-specific CD4 T cells, we observed that the proinflammatory effect of B cells is neither Ag specific nor requires MHCII expression. However, TNF-alpha expressed on the surface of B cells appears to mediate in part the up-regulation of IFN-gamma by the effector T cells.
Collapse
Affiliation(s)
- Laurence C Menard
- Department of Microbiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McCloskey N, Hunt J, Beavil RL, Jutton MR, Grundy GJ, Girardi E, Fabiane SM, Fear DJ, Conrad DH, Sutton BJ, Gould HJ. Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells. J Biol Chem 2007; 282:24083-91. [PMID: 17576766 DOI: 10.1074/jbc.m703195200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The low affinity IgE receptor, CD23, is implicated in IgE regulation and the pathogenesis of allergic disease. CD23 is a type II integral membrane protein, comprising a lectin "head," N-terminal "stalk," and C-terminal "tail" in the extracellular sequence. Endogenous proteases cleave CD23 in the stalk and the tail to release soluble fragments that either stimulate or inhibit IgE synthesis in human B cells. The molecular basis of these paradoxical activities is not understood. We have characterized three fragments of CD23, monomeric derCD23, monomeric exCD23, and oligomeric lzCD23. We show that the monomers inhibit and the oligomer stimulates IgE synthesis in human B cells after heavy chain switching to IgE. CD23 fragments could be targets for therapeutic intervention in allergic disease.
Collapse
Affiliation(s)
- Natalie McCloskey
- Medical Research Council Asthma UK Centre in Allergic Mechanisms of Asthma and the Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lemieux GA, Blumenkron F, Yeung N, Zhou P, Williams J, Grammer AC, Petrovich R, Lipsky PE, Moss ML, Werb Z. The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. J Biol Chem 2007; 282:14836-44. [PMID: 17389606 PMCID: PMC2582392 DOI: 10.1074/jbc.m608414200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low affinity IgE receptor, FcepsilonRII (CD23), is both a positive and negative regulator of IgE synthesis. The proteinase activity that converts the membrane-bound form of CD23 into a soluble species (sCD23) is an important regulator of the function of CD23 and may be an important therapeutic target for the control of allergy and inflammation. We have characterized the catalytic activity of ADAM (a disintegrin and metalloproteinase) 10 toward human CD23. We found that ADAM10 efficiently catalyzes the cleavage of peptides derived from two distinct cleavage sites in the CD23 backbone. Tissue inhibitors of metalloproteinases and a specific prodomain-based inhibitor of ADAM10 perturb the release of endogenously produced CD23 from human leukemia cell lines as well as primary cultures of human B-cells. Expression of a mutant metalloproteinase-deficient construct of ADAM10 partially inhibited the production of sCD23. Similarly, small inhibitory RNA knockdown of ADAM10 partially inhibited CD23 release and resulted in the accumulation of the membrane-bound form of CD23 on the cells. ADAM10 contributes to CD23 shedding and thus could be considered a potential therapeutic target for the treatment of allergic disease.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Weskamp G, Ford JW, Sturgill J, Martin S, Docherty AJP, Swendeman S, Broadway N, Hartmann D, Saftig P, Umland S, Sehara-Fujisawa A, Black RA, Ludwig A, Becherer JD, Conrad DH, Blobel CP. ADAM10 is a principal 'sheddase' of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 2006; 7:1293-8. [PMID: 17072319 DOI: 10.1038/ni1399] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 09/08/2006] [Indexed: 11/09/2022]
Abstract
CD23, the low-affinity immunoglobulin E receptor, is an important modulator of the allergic response and of diseases such as rheumatoid arthritis. The proteolytic release of CD23 from cells is considered a key event in the allergic response. Here we used loss-of-function and gain-of-function experiments with cells lacking or overexpressing candidate CD23-releasing enzymes (ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17, ADAM19 and ADAM33), ADAM-knockout mice and a selective inhibitor to identify ADAM10 as the main CD23-releasing enzyme in vivo. Our findings provide a likely target for the treatment of allergic reactions and set the stage for further studies of the involvement of ADAM10 in CD23-dependent pathologies.
Collapse
Affiliation(s)
- Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pongratz G, McAlees JW, Conrad DH, Erbe RS, Haas KM, Sanders VM. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. THE JOURNAL OF IMMUNOLOGY 2006; 177:2926-38. [PMID: 16920928 DOI: 10.4049/jimmunol.177.5.2926] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the causes of asthma vary, the severity of the disease correlates with the level of IgE produced. In this study we show that mice produced less IgE when they were depleted of the neurotransmitter norepinephrine (NE) before the administration of Ag. The suppression was prevented when a beta2-adrenergic receptor (beta2AR)-selective agonist was administered, suggesting that NE stimulated the beta2AR to regulate the level of an IgE response in vivo. Although the cell targeted by NE to produce this effect in vivo is unknown, we show in vitro that the level of IgE increased on a per cell basis without an effect on class switch recombination when NE stimulated the beta2AR on a B cell directly. The beta2AR-induced increase in IgE depended on p38 MAPK but not protein kinase A activation, was due to an increased rate of mature IgE mRNA transcription, and was lost when beta2AR-deficient B cells were used. Also, CD23 transcription was increased in a p38 MAPK-dependent manner and resulted in an increased level of soluble CD23 (sCD23). The beta2AR-induced increase in sCD23 was associated with IgE up-regulation and possibly interacted with CD21/CD19. Using B cells from respective knockout mice, data showed that the beta2AR-induced increase in IgE depended on B cell expression of CD23, CD21, and CD19. These findings suggest that at least one mechanism by which endogenous B cell activity in vivo is regulated by NE involves stimulation of the beta2AR on the B cell alone to increase the level of IgE produced in a p38 MAPK- and sCD23-dependent manner.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wurzburg BA, Tarchevskaya SS, Jardetzky TS. Structural changes in the lectin domain of CD23, the low-affinity IgE receptor, upon calcium binding. Structure 2006; 14:1049-58. [PMID: 16765898 DOI: 10.1016/j.str.2006.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 03/03/2006] [Accepted: 03/27/2006] [Indexed: 11/28/2022]
Abstract
CD23, the low-affinity receptor for IgE (Fc epsilonRII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca2+. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca2+ bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.
Collapse
Affiliation(s)
- Beth A Wurzburg
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
20
|
Komiya K, Enomoto H, Inoki I, Okazaki S, Fujita Y, Ikeda E, Ohuchi E, Matsumoto H, Toyama Y, Okada Y. Expression of ADAM15 in rheumatoid synovium: up-regulation by vascular endothelial growth factor and possible implications for angiogenesis. Arthritis Res Ther 2005; 7:R1158-73. [PMID: 16277668 PMCID: PMC1297561 DOI: 10.1186/ar1796] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 01/13/2023] Open
Abstract
ADAMs (a disintegrin and metalloproteinases) comprise a new gene family of metalloproteinases, and may play roles in cell-cell interaction, cell migration, signal transduction, shedding of membrane-anchored proteins and degradation of extracellular matrix. We screened the mRNA expression of 10 different ADAMs with a putative metalloproteinase motif in synovial tissues from patients with rheumatoid arthritis (RA) or osteoarthritis (OA). Reverse transcription PCR and real-time quantitative PCR analyses indicated that among the ADAMs, ADAM15 mRNA was more frequently expressed in the RA samples and its expression level was significantly 3.8-fold higher in RA than in OA (p < 0.01). In situ hybridization, immunohistochemistry and immunoblotting demonstrated that ADAM15 is expressed in active and precursor forms in the synovial lining cells, endothelial cells of blood vessels and macrophage-like cells in the sublining layer of RA synovium. There was a direct correlation between ADAM15 mRNA expression levels and vascular density in the synovial tissues (r = 0.907, p < 0.001; n = 20). ADAM15 was constitutively expressed in RA synovial fibroblasts and human umbilical vein endothelial cells (HUVECs), and the expression level was increased in HUVECs by treatment with vascular endothelial growth factor (VEGF)165. On the other hand, ADAM15 expression in RA synovial fibroblasts was enhanced with VEGF165 only if vascular endothelial growth factor receptor (VEGFR)-2 expression was induced by treatment with tumor necrosis factor-alpha, and the expression was blocked with SU1498, a specific inhibitor of VEGFR-2. These data demonstrate that ADAM15 is overexpressed in RA synovium and its expression is up-regulated by the action of VEGF165 through VEGFR-2, and suggest the possibility that ADAM15 is involved in angiogenesis in RA synovium.
Collapse
Affiliation(s)
- Koichiro Komiya
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Enomoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Isao Inoki
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Satoko Okazaki
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoshinari Fujita
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Eiji Ikeda
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Eiko Ohuchi
- Biopharmaceutical Department, Daiichi Fine Chemical Co. Ltd., Takaoka, Toyama, Japan
| | - Hideo Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Stout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 2005; 205:60-71. [PMID: 15882345 PMCID: PMC1201508 DOI: 10.1111/j.0105-2896.2005.00260.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The macrophage lineage displays extreme functional and phenotypic heterogeneity, which appears to be because, in large part, of the ability of macrophages to functionally adapt to changes in their tissue microenvironment. This functional plasticity of macrophages plays a critical role in their ability to respond to tissue damage and/or infection and to contribute to clearance of damaged tissue and invading microorganisms, to recruitment of the adaptive immune system, and to resolution of the wound and of the immune response. Evidence has accumulated that environmental influences, such as stromal function and imbalances in hormones and cytokines, contribute significantly to the dysfunction of the adaptive immune system. The innate immune system also appears to be dysfunctional in aged animals and humans. In this review, the hypothesis is presented and discussed that the observed age-associated 'dysfunction' of macrophages is the result of their functional adaptation to the age-associated changes in tissue environments. The resultant loss of orchestration of the manifold functional capabilities of macrophages would undermine the efficacy of both the innate and adaptive immune systems. The macrophages appear to maintain functional plasticity during this dysregulation, making them a prime target of cytokine therapy that could enhance both innate and adaptive immune systems.
Collapse
Affiliation(s)
- Robert D Stout
- Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40292, USA.
| | | |
Collapse
|
22
|
Affiliation(s)
- B Heyman
- Department of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
23
|
Nagaoka Y, Nakamura K, Yasaka N, Watanabe T, Asahina A, Tamaki K. Identification and characterization of the low-affinity receptor for immunoglobulin E (FcepsilonRII/CD23) on murine Langerhans cells. J Invest Dermatol 2002; 119:130-6. [PMID: 12164935 DOI: 10.1046/j.1523-1747.2002.01768.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD23 is a low-affinity receptor for immunoglobulin E and expressed on various hemopoietic cells. Although human epidermal cultured Langerhans cells express CD23, the study to identify CD23 on murine Langerhans cells has so far failed. In this study, using highly enriched (> 95%) Langerhans cells from murine epidermis obtained by the panning method, we investigated whether murine Langerhans cells express CD23. As the result of a series of experiments using fluorescence activated cell sorter analysis and the polymerase chain reaction method, it was revealed that CD23 is expressed on cultured Langerhans cells, but not on freshly isolated Langerhans cells. Comparison of the DNA sequence of polymerase chain reaction products of CD23 from cultured Langerhans cells with that from spleen leukocytes demonstrated that there were the same sequences between the two polymerase chain reaction products. The expression of CD23 on cultured Langerhans cells was downregulated when Langerhans cells were cultured with keratinocyte-derived cytokines: interleukin-1alpha, interleukin-18, macrophage colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Moreover, it was shown that murine IgE bound to cultured Langerhans cells and this binding was partially inhibited when Langerhans cells were cultured with monoclonal antibody against CD23 (B3B4). Thus this study revealed murine cultured Langerhans cells do express CD23 and the discrepancy from previous reports may be due to the influence of cytokines derived from keratinocytes. Furthermore, the finding that murine cultured Langerhans cells bind IgE through CD23 suggests that CD23 on murine Langerhans cells may be involved in IgE-mediated immune responses.
Collapse
Affiliation(s)
- Yuzuru Nagaoka
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Brignone C, Munoz O, Batoz M, Rouquette-Jazdanian A, Cousin JL. Proteases produced by activated neutrophils are able to release soluble CD23 fragments endowed with proinflammatory effects. FASEB J 2001; 15:2027-9. [PMID: 11511513 DOI: 10.1096/fj.00-0773fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are the major source of proteolytic activities involved mainly in tissue injuries observed in chronic inflammatory disorders. High levels of soluble forms of CD23 (the low-affinity receptor for IgE) were found in biological fluids from these patients, and recent reports focused on a CD23-mediated regulation of inflammatory response. In this context, we show here that co-culture of activated PMN with CD23+ B cells resulted in a drastic release of soluble CD23 fragments from the cell surface. This cleavage was inhibited by serine proteases inhibitors, including a1-antitrypsin. We next demonstrated that purified human leukocyte elastase or cathepsin G efficiently cleaved membrane CD23 on B cells with a high specificity. Soluble fragments released by serine proteases-mediated CD23 proteolysis stimulated resting monocytes to produce oxidative burst and proinflammatory cytokine without any co-stimulatory signal. This work strongly supports the idea that the capacity of PMN-derived proteases to release soluble forms of CD23 participates in the inflammatory process mediated by these cells.
Collapse
Affiliation(s)
- C Brignone
- INSERM U343, Hôpital de L'Archet, F-06202 Nice cedex 3, France
| | | | | | | | | |
Collapse
|
25
|
Rezzonico R, Imbert V, Chicheportiche R, Dayer JM. Ligation of CD11b and CD11c beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood 2001; 97:2932-40. [PMID: 11342414 DOI: 10.1182/blood.v97.10.2932] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines and adhesion molecules such as integrins play a major part in the trafficking, extravasation, and recruitment of leukocytes to inflammatory sites. This study investigated the effects of beta(2) integrin engagement on chemokine production by freshly isolated human monocytes. We found that ligation of CD11b or CD11c but not CD11a alpha chains of beta(2) integrins by antibodies or soluble CD23 (sCD23) fusion proteins rapidly induced transcription and secretion of interleukin 8, macrophage inflammatory protein (MIP) 1alpha, and MIP-1beta. Because the promoters of these chemokine genes contain kappaB binding sites, we assessed the possible role of nuclear factor-kappaB (NF-kappaB) in controlling induction of the genes through beta(2) integrin engagement. Electrophoretic mobility shift assays showed that sCD23 or antibodies to CD11b or to CD11c up-regulated DNA-binding activity of NF-kappaB. Activation of NF-kappaB was accompanied by degradation of its cytosolic inhibitor IkappaB-alpha. Blockade of depletion of IkappaB-alpha by proteasome inhibitors (proteasome inhibitor I or acetyl-leucinyl-leucinyl-norleucinal) led to concomitant inhibition of NF-kappaB DNA-binding activity and expression of MIP-1alpha and MIP-1beta messenger RNA induced by beta(2) integrin ligation. These results suggest that triggering of CD11b or CD11c beta(2) integrin on primary human monocytes provides activation signals leading to nuclear translocation of NF-kappaB and subsequent secretion of MIP-1alpha and MIP-1beta that may have an important role in recruitment of other inflammatory cells during initiation of an inflammatory response.
Collapse
Affiliation(s)
- R Rezzonico
- Division of Immunology and Allergy, Clinical Immunology Unit (Hans Wilsdorf Laboratory), Department of Internal Medicine, University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
26
|
Mabon PJ, Weaver LC, Dekaban GA. Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment. Exp Neurol 2000; 166:52-64. [PMID: 11031083 DOI: 10.1006/exnr.2000.7488] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inflammatory response that ensues during the initial 48 to 72 h after spinal cord injury causes considerable secondary damage to neurons and glia. Infiltration of proinflammatory-activated neutrophils and monocytes/macrophages into the cord contributes to spinal cord injury-associated secondary damage. beta2 integrins play an essential role in leukocyte trafficking and activation and arbitrate cell-cell interactions during inflammation. The beta2 integrin, alphaDbeta2, is expressed on monocytes/macrophages and neutrophils and binds to vascular adhesion molecule-1 (VCAM-1). The increased expression of VCAM-1 during central nervous system (CNS) inflammation likely contributes to leukocyte extravasation into the CNS. Accordingly, blocking the interaction between alphaDbeta2 and VCAM-1 may attenuate the inflammatory response at the SCI site. We investigated whether the administration of monoclonal antibodies (mAbs) specific for the rat alphaD subunit would reduce the inflammatory response after a spinal cord transection injury in rats. At a 1 mg/kg dose two of three anti-alphaD mAbs caused a significant ( approximately 65%) reduction in the number of macrophages at the injury site and one anti-alphaD mAb led to a approximately 43% reduction in the number of neutrophils at the SCI site. Thus, our results support the concept that the alphaDbeta2 integrins play an important role in the trafficking of leukocytes to a site of central nervous system inflammation. This study also offers preliminary evidence that anti-alphaD mAbs can reduce the extravasation of macrophages and, to a lesser extent, neutrophils, to the SCI site.
Collapse
Affiliation(s)
- P J Mabon
- The Neurodegeneration Research Group, The John P. Robarts Research Institute, London, Ontario, N6A 5K8, Canada
| | | | | |
Collapse
|
27
|
Abstract
Antibodies can completely suppress or enhance the antibody response to their specific antigen by several hundredfold. Immunoglobulin M (IgM) enhances antibody responses via the complement system, and complement activation by IgM probably starts the chain of events leading to antibody responses to suboptimal antigen doses. IgG can enhance primary antibody responses in the absence of the complement system and seems to be dependent on Fc receptors for IgG (FcgammaRs). IgE enhances antibody responses via the low-affinity receptor for IgE (FcepsilonRII/CD23). The precise effector mechanisms that cause enhancement are not known, but direct B-cell signaling, antigen presentation, and increased follicular localization are all possibilities. IgG, IgE, and IgM may also suppress antibody responses when used in certain immunization regimes, and it seems reasonable that an important mechanism behind suppression is the masking of antigenic epitopes by antibodies. In addition, FcgammaRIIB, which contains a cytoplasmic inhibitory motif, acts as a negative regulator of antibody responses. This receptor, however, may prevent the antibody responses from exceeding a certain level rather than causing complete suppression.
Collapse
Affiliation(s)
- B Heyman
- Department of Genetics and Pathology, Uppsala University, Sweden.
| |
Collapse
|
28
|
Engagement of CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β production on primary human monocytes through mitogen-activated protein kinase–dependent pathways. Blood 2000. [DOI: 10.1182/blood.v95.12.3868] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstractβ2 integrins are involved in the recruitment of leukocytes to inflammatory sites and in cellular activation. We demonstrate that ligation of CD11b (Mac-1, CR3) or CD11c (p150, CR4) alpha chains of β2 integrins by mAbs or soluble chimeric CD23 (sCD23) on human freshly isolated monocytes rapidly stimulates high levels of interleukin-1β production. This induction takes place at the transcriptional level and is regulated by members of the mitogen-activated protein kinase (MAPK) family. Indeed, stimulation of monocytes through engagement of CD11b or CD11c results in the phosphorylation and activation of ERK1, ERK2, and p38/SAPK2 MAP kinases. U0126, a potent inhibitor of the upstream activator of ERK1/2, ie, MEK1/2, suppresses IL-1β messenger RNA (mRNA) expression in a dose-dependent fashion, showing the implication of this pathway in the transcriptional control of IL-1β production. On the other hand, inhibition of p38 by SB203580 indicates that this MAPK is involved in the control of IL-1β production at both transcriptional and translational levels. Together these data demonstrate that ligation of CD11b and CD11c β2 integrins by mAbs or sCD23 fusion proteins triggers the activation of 2 distinct MAPK signaling pathways that cooperate in controlling IL-1β synthesis at different levels.
Collapse
|
29
|
Engagement of CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β production on primary human monocytes through mitogen-activated protein kinase–dependent pathways. Blood 2000. [DOI: 10.1182/blood.v95.12.3868.012k43_3868_3877] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β2 integrins are involved in the recruitment of leukocytes to inflammatory sites and in cellular activation. We demonstrate that ligation of CD11b (Mac-1, CR3) or CD11c (p150, CR4) alpha chains of β2 integrins by mAbs or soluble chimeric CD23 (sCD23) on human freshly isolated monocytes rapidly stimulates high levels of interleukin-1β production. This induction takes place at the transcriptional level and is regulated by members of the mitogen-activated protein kinase (MAPK) family. Indeed, stimulation of monocytes through engagement of CD11b or CD11c results in the phosphorylation and activation of ERK1, ERK2, and p38/SAPK2 MAP kinases. U0126, a potent inhibitor of the upstream activator of ERK1/2, ie, MEK1/2, suppresses IL-1β messenger RNA (mRNA) expression in a dose-dependent fashion, showing the implication of this pathway in the transcriptional control of IL-1β production. On the other hand, inhibition of p38 by SB203580 indicates that this MAPK is involved in the control of IL-1β production at both transcriptional and translational levels. Together these data demonstrate that ligation of CD11b and CD11c β2 integrins by mAbs or sCD23 fusion proteins triggers the activation of 2 distinct MAPK signaling pathways that cooperate in controlling IL-1β synthesis at different levels.
Collapse
|
30
|
Perrin PJ, Rumbley CA, Beswick RL, Lavi E, Phillips SM. Differential cytokine and chemokine production characterizes experimental autoimmune meningitis and experimental autoimmune encephalomyelitis. Clin Immunol 2000; 94:114-24. [PMID: 10637096 DOI: 10.1006/clim.1999.4825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After primary immunization with myelin/oligodendrocyte glycoprotein, CD28(-/-) mice developed experimental autoimmune meningitis (EAM) rather than experimental autoimmune encephalomyelitis (EAE). Cytokine and chemokine production in EAE and EAM were compared to understand the differences in disease phenotype. T cells from the central nervous system lesions of mice with either EAE or EAM expressed intracellular TNF-alpha. Splenic T cells from mice with EAM produced TNF-alpha and IL-6 but no IL-2. Conversely, EAE-derived splenic T cells produced TNF-alpha and IL-2 but no IL-6. Altered T cell differentiation in EAM was not due to a Th1 to Th2 shift, because equivalent amounts of T cell IFN-gamma mRNA were produced in both diseases. Neutrophils also produced inflammatory mediators such as TNF-alpha and IL-6 in EAM. Autocrine production of MIP-2 mRNA was observed in neutrophils from mice with EAM but not EAE. Therefore, distinct patterns of cytokines and chemokines distinguish EAE and EAM.
Collapse
Affiliation(s)
- P J Perrin
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Yoshikawa T, Matsui M, Gon Y, Yoshioka T, Hirama M, Lynch RG, Naito K, Yodoi J. Characterization of novel FcepsilonRII/CD23 isoforms lacking the transmembrane (TM) segment in human cell lines. Mol Immunol 1999; 36:1223-33. [PMID: 10684962 DOI: 10.1016/s0161-5890(99)00139-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human FcepsilonRII/CD23 is an approximately 45 kDa type II transmembrane glycoprotein belonging to the C-type animal-lectin family, and has two isoforms (a and b) that only differ in their intracytoplasmic tails. We previously found that in several human and mouse cell lines there were two additional CD23 transcripts (a' and b') lacking the exon 3 that encodes the entire transmembrane segment and a part of cytoplasmic tails. In this study, we analyzed the putative CD23a' and CD23b' products at protein levels and characterized with rabbit polyclonal antibodies against novel amino-acid sequences of the putative CD23a' and CD23b' molecules (anti-CD23a' Ab, anti-CD23b' Ab). Western blots in COS cells transfected with CD23a' or CD23b' cDNA as well as in vitro translation assays showed that the a' and b' CD23 transcripts were translated to about 40 kDa molecules. These 40 kDa molecules were also recognized by a polyclonal antibody against 25 kDa soluble fragment of human CD23. We also found that human cells having mRNAs for CD23a' and CD23b' expressed protein products recognized specifically by anti-CD23a' or anti-CD23b' Ab, respectively. In addition, the CD23a' and CD23b' molecules in transfected COS cells were resistant to Endo H(f) and PNGase F, although these truncated forms as well as the membrane-associated forms had an asparagine residue responsible for the N-linked glycosylation. Taken together, our results show that the a' and b' CD23 transcripts are expressed and translated in human lymphoid cells and that their translated products are retained in the cytoplasm where they might play an unique regulatory role in the expression of the full-length CD23 on the cell surface.
Collapse
Affiliation(s)
- T Yoshikawa
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kleinau S, Martinsson P, Gustavsson S, Heyman B. Importance of CD23 for Collagen-Induced Arthritis: Delayed Onset and Reduced Severity in CD23-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Increased expression of the low affinity receptor for IgE, FcεRII/CD23 has been observed in rheumatoid arthritis. In view of this, we have investigated the expression and influence of CD23 in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. CD23+ cells were analyzed in lymph nodes of DBA/1 mice immunized with bovine collagen type II (BCII) in CFA or with CFA only. The percentage of CD23+ lymph node cells was increased in both BCII/CFA- and CFA-immunized mice at 1, 3, and 7 wk after immunization compared with unimmunized mice, indicating a role for the adjuvant to trigger general inflammation and CD23 expression. To investigate the functional role of CD23 in CIA, CD23-deficient mice on the DBA/1 genetic background were studied. After immunization with BCII/CFA, these mice developed CIA with delayed onset and reduced severity compared with wild-type mice. These findings suggest that an increased number of CD23+ cells is part of an inflammatory response and that CD23 expression is of pathogenic importance in the arthritic process.
Collapse
Affiliation(s)
- Sandra Kleinau
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Susanne Gustavsson
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Kelly AE, Chen BH, Woodward EC, Conrad DH. Production of a Chimeric Form of CD23 That Is Oligomeric and Blocks IgE Binding to the FcεRI. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The low affinity receptor for IgE (FcεRII/CD23) has previously been shown to interact with IgE with a dual affinity. Three chimeric constructs were created containing the lectin domain (amino acids 172–188) or the “neck” and lectin domain (amino acids 157–188) attached to subunits of oligomeric proteins. All chimeras were incapable of interacting with IgE with either a high or low affinity, indicating that the α-helical stalk of CD23 is important for orienting the lectin heads such that an interaction with IgE can occur. This concept received further support in that a chimeric CD23 composed of the human CD23 stalk and the mouse CD23 lectin head bound mouse IgE with a dual affinity, but could only bind rat IgE with a low affinity. Effort was next concentrated on a construct consisting of the entire extracellular (EC) region of CD23. A mutation to the first cleavage site of CD23 (C1M) resulted in a more stable molecule as determined by a decrease of soluble CD23 release. A soluble chimeric EC-C1M was prepared by attaching an isoleucine zipper to the amino terminus (lzEC-C1M). The interaction with IgE by lzEC-C1M was found to be superior to that seen with EC-CD23. The lzEC-C1M could inhibit binding of IgE to both CD23 and the high affinity receptor for IgE, FcεRI, providing further evidence for a strong interaction with IgE. FcεRI inhibition (∼70%) was seen at equimolar concentrations of lzEC-C1M, implying the effectiveness of this chimera and suggesting its potential therapeutic value.
Collapse
Affiliation(s)
- Ann E. Kelly
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Bing-Hung Chen
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Elaine C. Woodward
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|